Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune....

60
1 Torna all’indice Teoria dei Segnali Introduzione Il termine Segnale e' usato molto frequentemente non solo nel campo scientifico e tecnologico ma anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il significato anche di Messaggio o di Informazione. Vale a dire non distinguiamo i concetti Segnale, Messaggio, Informazione. Normalmente ciò non comporta confusione anche perché la sua derivazione etimologica latina Signum ha un ampio spettro di significati. Nello studio dei sistemi fisici e del loro comportamento possiamo comunque intendere il termine Segnale come una variazione temporale dello stato fisico di un sistema che serve per rappresentare, registrare e trasmettere messaggi. Nell'attività dell'uomo i messaggi sono inseparabilmente connessi, il più delle volte, con l'informazione. L'intervallo di problematiche coinvolgenti i concetti di messaggio e informazione è molto ampio e non è scopo del corso approfondirli daremo tuttavia alcuni cenni in proposito, attraverso alcuni esempi, al solo fine di fornire elementi per ulteriore approfondimento. Il postino che consegna una lettera mi sembra un caso molto semplice e quindi basilare al fine della individuazione e quindi della distinzione delle tre componenti (segnale, messaggio, informazione). Il suono del campanello può essere identificato come Segnale, la lettera ( o la busta oppure il pacco) può rappresentare il Messaggio e il suo contenuto l'Informazione. Se però prendiamo un caso leggermente più complicato come quello di una particella elementare che colpisce un rivelatore provocando, tramite il processo di ionizzazione del materiale scintillante, transizioni ottiche di luminescenza delle molecole che lo costituiscono, non è più tanto semplice individuare e separare le tre componenti. Infatti se ci limitiamo a considerare l'insieme del materiale scintillante in se possiamo identificare l'arrivo della particella come segnale ( il suono del campanello), i processi di ionizzazione che determinano ( cioè che "portano" ) la luminescenza come messaggio e quest'ultima come l'informazione da elaborare per estrarre e interpretare ciò che è avvenuto e come all'interno dello scintillatore. Se estendiamo il sistema aggiungendo un convertitore opto-elettronico (fotomoltiplicatore) che converte la luce prodotta dalla luminescenza in corrente elettrica allora l'informazione viene presentata come tale. Se ad eccitare i centri di luminescenza del cristallo (rivelatore) è una lampada che emette fotoni nella banda delle transizioni di luminescenza allora il segnale è costituito da questi fotoni e, non essendoci più il processo di ionizzazione provocato dall’interazione e. m. della particella carica, ma piuttosto l’eccitazione diretta dei livelli molecolari da parte della radiazione emessa dalla lampada, il messaggio e l'informazione, che è ancora costituita dalla luminescenza, si identificano. Come si vede la separazione dei concetti non è poi sempre cosi semplice anche perché coinvolge aspetti riguardanti processi di comunicazione considerata nel senso più lato del suo significato e quindi coinvolgente il soggetto uomo come sistema complesso. Ma, non volendo entrare in ambiti al di fuori dei contenuti del corso, è bene limitare il nostro interesse alle connessioni tra i segnali e la Fisica quindi tra segnali e osservabile. In questa prima parte del corso parleremo esclusivamente di segnali, deterministici e stocastici e dei metodi per analizzarli, trattarli e trasformarli. Nella seconda parte studieremo come i sistemi fisici

Transcript of Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune....

Page 1: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

1

Torna all’indice

Teoria dei Segnali

Introduzione

Il termine Segnale e' usato molto frequentemente non solo nel campo scientifico e tecnologico ma anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il significato anche di Messaggio o di Informazione. Vale a dire non distinguiamo i concetti Segnale, Messaggio, Informazione. Normalmente ciò non comporta confusione anche perché la sua derivazione etimologica latina Signum ha un ampio spettro di significati. Nello studio dei sistemi fisici e del loro comportamento possiamo comunque intendere il termine Segnale come una variazione temporale

dello stato fisico di un sistema che serve per rappresentare, registrare e trasmettere messaggi. Nell'attività dell'uomo i messaggi sono inseparabilmente connessi, il più delle volte, con l'informazione. L'intervallo di problematiche coinvolgenti i concetti di messaggio e informazione è molto ampio e non è scopo del corso approfondirli daremo tuttavia alcuni cenni in proposito, attraverso alcuni esempi, al solo fine di fornire elementi per ulteriore approfondimento. Il postino che consegna una lettera mi sembra un caso molto semplice e quindi basilare al fine della individuazione e quindi della distinzione delle tre componenti (segnale, messaggio, informazione). Il suono del campanello può essere identificato come Segnale, la lettera ( o la busta oppure il pacco) può rappresentare il Messaggio e il suo contenuto l'Informazione. Se però prendiamo un caso leggermente più complicato come quello di una particella elementare che colpisce un rivelatore provocando, tramite il processo di ionizzazione del materiale scintillante, transizioni ottiche di luminescenza delle molecole che lo costituiscono, non è più tanto semplice individuare e separare le tre componenti. Infatti se ci limitiamo a considerare l'insieme del materiale scintillante in se possiamo identificare l'arrivo della particella come segnale ( il suono del campanello), i processi di ionizzazione che determinano ( cioè che "portano" ) la luminescenza come messaggio e quest'ultima come l'informazione da elaborare per estrarre e interpretare ciò che è avvenuto e come all'interno dello scintillatore. Se estendiamo il sistema aggiungendo un convertitore opto-elettronico (fotomoltiplicatore) che converte la luce prodotta dalla luminescenza in corrente elettrica allora l'informazione viene presentata come tale. Se ad eccitare i centri di luminescenza del cristallo (rivelatore) è una lampada che emette fotoni nella banda delle transizioni di luminescenza allora il segnale è costituito da questi fotoni e, non essendoci più il processo di ionizzazione provocato dall’interazione e. m. della particella carica, ma piuttosto l’eccitazione diretta dei livelli molecolari da parte della radiazione emessa dalla lampada, il messaggio e l'informazione, che è ancora costituita dalla luminescenza, si identificano. Come si vede la separazione dei concetti non è poi sempre cosi semplice anche perché coinvolge aspetti riguardanti processi di comunicazione considerata nel senso più lato del suo significato e quindi coinvolgente il soggetto uomo come sistema complesso. Ma, non volendo entrare in ambiti al di fuori dei contenuti del corso, è bene limitare il nostro interesse alle connessioni tra i segnali e la Fisica quindi tra segnali e osservabile.

In questa prima parte del corso parleremo esclusivamente di segnali, deterministici e stocastici e dei metodi per analizzarli, trattarli e trasformarli. Nella seconda parte studieremo come i sistemi fisici

Page 2: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

2

elaborano, trasferiscono e trasformano le sollecitazioni di natura sia deterministica che stocastica, per generare una risposta interpretando la quale otterremo l'informazione relativa al processo fisico avvenuto nel sistema. Come esempio molto diffuso di sistema nel quale avvengono processi stocastici, nella terza parte prenderemo in esame i rivelatori di particelle con particolare attenzione a quelli basati su i processi di luminescenza. Per la trattazione dei segnali, in questa prima parte, e successivamente per l'analisi dei sistemi, ci avvarremo spesso di esempi che fanno riferimento al mondo delle telecomunicazioni o dell'elettronica a puro ed esclusivo scopo di semplicità intendendo che tutti i metodi sperimentali e matematici descritti e analizzati hanno carattere di totale generalità e quindi applicabili a tutti i segnali o sistemi fisici che sono e rimangono gli unici obiettivi del corso essendo, quelli appartenenti al campo dell'elettronica, dei semplici strumenti per una più immediata e realizzabile modellazione

Modello matematico

I segnali, in quanto variazione temporale dello stato fisico di un sistema, possono essere osservati ovvero sono suscettibili di una operazione di misura attraverso un gran numero di modi e di strumenti che possono variare enormemente a seconda della variabile fisica sorgente della variazione. Occorre però prestare molta attenzione all'approccio sperimentale in quanto può essere soggetto a forti limitazioni. Infatti il processo osservato si manifesta sempre come specifico, come evento singolo o individuale che manca del grado di generalità necessario per formarsi un'idea circa le proprietà fondamentali che lo generano. Risulta quindi necessario affrontare lo studio dei comportamenti per via teorica e definire, successivamente, un modello matematico che sia capace, ovviamente, di descrivere il reale comportamento del .processo a tutti i tempi cioè darne l'evoluzione temporale, in modo esatto se esso è di tipo deterministico o in modo probabilistico se invece è di tipo stocastico e quindi di predire i risultati sotto mutate condizioni fisiche. L'importanza della definizione di modello matematico risiede anche nel fatto che dà la possibilità allo sperimentatore di separare le proprie convinzioni dalla natura specifica del processo preso in esame. Un altro aspetto dell'utilità del metodo basato sul modello matematico consiste nel poter limitare l'analisi solo alle proprietà oggettivamente più importanti, a quelle ritenute fondamentali e tralasciare un gran numero di attributi secondari di minore importanza o comunque di minore interesse fisico. La scelta del modello è il primo importante passo verso lo studio sistematico di un fenomeno fisico che, nel nostro caso, è rappresentato da un segnale. E' anche interessante notare come uno stesso modello matematico può descrivere ugualmente bene diversi processi fisici. Si pensi al modello a strati atomico e al modello a shell nucleare o al modello dell'oscillatore armonico utilizzato nella meccanica, nell'elettromagnetismo, nella fisica nucleare e subnucleare e cosi via, al modello esponenziale che ben descrive i processi di assorbimento di radiazioni nella materia, la carica e scarica di capacità,..ecc. Possiamo in sintesi dire .che intendiamo per modello matematico, di un processo fisico in generale, di un segnale in particolare, una relazione funzionale il cui argomento è il tempo e che indicheremo pertanto con s(t), f(t), u(t),... In ultima analisi il modello ci permette di confrontare, di classificare e di stabilire le somiglianze tra segnali. La loro classificazione può essere fatta in tanti modi diversi a seconda della proprietà che si intende classificare. Quindi avremo segnali di tipo Unidimensionale o Multidimensionale (Vettori) se si vuole evidenziare la dimensionalità attraverso la quale essi si esibiscono. Saranno di tipo Deterministico oppure Stocastico se la loro modalità di evolversi nel tempo è prevedibile oppure casuale. Potranno ancora essere Analogici oppure Discreti se si presentano come Continui o Discontinui nel tempo. E' comunque possibile una combinazione qualsiasi delle suddette modalità e

Page 3: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

3

risulta evidente la necessità di uno spazio rappresentativo per la definizione e la manipolazione dei medesimi.

Page 4: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

4

Segnali Deterministici

Un segnale è deterministico se il suo valore istantaneo può essere predetto ad ogni istante. Esso può essere specificato: 1.Attraverso una formula matematica 2.Un algoritmo computazionale Tuttavia occorre notare che segnali di tale tipo non esistono in natura! Infatti a causa dell'inevitabile interazione tra la sorgente del segnale e l'ambiente circostante oppure per le caotiche fluttuazioni, a livello macroscopico, della stessa variabile fisica sorgente del segnale ( si pensi alla temperatura, alla pressione, al campo elettrico, ecc.), o ancora ad effetti quantistici a livello microscopico, portano alla conseguenza che gli unici segnali reali sono di natura casuale o stocastica. Nelle tele o radiocomunicazioni, fluttuazioni casuali si manifestano come rumore dal quale occorre estrarre l'informazione. Questo è un problema molto serio quando si debbano ricomporre, ad esempio, immagini provenienti da satellite. Si richiede allora l'uso di tecniche molto sofisticate che impiegano algoritmi di ricostruzione dell'immagine ( come il filtro di Kalman).

Non sempre però il segnale casuale e' da considerarsi rumore o indesiderato. Infatti, ad esempio, una sorgente cosmica emette delle fluttuazioni che non sono rumore ma anzi ci danno informazioni importanti circa l'evoluzione e la natura dell'oggetto cosmico e quindi va considerato come segnale significativo. Molto spesso, come si vede, è difficile distinguere tra evento significativo (segnale) e fluttuazione (rumore) comunque, come vedremo, si può assumere un modello matematico anche per segnali non deterministici o quasi stocastici.

Segnali Unidimensionali

Tali segnali sono descritti tramite una funzione del tempo come, ad esempio, la tensione V(t) agli estremi di un circuito elettrico, la temperatura T(t) di un sistema termodinamico, la velocità v(t) di efflusso dei gas di un razzo, ecc. Sono quelli che useremo di più in questa trattazione.

Segnali Multidimensionali

Insieme ordinato di segnali unidimensionali. [ ]),...(),(),( 321 tVtVtV come, ad

esempio, le differenze di potenziale esistenti ai terminali di un dispositivo multi porte (v. fig.). Attenzione

[ ] [ ])(),()(),( 1221 tVtVtVtV ≠ perchè è un insieme ordinato.

Attenzione :

Page 5: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

5

Segnali Continui

Volendo fare una classificazione utile in senso pratico possiamo distinguere i segnali in base alla loro evoluzione temporale. Essi quindi possono essere: Continui, Discreti, Digitali I segnali sono Continui o Analogici quando il loro valore può essere misurato in ogni istante. L'aggettivo 'analogico' è usato in relazione al fatto che la loro forma in uscita da un sistema è analoga a quella in ingresso.

Segnali Discreti

I segnali sono Discreti quando il loro valore può essere misurato solo in determinati istanti di tempo. Un semplice modello matematico è quello in cui ad un set numerabile di

punti ti, i = 1,2,3,... nel tempo è associata una ampiezza si; quindi a particolari istanti ti, meglio se equidistanti, si fa corrispondere il valore del segnale.

Segnali Digitali

I segnali sono Digitali quando si tratta di segnali discreti la cui ampiezza è associata ad un numero che ne rappresenta il valore in quell'istante In genere per esprimere il numero viene usata, per semplicità, la base numerica binaria 0,1, che ha solo due ampiezze possibili, a quella minore è associato uno dei due (in genere "0"), all'altra il rimanente ("1"). Molto spesso i segnali discreti sono utilizzati per campionare quelli

analogici, cioè per darne una rappresentazione. I vantaggi sono: 1) Non è necessario trasmettere il segnale 'continuamente', ma solo in quegli istanti di

campionamento. 2) E' possibile utilizzare lo "stesso" sistema di comunicazione per trasmettere messaggi da diverse

sorgenti a diversi utilizzatori. Questo modo è noto come "Time Division Multiplexing". Gli intervalli di campionamento sono, in genere, uguali con la condizione ovvia che loro durata deve essere minore di quella del segnale analogico da campionare.

Vi sono due modi di campionare:

1). Tramite impulsi con equidurata temporale, ∆t = cost. e con ampiezza A proporzionale a quella del segnale

analogico nel punto di campionamento.

2). Tramite impulsi di uguale ampiezza e con durata

∆t proporzionale all'ampiezza del segnale nel punto

di campionamento. Anche con segnali digitali è possibile campionare segnali analogico: il segnale continuo nel punto di campionamento è convertito in una serie di impulsi digitali, ad es. binari, codificati che equivalgono al valore dello stesso al tempo t.

Page 6: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

6

Rappresentazione dinamica dei segnali

Molto spesso è importante conoscere non solo il valore istantaneo (presente) di un segnale, ma anche il suo comportamento durante il tempo nel passato e nel futuro. Il principio della rappresentazione dinamica ci consente di rispondere a questa esigenza. Essa consiste nel descrivere un segnale reale attraverso una somma di segnali elementari contigui ovvero che si susseguono ad istanti successivi di tempo. Essi possono essere scelti in una classe di segnali arbitrari tuttavia quelli più usati per la loro semplicità e significatività sono :

1) Funzioni elementari a gradini o di Heaviside, distanziati a intervalli

temporali ∆t uguali e con ampiezza

uguale alla variazione del segnale in questo intervallo. 2) Impulsi rettangolari o funzione δ di Dirac, contigui in modo tale da formare una sequenza inscritta o circoscritta al segnale.

Funzione di Heaviside o a Gradino o Step Function

Consideriamo la funzione v(t) definita dal seguente modello matematico :

Questa rappresenta la transizione di un sistema fisico dallo stato definito "0" allo stato definito

"1". Se facciamo tendere la

variabile ξ→0 si ottiene una

transizione istantanea. Allora essa prende il nome di Switching Function o funzione di Heaviside

σ(t)

( )

><

=0per 1

0per 0t

t

tσ transizione al tempo t=0; ( )

>

<=

tt

tt o

00 per 1

per 0t-tσ transizione al

tempo t=t0

Rappresentazione dinamica tramite la funzione di Heaviside

Prendiamo una funzione qualsiasi del tempo s(t) tale che :

s(t)=0 per t<0 e sia ∆t,2∆t,3∆t,... la sequenza di intervalli temporali alla quale corrisponde la

sequenza s1,s2,s3,... dei rispettivi valori della s(t). Se s

0=s(0) è il valore a t=0 allora: il valore del segnale a qualsiasi t è

s(t)=s0σ(t) + (s1-s0)σ(t - ∆t)+(s2-s1)σ(t-2∆t)...o, in modo compatto:

( ) ( )∑ ∆−−+=∞

=−

110 )()(

kkk tktsststs σσ

Se ora facciamo tendere l’intervallo temporale a zero (∆t→ 0) allora la variabile discreta k∆t tende

alla variabile continua τ ;(k∆t --> τ ).

L'intervallo delle ampiezze (sk-sk-1)-->ds che possiamo scrivere come: d= ττ

d

dsds quindi :

( )

≤≤=

+

ξ

ξξ

ξ

ξ

>per t 1

t-per

-<per t 0

1t

2

1tv

Page 7: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

7

ττστ

σ d)(td

ds(t)s(t)=s

∫ −

+

∞−0

che è la rappresentazione dinamica di un segnale continuo tramite la funzione di Heaviside.

Esempio.

Calcolare il valore di una funzione arbitraria s(t) per t=∆t cioè al primo gradino.

Tutti i termini della somma che contengono la σ a tempi maggiori di ∆t cioè 2∆t, 3∆t,....sono

nulli perché è nulla la funzione di Heaviside σ mentre tutti quelli che contengono la σ a tempi

inferiori sopravvivono perché la funzione di Heaviside ha valore unitario.

Allora il valore della funzione per t=∆t sarà : s(t=∆t)= s0*1+ (s1-s0)*1+(s2-s1)*0+....0 quindi:

s(t=∆t)=s1

Esempio

Sia s(t) un segnale arbitrario avente il seguente modello matematico

s(t)= 0 per ∀ t<0

s(t)= A t2 per ∀ t>0

Trovare la sua rappresentazione dinamica in termini di funzione di Heaviside. Essendo s(t)= 0 per ∀ t< 0, allora s0 = 0 e quindi la rappresentazione dinamica del segnale risulta

:

ττστ dtAts )(2)(0

−∫=∞

che può essere facilmente verificata sostituendo un valore qualsiasi di t.

Funzione delta di Dirac

Consideriamo un segnale, impulso rettangolare, definito dal modello matematico:

cioè la differenza tra due

funzioni di Heaviside che

effettuano la transizione

a tempi diversi

Esso ha l'ampiezza pari a 1/ξ e durata ξ. Infatti

σ(t + ξ/2) = 0 per t <−ξ/2

σ(t + ξ/2) = 1 per t >−ξ/2

σ(t - ξ/2) = 0 per t <ξ/2

σ(t - ξ/2) = 1 per t >ξ/2

Quindi la loro differenza è pari a: v(t , ξ) = 1/ξ per −ξ/2 < t < ξ/2 e la durata è uguale a ξ. Questa funzione è caratterizzata dal fatto che per ∀ scelta del parametro ξ l'area è sempre

unitaria.:

∫=∞

∞−

v )dt=v(tA 1;ξ

Infatti basta osservare che Av = base ∗ altezza = ξ∗1/ξ = 1 .

Se facciamo tendere 0→ξ , per mantenere l'area unitaria, l'ampiezza

crescerà indefinitamente. Allora definiamo:

−−

+

22

1=);v(t

ξσ

ξσ

ξξ tt

Page 8: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

8

(t))(t δξξ

=→

;vlim0

funzione impulsiva o Delta di Dirac Essa è nulla ovunque tranne che nel punto che annulla l'argomento, cioè in t = 0 o t = t0 e gode

della proprietà : ∫∞

∞−

1=(t)dtδ

Esempio fisico : L'impulso di una forza F(t) variabile nel tempo che agisce su un punto materiale di massa m

nell'intervallo temporale ∆t =t2 - t

1 è ∫=∆

2

1

t

tF(t)dt p

Ciò che conta non è tanto la forza quanto l'impulso che viene trasferito alla massa m. La funzione δ(t), Delta di Dirac, è il modello matematico di un impulso unitario (area unitaria).

Rappresentazione dinamica dei segnali con la δ(t)

Ricordando l'espressione della precedente rappresentazione (di Heaviside) come somma di infiniti "gradini" elementari, possiamo esprimere il k-esimo impulso

elementare, ηk(t), come : ηk(t) = sk(t)[σ(t - tk) - σ(t - (tk+∆t))] essendo

sk(t) il k-esimo campione del segnale. Siamo quindi ora in grado di esprimere

un segnale continuo arbitrario s(t) come somma di infiniti impulsi ηk :

)()( ttsk

k∑=∞

−∞=η

( ) ( )( )[ ]tttttsts kkk

k ∆+−−−∑=∞

−∞=σσ)(

Moltiplicando e dividendo per ∆t : ( ) ( )( )[ ] ttttttt

sts kkk

k ∆∆+−−−∑∆

=∞

−∞=σσ

1)(

passando al limite per 0→∆t si ha che

τ≈∆∫→∑ t , , ( ) ( )( )[ ]tttttt kk

t∆+−−−

∆→∆σσ

1lim

0→ δ(t-τ) per cui si può scrivere:

∫=∞

∞−

)d-(t)()( ττδτsts

che è la rappresentazione dinamica dei segnali tramite la Delta di Dirac. Si osservi che le dimensioni della δ sono omogenee con una "frequenza".

Dalla scrittura di questa rappresentazione si deduce: moltiplicando una qualsiasi s(t) per la δ(t - t0)

ed integrando, otteniamo proprio il valore della funzione al tempo t0 cioè s(t0): La δ ha la cosiddetta

proprietà di filtro cioè riesce a selezionare un solo valore della funzione nel punto in cui è

"concentrato" l'impulso.

Applicazione interessante:

Realizzando un sistema come schematizzato nella figura costituito da un semplice moltiplicatore analogico e da un integratore possiamo "estrarre" il valore del segnale

s(t)

δ (t - t0)

s(t0)MoltiplicatoreIntegratore

Page 9: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

9

fornito in ingresso, s(t) all'istante t=t0. In pratica al posto della δ(t - t0) si utilizzerà un impulso

sufficientemente "stretto" per avere il valore istantaneo del segnale s(t).

Teoria geometrica o vettoriale dei segnali

In questo secolo la matematica ha sviluppato potenti tecniche di analisi funzionale che generalizzano la nostra idea intuitiva circa la struttura geometrica dello spazio. Come è stato dimostrato l'analisi funzionale rende possibile formulare una consistente teoria dei segnali basata sulla interpretazione del segnale come vettore in uno spazio, opportunamente costruito, a infinite dimensioni. D’altronde molti problemi in campo teorico e sperimentale nei settori più svariati portano a questioni che coinvolgono domande del tipo: 1) In che senso possiamo affermare che un segnale eccede o no un altro?

2) E' possibile valutare oggettivamente quanto due segnali si "assomigliano"?

Per rispondere occorre introdurre un opportuno spazio rappresentativo ("virtuale") a infinite dimensioni in cui il segnale è trattato come un vettore. Questo spazio è una generalizzazione dell'idea intuitiva di spazio con struttura geometrica.

Spazio lineare dei segnali o spazio vettoriale

Sia M = s1(t), s

2(t), s

3(t), ... un insieme di segnali. tali che ciascuno abbia proprietà comuni a tutti

gli elementi dell'insieme. Tali proprietà possono essere studiate se è possibile stabilire delle relazioni tra i membri individuali dell'insieme. In questo caso si dice che esso possiede una struttura definita. Le caratteristiche di questa struttura sono dettate da considerazioni di carattere fisico. I segnali, ad esempio quelli di natura elettrica, possono essere combinati e moltiplicati per un fattore di scala arbitrario. Su tale base quindi per l'insieme M possiamo usare una struttura di tipo lineare.

Definiamo allora le condizioni per uno spazio lineare reale:

Assiomi di uno Spazio Lineare Reale L 1) tuu ∀ℜ∈∀ per valorisolo assume , per

rL

2 :somma la , ,per ∃∈∀ Lvurr

L∈=+ wwvurrrr

che tale e valgono le proprietà

( ) ( ) xvux+v+u

uvvurrrrrr

rrrr

++=

+=+commutativa e associativa:

3) L L ∈⋅∃ℜ∈∀∈∀ u=furrr

αα per eper

4) u=+u rr00 che tale elementol' !∃ ; 0 è detto elemento origine

5) 0=- elementol' ! che tale u+u u-rrr

∃ 6) u=u

rr⋅∃ 1 che tale elementol'! 1 ; 1 è detto elemento unitario

7) ( ) ubu=aubarrr

++

8) ( ) vauav+uarrrr

+=

Gli assiomi appena elencati sono molto stringenti anche se non sembra. Se consideriamo, ad esempio, l'insieme M dei segnali impulsivi nell'intervallo [0,20µs] la cui ampiezza V è V < 10V , esso non costituisce uno spazio lineare in quanto non soddisfa il 2 e 3 assioma. Infatti se prendiamo due segnali, nell'intervallo richiesto, con ampiezze pari a 6 volt e 8 volt che singolarmente L∈ , la loro somma L∉+ )( vu

rr.Ugualmente è facile mostrare che ∃ un

numero ℜ∈α il cui prodotto con un segnale L∈ viola il 3° assioma.

Concetto di Base

Page 10: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

10

Come allo spazio ordinario anche a quello lineare dei segnali, L, può essere data una struttura speciale che gioca il ruolo di un sistema di coordinate. Si dice allora che un insieme di segnali (vettori) L∈nu,...u,u,u

rrrr321 costituisce una base linearmente indipendente se l'uguaglianza

0=∑i

iiur

α è soddisfatta solo quando i coefficienti iα svaniscono tutti insieme e allo stesso tempo

1) Dati i vettori nu,...u,u,urrrr

321 essi si dicono linearmente dipendenti se

0 che taliC o numeri 2211 =+++ℜ∃ nnua...uau aanrrr

altrimenti si dicono linearmente indipendenti. 2) Uno spazio lineare si dice n-dimensionale se ∃ almeno un insieme di n vettori linearmente indipendenti. 3) Uno spazio lineare si dice infinito dimensionale se ∃ n vettori linearmente indipendenti per n∀ intero > 0.

Nella teoria dei segnali, il numero di vettori di base, come regola, è infinitamente grande di conseguenza lo spazio lineare dei segnali è ad infinite dimensioni. Un vettore in uno spazio n-dimensionale può essere rappresentato come "somma pesata" di n vettori

linearmente indipendenti. Infatti se L∈nu,...,u, urrr

1 e nuu ,...,rr1 sono linearmente indipendenti,

allora ∃ n+1 numeri a tali che:

022110 =nnu...+au+au+auarrrr

cioè n1 u,...,u ,u

rrr sono linearmente dipendenti. Allora se a0≠0 si ha:

nn u

a

a......u

a

au

a

au

rrrr

−++

−+

−=

02

0

21

0

1

o, espresso in forma più compatta:

∑=

=n

kkk ucu

1

rr

ovvero qualsiasi vettore

ru ∈ L può essere espresso come somma di prodotti dei coefficienti ck per i

vettori ru k. Si dice allora che:

gli ru k costituiscono una base

i ck sono le componenti di

ru cioè le sue proiezioni su ru k

Concetto di Norma

Per un maggiore approfondimento nella teoria geometrica dei segnali occorre introdurre un altro concetto che corrisponde, nel significato, alla lunghezza di un vettore. In questo modo potremo dare una risposta alla domanda quale dei segnali è maggiore o minore di un altro e soprattutto determinare quanto. In uno spazio lineare L si dice che è definita una norma se a ciascun vettore s(t) ∈ L è assegnato un unico numero reale || s || che soddisfa le seguenti proprietà: 1. || s || ≥ 0 con || s || = 0 ⇔ se e solo se s = 0 2. ∀ α sussiste || αs || = |α| || s || 3. || s + p || ≤ || s || + || p || Allora possiamo definire norma del vettore s(t) la seguente espressione:

21

2

∫=∞+

∞−(t)dtss

Questa è utile in caso di segnali reali. Qualora ci trovassimo in presenza di segnali complessi sarà opportuno definire, e utilizzare quindi, la seguente norma:

Page 11: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

11

21

∫=∞+

∞−(t)dts(t)ss *

Page 12: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

12

Concetto di Metrica Uno spazio lineare L si dice metrico se a ciascuna coppia di elementi

r ru v, ∈ L è assegnato un

numero reale positivo ρ(u,v) detto metrica o distanza tra gli elementi. La metrica deve rispettare i seguenti assiomi: 1. ρ(u,v) =ρ(v,u) riflettività 2. ρ(u,u) = 0 ∀ u ∈ L 3. ∀ w ∈ L si ha ρ(u,v) ≤ ρ(u,w) + ρ(w,v)

La metrica è anche definita come la norma della distanza tra due elementi: ρ(u,v) = | u - v |.

Energia di un Segnale. Signal Energy

Il quadrato della norma è l'energia " portata " dal segnale ed è detta Energia del Segnale.

∫==+∞

∞−(t)dtssEs

22

Notare che se il segnale è una tensione, espressa in Volt, allora la sua energia è espresso in [V2 s].

Nota. Se il segnale è rappresentato da una tensione V espressa in volt allora l'energia del segnale è espressa in volt2*s e rappresenta l'energia dissipata dal segnale su un carico resistivo pari ad 1 ohm. Infatti possiamo fare una verifica dimensionale: l'equazione dimensionale dell'energia è

[ ])(

)*( 2

212

243222

ohm

svolt

QTML

QLTMTMLE

≡≡

−−

−−−

Esempio.

Trovare l'energia e la norma del segnale s(t),definito dal modello matematico s(t)=V*t/τ ovvero

un segnale triangolare di ampiezza V, salita lineare e durata τ.

L'energia del segnale è 3

)(2

02

222 τ

τ

τ Vdt

tVdttsEs =∫=∫=

∞− avendo tenuto conto che il segnale è

nullo per t>t e per t< 0. Mentre la norma è 3

)(τ

VEts s ==

Esempio

Trovare l'energia del segnale, s(t), definito dal modello matematico: s(t)=V0cos(ω0t+φ0) nell'intervallo [0,τ]. ovvero una funzione armonica troncata al tempo τ

Passando alla variabile ε=ω0t+φ0 ; dε=ω0dt l'energia del segnale risulta :

εεεω

εεω

ε+=∫= )cos()(

2)(cos

0

2

0

2

0

20 sin

Vd

VE o

s

che possiamo riscrivere come )(2)(2[4 0000

0

20 φτωφτω

ϖ+++= sin

VEs

se il tempo t al quale viene troncata l'armonica è >> del periodo dell'armonica stessa, 1/ω0 , cioè se

ω0t>>1, l'energia portata dal segnale diventa 2

20 τV

Es ≈ che risulta indipendente dalla frequenza

del segnale ω0. e, ovviamente, dalla fase φ0

Page 13: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

13

Prodotto Scalare- Spazio di Hilbert

Definiamo il prodotto scalare nello spazio L. Il prodotto scalare (u,v) è così definito:

( ) ∫=+∞

∞−u(t)v(t)dtu,v

e quindi l'angolo tra due vettori u e v in L è:

( )vu

u,v

⋅=uvcosψ

Le proprietà ovvie del prodotto scalare sono:

1. (u,v) ≥ 0

2. (u,v) = (v,u)

3. (λu,v) = λ(u,v)

4. (u+v,w) = (u,w) + (v,w) Lo spazio lineare contenente i prodotti scalari e soddisfacenti queste condizioni è detto spazio di Hilbert reale. I vettori dello spazio di Hilbert soddisfano la fondamentale disuguaglianza di Cauchy-

Buniakovsky: |(u,v)| ≤ |u| ⋅ |v| Se i segnali assumono anche valori complessi allora è possibile definire uno spazio di Hilbert

complesso nel quale il prodotto scalare assume la forma: ( ) ∫+∞

∞−

= (t)dtu(t)vu,v * ove la * indica il

complesso coniugato.

Cross Energy

Dallo spazio ordinario a tre dimensioni abbiamo: ( )BABABArrrrrr

⋅++=+ 2222

Per analogia, nello spazio L avremo:

( )∫ ∫⋅++=+==+∞

∞−

∞−uvdtEEdtvuEvu vuS 222

Da qui si vede che le energie non sono additive. Il termine ∫⋅=∞

∞−uvdtEuv 2 è detto termine di

cross energy.

Esempio. Calcolo sviluppato con MATHCAD

Trovare il prodotto scalare e l'angolo di sfasamento tra due segnali definiti dal modello matematico :

)(v

)()(v)(

22

11

τσ

στ −=

=−−

teV

teVt

tk

kt

con V1=V2=5 v; e τ=2*10-6 s

L'energia dei due segnali è identica in quanto hanno la stessa ampiezza iniziale V1=V2 e la stessa

costante di tempo τ . L'unica differenza tra i due è l'istante di inizio, t=0 per v1 e t= t0 per v2. Infatti:

Page 14: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

14

Segnali Ortogonali- Serie di Fourier Generalizzata

Due segnali u, v si dicono ortogonali se (u,v) = 0 e di conseguenza anche la cross energy è nulla. Sia H lo spazio di Hilbert a energia finita. Se prendiamo i segnali definiti nell'intervallo [t1,t2], non

necessariamente finito, possiamo definire, nello stesso intervallo un insieme di funzioni nu,...,1urr

mutuamente ortogonali e con norma unitaria, cioè tali che :

( )

≠=

j i se

i=j se,uu ji 0

1

Allora un qualsiasi segnale s(t) ∈ H si può sviluppare in serie di Fourier generalizzata, cioè:

∑=∞

=1iii (t)ucs(t)

dove ci.sono dei coefficienti incogniti che rappresentano il peso della corrispondente funzione nello

sviluppo. Per determinarli basta moltiplicare per uk,, generica base, il segnale s(t) ed integrare in

[t1,t

2]. Si ottiene:

∑ ∫=∫∞

=1

2

1

2

1

)()(i

t

tkii

t

tk dtuucdttuts

e poiché la uk è una base orto-normale si avrà:

( )kk

t

tk uscdttuts ,)()(

2

1

==∫

cioè il k-esimo coefficiente si ottiene dal prodotto scalare tra il segnale e la k-esima base.

Esempi di Basi Ortogonali Normali

Funzioni armoniche in [ 0 , T ]

T

tn

Tu

T

tn

Tu

n

n

Tu

π

π

2cos2

2sin2

2

12

10

=

=−

=

Funzioni di Walsh in [ -T/2 , T/2 ]

L'espressione analitica ha una forma complicata ed assume solo valori +1 o –1 per cui diamo solo il grafico di quelle di ordine inferiore. E' da notare che la k-esima base ha k zero crossing. Ovviamente:

121

21

22 =∫= +−

(k,q)dqWalWal(k,q)

l'ortogonalità è assicurata per costruzione geometrica:

Page 15: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

15

( )( ) ( )( ) ( )( ) ( )( )∫ ∫ =−+−=+∫+∫ −+∫ −−=⋅+− −

−−

21

21

21

41

41

41

41

21 0111111111111),2(),1( 0

0 θθθθθθθ dddddWalWal

Un qualsiasi s(t) sviluppata in serie di Fourier in termini di Walsh Functions è:

),()(0

∑=∞

=kk kWalcs θθ

con θ = t/T

Esempio (da svolgere)

Trovare i primi due coefficienti dell'espansione in funzioni di Walsh del segnale triangolare definito,

nell'intervallo [ -T/2, T/2 ] dal modello matematico :

S(t) = U ( t/T + ½)

Energia di un segnale sviluppato in serie di Fourier generalizzata

Sia dato un segnale s(t) definito nell'intervallo [t1,t2], esso puo essere sviluppato in serie di Fourier

generalizzata:

∑=∞

=1)(

kkkucts

in [ t1,t2 ]

La sua energia è:

∫∑ ∑=∫ ∑ ∑=∫=∞

=

=

=

=

2

1

2

1

2

1 1 11 1

2 )(t

tji

i jji

t

t i jjiji

t

ts dtuuccdtuuccdttsE

poiché le u(t) sono funzioni ortonormali cioè valgono 1 solo se i = j allora:

∑=∞

=1

2

iis cE

ossia "l'energia di un segnale è uguale alla somma delle energie delle singole componenti ". Questo è il teorema di Pitagora generalizzato.

Page 16: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

16

Ricerca delle condizioni sui coefficienti Ck in uno sviluppo finito

Sia ∑==

N

kkk ucts

1)(~ il segnale da sviluppare in serie di Fourier generalizzata in cui i coefficienti ck

siano sconosciuti. Per la ricerca imponiamo che sia minimo il modulo quadro della differenza µ tra il valore esatto del segnale, s(t), e quello calcolato tramite lo sviluppo in serie s~ , vale a dire, l'errore,

al quadrato, che si commette sostituendo lo sviluppo al segnale vero.

Si ha perciò: 2~ss −=µ = minimo, quindi deve essere: 0=

mc∂∂µ

con m = 1, 2 ....., N.

Otteniamo allora un sistema di equazioni lineari da risolvere. Scrivendo l'espressione di µ:

∑ ∑+∑−== ==

2

1 1 11

2 2t

t

N

i

N

jjiji

N

kkk dtuuccucssµ per l'm-esimo coefficiente, poiché le funzioni

sono ortogonali, si avrà:

∫ +−=2

1

222 2t

tmmmm dtucuscsµ

per cui la condizione di minimo diventa:

0222

1

2 =∫ +−=t

tmmm

mdtucsu

c∂∂µ

Esplicitando avremo: ∫=∫2

1

2

1

2t

tmm

t

tm dtucdtsu Poiché abbiamo scelto una base a norma unitaria si

ha: 12

1

2 =∫t

tmdtu Si ottiene perciò per il coefficiente da noi cercato:

),()(2

1

mm

t

tm uscdtuts ==∫

Quindi il coefficiente che minimizza µ altri non è che il prodotto scalare tra il segnale s(t) e la m-esima base um cioè l'm-esimo coefficiente dello sviluppo in serie di Fourier generalizzato.

Quindi lo sviluppo di Fourier generalizzato assicura un minimo nell'errore di approssimazione.

Deve inoltre essere notato che lo spazio di Hilbert H dei segnali gode della proprietà di completezza.

Ovvero se ∃ il limite della somma definito da

∞→=∑=

N

N

iii ucts

1

lim)( allora esso ∈H.

Page 17: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

17

Rappresentazione Spettrale dei Segnali

Esistono molte funzioni orto-normali che possono costituire una base ma, di particolare interesse, sono quelle armoniche. L'importanza di queste è dovuta alle seguenti particolarità: • Sono invarianti sotto trasformazioni effettuate da sistemi lineari.(cambiano solo l'ampiezza e la fase) • Quando un qualsiasi segnale s(t) è rappresentato tramite funzioni armoniche di diversa

frequenza si dice che è risolto nel suo spettro.

Segnali periodici e serie di Fourier

Un segnale arbitrario, s(t), che si ripete ciclicamente nel tempo è un segnale periodico. Il suo

modello matematico è s(t) = s(t+nT) con n = ±1, ±2, ±3..e T periodo del segnale.

Definiamo nell'intervallo [-T/2, +T/2] un insieme di funzioni armoniche ortonormali:

Un segnale arbitrario purché sia: • periodico di periodo T

• ad un sol valore nel periodo [0, T] o [ t, t+T]

• continuo o con limitati punti di discontinuità di prima specie. Può essere rappresentato con una serie di Fourier

∑=∞

=0)()(

mmm tucts con t = [-∞,+∞] e con cm = (s,um).

Definiamo ω1 = 2π/T la pulsazione fondamentale dello spettro.

E' uso corrente scrivere lo sviluppo in serie di Fourier nel modo seguente:

( )∑ ++=∞

=111

0 sincos2

)(n

nn tnbtnaa

ts ωω

anziché con i coefficienti cm finora utilizzati senza togliere nulla alla validità e alla generalità dello

sviluppo stesso. Occorre però cercare le espressioni dei nuovi coefficienti a0, an e bn: 1.[Calcolo di a0] Integriamo la s(t) nell'intervallo [-T/2, +T/2]:

( ) 02

sincos2

0

111

0 2

2

2

2

2

2

+=∫ ∑ ++∫=∫+

=

+

+

−T

adttnbtnadt

adts(t)

T

T

T

T

T

T nnn ωω

quindi il valore medio della s(t) nel periodo T sarà:

∫=+

2

2

)(2

0

T

T

dttsT

a

2.[Calcolo di an]1:Integriamo la s(t) nell'intervallo [-T/2, +T/2] avendo moltiplicato per cos(nω1t):

1 ( )kk

t

tk uscdttuts ,)()(

2

1

==∫

Page 18: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

18

( ) =∫ ∑ ++∫=∫+

=

+

+

2

2

2

2

2

2 1111

21

01 cossincoscos

2cos

T

T

T

T

T

T nnn dttntnbtnatdtn

adttns(t) ωωωωω

0cos02

2

12 +∫+=

+

T

Tn tdtna ω in quanto tutti i termini con sin(nω1t) e cos(nω1t),

nell'intervallo sono nulli quindi:2

coscos)(2

2

2

2

12

1T

atdtnadttnts nn

T

T

T

T

=∫=∫+

+

−ωω , che ci

permette di ricavare il coefficiente an:

dttntsT

aT

Tn ∫=

+

2

2

1cos)(2

ω

3.[Calcolo di bn]1:Si procede analogamente avendo moltiplicato per sin(nω1t) e si ricava:

dttntsT

bT

Tn ∫=

+

2

2

1sin)(2

ω

Allora un qualsiasi segnale periodico s(t) si può decomporre in:

• Una componente costante, a0, ( valore medio del segnale )

• Un insieme infinito di armoniche di frequenza ωn = nω1 multiple della fondamentale,ω1,

ciascuna caratterizzata da:

• Un'ampiezza 22nnn baA +=

• Una fase iniziale n

nn a

btanarc=ϕ

Se poniamo : an = Ancosϕn ; e bn = Ansinϕn , è possibile riscrivere la serie in una forma

diversa ma equivalente:

∑ −+=∞

=11

0 )cos(2

)(n

nn tnAa

ts ϕω

avendo fatto uso dell'uguaglianza : cosαcosβ + sinβsinα = cos(α-β)

Facciamo ora un'altra scelta per le nostre armoniche:

• Un'ampiezza 22nnn baB +=

• Una fase iniziale n

nn b

atanarc=ϕ

Con questa scelta si avrà allora che:an = Bnsinϕn bn = Bncosϕn

Si ottiene così, analogamente, l'espressione per la s(t):

∑ ++=∞

=11

0 )sin(2

)(n

nn tnBa

ts ϕω

Annotazioni:

Page 19: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

19

1. Se il segnale s(t) è una funzione pari [ cioè s(t) = s(-t) ], tutti i coefficienti dello sviluppo

che contengono la funzione seno ( funzione dispari ) si annullano in quanto il prodotto di una funzione pari per una dispari è dispari e integrata nell'intervallo simmetrico [-T/2,T/2] è nulla.

Quindi i coefficienti bn sono nulli. Quindi lo sviluppo si riduce a

∑+=∞

=11

0 cos2

)(n

n tnaa

ts ω con i coefficienti dttntsT

aT

Tn ∫=

+

2

2

1cos)(2

ω

2. Analogamente se il segnale s(t) è una funzione dispari [ cioè s(t) = - s(-t) ] tutti i

coefficienti che contengono la funzione coseno (funzione pari) si annulleranno cioè an = a0 = 0. Si avrà per la s(t) la seguente espressione:

∑=∞

=11sin)(

nn tnbts ω con i coefficienti dttnts

Tb

T

Tn ∫=

+

2

2

1sin)(2

ω

Esempio. Onda quadra (Video-Clip) Notare l'importanza delle componenti a

frequenza piu' alta per la ricostruzione del fronte dell'onda quadra.

Esempio. Funzione periodica impulsiva (Calcolo)

Calcoliamo lo sviluppo di Fourier per una funzione periodica di impulsi rettangolari con il seguente modello matematico:

−−

+=

22dd t

tt

tAs(t) σσ con : td :durata del segnale periodo; A ampiezza

Per una funzione periodica impulsiva è uso definire una grandezza adimensionale q = td/T

data dal rapporto tra il tempo di durata dell'impulso e il periodo della funzione. Generalmente esso viene chiamato " duty cycle " del segnale. La funzione si suppone sia pari rispetto a t = 0. Essendo pari, la funzione va sviluppata in termini di coefficienti che contengono solo coseni e il termine costante.

Quest'ultimo vale : AqtT

AAdt

Ta

dt

dt

dt

dt

222 2

2

2

2

0 ==∫=+

+

Per gli altri termini si avrà:

)2

(sin 2

sin 1

2sin 1

2 cos2 cos)(2

111

11

112

2

2

2

2

2

−−==∫=∫=

+

+

+

ddn

tn

tn

nT

Atn

nT

Adttn

T

Adttnts

Ta

dt

dt

dt

dt

dt

dtωω

ωω

ωωω

ossia:

2sin

21

dn

tn

n

Aa ω

π=

Il segnale sviluppato in serie di Fourier sarà perciò: ∑+=∞

=111 cos

2sin

2)(

n

d tnt

nn

AAqts ωω

π

Ma ricordandoci che ω1 = 2π/T allora la s(t) assumerà la forma

:

∑+=∞

=11cos

q

q sin21)(

ntn

n

nAqts ω

ππ

Forma Complessa della Serie di Fourier

Page 20: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

20

Ricordiamo le formule di Eulero:

2cos

ixix eex

−+=

i

eesinx

ixix

2

−−=

Se le sostituiamo nello sviluppo di Fourier della s(t) avremo:

)22

(2

)(1111

1

0

i

eeb

eea

ats

tintin

nn

tintin

n

ωωωω −∞

=

− −+

++= ∑

Riscriviamo il termine dentro la sommatoria in questo modo:

( ) ( ) tinnntinnntintin

n

tintin

nn eiba

eiba

i

eeb

eeak 11

1111

2222ωω

ωωωω−

−− ++

−=

−+

+=

Poiché:

[ ] ∫=∫ −=− +

−+

2

2

12

2

)(1

sincos)(1

2 11

T

T

T

T

dtetsT

dttnitntsT

iba tinnn ωωω

e

[ ] ∫=∫ +=+ +

+

2

2

12

2

)(1

sincos)(1

2 11

T

T

T

T

dtetsT

dttnitntsT

iba tinnn ωωω

chiamando ora: ( )

2nn

niba

c−

=

( ) *

2 nnn

n ciba

c =+

=−

per cui la s(t) assume la forma:

∑=∞

−∞=n

tinnects 1)( ω

con

∫=+

−2

2

1)(1

T

T

dtetsT

c tinn

ω

Frequenze Negative

Considerando la quantità: 2

cos11

1

tintin eetn

ωω

ω−+

= per n =

1 nel piano complesso la grandezza tie 1

2

1 ω rappresenta un

fasore di lunghezza 1/2 che ruota in senso antiorario con velocità

angolare ω1.Il fasore tie 1

2

1 ω− ha la stessa ampiezza del primo

ma ruota in senso opposto con la stessa velocità angolare. ( Motori a induzione → campi rotanti )

Rappresentazione nel piano complesso

Un segnale periodico può quindi essere rappresentato come un'infinita somma di fasori nel piano complesso. 1) Disegniamo c0, fasore reale per n = 0

2) A t = 0 avremo: c+ = c1 + c2 + c3 + ω > 0 e c- = c-1 + c-2 + c- +.. ω < 0

Per una serie di Fourier convergente ciascuna somma rappresenta un fasore di lunghezza finita.

Page 21: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

21

Poiché c+ e c- sono complessi coniugati allora c- + c+ è sempre reale.

Page 22: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

22

Analisi Spettrale dei Segnali non Periodici. Trasformata di Fourier

Consideriamo un impulso s(t) qualsiasi di durata finita.

Immaginiamo che ad esso siano associati altri impulsi identici ricorrenti con periodo T:

Allora possiamo rappresentare s(t) attraverso

la serie in armoniche di Fourier:

∑=∞

−∞=n

tinnects 1)( ω con ∫=

+

−2

2

1)(1

T

T

dtetsT

c tinn

ω

Ma ω1 = 2π/T per cui: ∑=∞

−∞=n

Ttin

nectsπ2

)( e ∫=+

−2

2

2)(

1T

T

Tt

dtetsT

cin

Se vogliamo " tornare " all'impulso reale dobbiamo far tendere T → ∞. Sia ωn la n-esima armonica dello spettro, allora:

Tnn

πω

2=

ωπ

ωω ∆==−+ Tnn2

1

essendo ∆ω un intervallo di frequenze che tende a diminuire con l'aumentare di T, e ωn la

frequenza estrema. Allora il coefficiente generico cn diventa:

∫∆≡∫

=

+

−+

− 2

2

2

2

)(2

1)(

2

12T

T

n

T

T

n dtetsdtetsT

c titin

ωωπ

ωπ

π

che può essere scritta come: πω

ωϕ2

)(∆

= nnc avendo posto: ( ) ∫=+

−2

2

)(T

T

n dtets tin

ωωϕ

Con il che il segnale s(t) diventa:

∑∞

−∞=

∆⋅=

n

tin

netsπω

ωϕ ω

2)()(

che per T → ∞ : [ ∆ω → dω ; ϕ(ωn) = ϕ(ω) ] diventa

∫=+∞

∞−ωωϕ

πω dets ti)(

2

1)(

e la densità spettrale o spettro delle ampiezze sarà:

( ) ∫=+∞

∞−

− dtets tiωωϕ )(

Rimangono così definite: • la Trasformata di Fourier

( ) ∫=+∞

∞−

− dtetff tiωω )(~

• l'Antitrasformata

( ) ∫=+∞

∞−ωω

πω deftf ti)(

~

2

1

Page 23: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

23

Queste espressioni hanno senso preciso solo se: ∫+∞

∞−dttf )( esiste ed è finito.

In questo caso la trasformata è: 1) Continua

2) Limitata ∫≤+∞

∞−dttff )()(

3) Nulla all'infinito per ω → ±∞

e vale l'identità di Parseval: ∫=∫+∞

∞−

+∞

∞−ωω dfdttf

22 )(~

)(

La trasformata e l'antitrasformata ci permettono di trasformare delle funzioni dal dominio delle

frequenze ω a quello del tempo t e viceversa. Quindi, quando è necessario, per esempio se un

modello è difficile da trattare in un dominio, tramite la trasformata di Fourier si può cambiare

dominio. Inoltre la rappresentazione nel dominio di ω, cioè la rappresentazione spettrale del

segnale, offre un approccio molto significativo nell'analisi della risposta in una larga fascia di sistemi usati, in generale nell'elettronica, in particolare nelle telecomunicazioni.

Esempio. Spettro di un impulso rettangolare (Video-Clip)

Notare come al diminuire della larghezza temporale dell'impulso aumenta la banda delle frequenze componenti.

Sia s(t), un segnale con ampiezza A e durata τ in [-τ/2,τ/2] il cui modello matematico è :

s(t)= A[σ(t-τ/2) - σ(t+τ/2)] .

Il suo spettro , ovvero la sua trasformata sarà:

2sin

2111)( 22

2

2

2

2

τω

ωωωωω

τω

τωωω

τ

τ

τ

τ

Ae

ie

iAe

iAdteAs

iititi =

+−==∫=−+

−+

Ponendo ξ = ωτ/2 si ha:

ξξ

τωsin

)( As =

Notare che per ω = 0 l'ampiezza dello spettro s(0) = Aτ e’ uguale all'area dell'impulso.

Esempio. Spettro di un segnale esponenziale (Calcolo)

Sia : s t Ae tt( ) ( )= −α σ il modello matematico nel dominio del tempo del segnale per α>0

Il suo spettro, S(ω), ovvero la sua trasformata, sarà:

ωαωαω ωαωαωα

i

Ae

i

AdteAdteeAS tititit

+=

+−===

∞+−

∞+−

∞−− ∫∫

0

)(

0

)(

0

)(

C'è da notare che:

1. Lo spettro va a zero solo per ω → ∞

2. Lo spettro è una funzione complessa: )()()( ωψωω ieSS =

in cui:

22)(

ωαω

+=

AS

e

−=

αω

ψ tanarc

Page 24: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

24

Esempio. Spettro della δ(t)

Sia s(t) = A δ(t) il modello matematico nel dominio del tempo.

Il suo spettro S(ω), ovvero la sua trasformata, sarà:

∫=+∞

∞−

− dtteAS ti )()( δω ω

Abbiamo già visto le proprietà di " filtro " della δ(t). L'integrale è uguale al valore della funzione nel

punto in cui la δ(t) è " concentrata ". In questo caso a t = 0. Quindi S(ω) = A

Allora la trasformata di Fourier di una δ-function è una funzione indipendente da ω e quindi il

suo spettro ha una larghezza infinita [ ∞−∞, ] con tutte le frequenze con la stessa ampiezza A

Relazione tra banda e durata

Definiamo " banda " dello spettro quell'intervallo di frequenze entro il quale il modulo dello spettro è

non minore di un certo valore specificato. Per esempio, se |S(ω)|M è il modulo del valore massimo,

allora potremo scegliere l'intervallo:

|S(ω)|M ÷ 0.1 |S(ω)|M

• Consideriamo un impulso rettangolare e assumiamo che la frequenza massima limite è

quella per cui si ha il " primo " zero nella |S(ω)|M / |S(0)|. Allora avremo:

0

2

2)0(

)(=

=ωτ

ωτω

sin

S

S

che si ha per: π = ωτ/2 ossia in termini di frequenza π = 2πfupτ/2

Allora si ha la seguente relazione di indeterminazione: fup⋅⋅ττ = 1

Osservazione importante:

Il prodotto banda * durata è una costante e dipende solo dalla forma dell'impulso. Quindi, ad

esempio, la δ che ha una durata infinitesima, ha una banda infinita.

Page 25: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

25

Proprietà basilari della trasformata

Siano ∑i

ii tsp )( un insieme di segnali " pesati " con peso pi. Allora la trasformata è:

∑=i

ii spf )()(~

ωω

cioè sinteticamente:

∑⇔∑i

iii

ii sptsp )()( ω

Proprietà della parte reale e della parte immaginaria dello spettro

Vogliamo dimostrare che se la funzione s(t) ℜ∈ allora la sua trasformata S(ω) = A(ω) - iB(ω)

gode della proprietà che la sua parte Reale è una funzione pari A(ω) = A(-ω) e quella

Immaginaria è una funzione dispari B(ω) = -B(-ω)

Sia s(t) un segnale che prende solo valori reali. In generale il suo spettro sarà rappresentato da una

funzione complessa:

∫−∫=+∞

∞−

+∞

∞−tdttsitdttsS ωωω sin)(cos)()(

o, scritta in modo più conciso: S(ω) = A(ω) - iB(ω)

Facciamo ora l'antitrasformata cioè ricaviamo la s(t):

[ ][ ]∫ +−=+∞

∞−ωωωωω

πdtitiBAts sincos)()(

2

1)(

[ ]∫ −++=+∞

∞−ωωωωωωωωω

πdtBtsinAitsinBtAts )cos()()()([)]()()cos()(

2

1)(

Ora, affinché la s(t) sia reale, come richiede l'ipotesi, dovrà verificarsi che la parte immaginaria sia

nulla, ossia:

0cos)( 0sin)( =∫∫ =+∞

∞−

+∞

∞−ωωωωωω tdBtdA

Queste condizioni sono verificate se:

A(ω) è pari (infatti il seno è una funzione dispari)

B(ω) è dispari (infatti il coseno è una funzione pari)

Quindi si arriva alle conclusioni che:

1. La parte reale A(ω) dello spettro è una funzione pari della frequenza. A(ω) = A(-ω)

2. La parte immaginaria B(ω) è una funzione dispari della frequenza. B(ω) = -B(-ω)

Dimostriamo ora che è valida anche la proposizione contraria, ovvero che se

A(ω) = A(-ω) e B(ω) = -B(-ω) allora la funzione s(t) ∈ℜ .

Infatti scriviamo il segnale s(t) tramite la sua trasformata : ∫ −=∞

∞−ωωω ω deiBAts ti)]()([)(

Page 26: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

26

e applichiamo l'ipotesi cioè che A(ω) = A(-ω) e B(ω) = -B(-ω). Allora si ha :

∫ −+−=∞

∞−ωωω ω deiBAts ti)]()([)( poiché è sempre possibile cambiare variabile ωω −→

otteniamo:

)(* proprio è che )]()([)( tsdeiBAts ti∫ +=∞

∞−

− ωωω ω quindi la funzione ℜ∈)(ts .

Spettro di un segnale traslato

Supponiamo che esista, del segnale s(t), la sua trasformata, cioè S(ω). Prendiamo un segnale traslato nel tempo della quantità t0

)(~0ttss −=

La sua trasformata sarà:

∫ −=+∞

∞−

−≈

dtettsS tiωω )()( 0

Ponendo: x = t - t0 ; allora dt = dx si avrà:

000)0( )()()()()( tixititixitxi eSdxexsedxeexsdxexsS ωωωωωω ωω −+∞

∞−

−−+∞

∞−

−−+∞

∞−

+−≈=∫=∫=∫=

Poiché il modulo di 0tie ω− è uguale ad uno, allora le ampiezze delle armoniche sono indipendenti

dalla posizione nel tempo del segnale. Questa informazione è contenuta nel fattore di fase 0tie ω− .

Dipendenza dello spettro da un fattore di scala temporale

Supponiamo che il segnale s(t) sia soggetto ad una trasformazione della scala dei tempi

(compressione o espansione) ossia t → kt con k ∈ ℜ

Se k > 1 si ha compressione e se 0 < k < 1 si ha dilatazione

Allora se t → kt segue che s(t) → s(kt) e il suo spettro

∫=+∞

∞−

−≈

dtektsS tiωω )()(

Ponendo: x = kt ; dx = k dt, si ha:

=∫=

∞+

∞−

−≈

kS

kdxexs

kS k

xi ω

ωω 1

)(1

)(

cioè lo spettro di un segnale, ad esempio, compresso (k > 1) che mantiene la stessa forma,

distribuisce le stesse componenti spettrali su un intervallo più esteso di frequenze con una ampiezza minore ( S/k).

Compressione k > 1

kS minori ampiezze

k allargato spettro ω Dilatazione k < 1

k Smaggiori ampiezze

k ristretto spettro ω

Nel caso particolare di k = -1 , ossia nel caso in cui il tempo scorre in senso inverso ( time reversal )

troviamo: s(tinv) ↔ - S(-ω)

Page 27: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

27

Il modulo dello spettro rimane invariato ma le regioni di frequenze negative si scambiano con quelle positive e le fasi iniziali traslano di 180°. Ovviamente questo ha solo un senso " virtuale " ma è un utile procedimento matematico per costruire lo spettro immagine speculare di uno dato

Page 28: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

28

Spettro della derivata e dell' integrale di un segnale

Derivata

Supponiamo che esista la trasformata di s(t) cioè: s(t) ↔ S(ω) allora sarà anche:

)()( ωωSitsdt

d↔

Infatti:

[ ] ∫+=∫ −−=∫

+∞

∞−

−∞+

∞−−+∞

∞−

−∞+

∞−−+∞

∞−

− dtetsietsdteitssedtedt

tds tititititi ωωωωω ωω )()()()(

Risolto per parti, si vede che l'integrale si riduce a due termini: il primo svanisce per t → ±∞ in

quanto s(t) → 0 per la condizione di integrabilità del segnale s(t). Quindi si ha:

)()(

ωωSidt

tds↔

Notazione: •In seguito ad una operazione di differenziazione il segnale, nel dominio del tempo, diventa più "rapido ", come conseguenza lo spettro della derivata ha maggiori valori nella regione delle alte frequenze. •Una differenziazione nel dominio del tempo equivale ad una semplice moltiplicazione algebrica per

iω nel dominio delle frequenze. Si dice allora che il numero immaginario [iω ] gioca il ruolo di un

operatore di differenziazione nel dominio di ω. •Il risultato ottenuto si può generalizzare scrivendo:

)()( ωω Sidt

sd nn

n↔

Integrale

Lo spettro di un segnale è correlato al suo integrale definito dalla relazione:

( ) )(1

ωω

ξξ Si

dst

↔∫∞−

infatti basta osservare che: )()( tsdsdt

d t=∫

∞−ξξ ed applicare il metodo precedente.

Notazione: •In seguito ad una operazione d'integrazione il segnale, nel dominio del tempo, diventa meno " rapido " (più smooth), di conseguenza il suo spettro risulta " arricchito " di frequenze basse.

•Un'integrazione nel dominio del tempo equivale ad una divisione algebrica per iω nel dominio di

ω. Si dice allora che il numero immaginario [1/iω ] gioca il ruolo di operatore di integrazione nel

dominio di ω.

Page 29: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

29

Spettro del prodotto di due segnali (Convoluzione Calcolo con MATHCAD)

Abbiamo visto che lo spettro di due segnali sommati [ s1(t)+s2(t) ] è dato dalla combinazione dei

rispettivi spettri. Diversamente lo spettro del prodotto di due segnali u(t), v(t) non è dato dal

prodotto dei loro spettri. Cerchiamo quindi a cosa equivale lo spettro del prodotto.

Siano u(t) ↔ U(ω) v(t) ↔ V(ω) i segnali con i rispettivi spettri e s(t) = u(t)v(t) il

segnale prodotto allora lo spettro sarà:

∫+∞

∞−

−= dtu(t)v(t)e)S( tiωω

Se mettiamo al posto di v(t) la sua antitrasformata: ∫+∞

∞−

= ξξπ

ξ deVtv i t)(2

1)(

otteniamo:

∫=

∞+

∞−

−∞

∞dte)e(

2

1)( ti

+

-

ti ωξ ξξπ

ω dVu(t)S

Invertendo l'ordine d'integrazione otteniamo:

∫=

∞+

∞−

∞ξξ

πω ξω ddtu(t)VS

+

-

t)-i(-e)(2

1)(

Possiamo perciò riscrivere lo spettro nel seguente modo:

∫=+∞

∞−ξξωξ

πω dVS )-)U((

2

1)(

L'integrale ∫ −+∞

∞−ξξωξ )d)U(V( .è noto come integrale di convoluzione delle funzioni V e U e

viene indicato, simbolicamente: V(ω)*U(ω)

Possiamo allora concludere che lo spettro del prodotto ordinario di due segnali è uguale, a meno di un fattore 1/2ππ, al prodotto di convoluzione degli spettri.

s(t) = u(t)v(t)

S(ω) = V(ω)*U(ω) Ovviamente V(ω)*U(ω) = U(ω)*V(ω)

Si può anche dimostrare il teorema inverso: •Se lo spettro di un segnale può essere rappresentato come prodotto ordinario di due spettri

S(ω) = S1(ω) S2(ω) tali che: S1(ω) ↔s1(t) S2(ω)↔s2(t)

allora il segnale s(t) ↔ S(ω) è la convoluzione di s1(t) e s2(t) nel dominio del tempo.

∫ −↔+∞

∞−ξξωω dtstsSS )()()()( 2121

Una interessante conseguenza di questo è il teorema della convoluzione. Esso afferma che la

trasformata di Fourier del prodotto di convoluzione è equivalente al prodotto ordinario delle trasformate. Per dimostrarlo riscriviamo in modo sintetico, indicando con ℑ la trasformata di

Fourier, il teorema già dimostrato: se s(t)=u(t)v(t) )()(*)()]()([)]([ ωωω SVUtvtuts ==ℑ=ℑ

se ora facciamo la trasformata (anti) dell'espressione precedente, otteniamo:

Page 30: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

30

)]([)](*)([)()()( 11 ωωω SVUtvtuts −− ℑ=ℑ==

se ora al posto delle due funzioni del tempo sostituiamo le loro trasformate otteniamo

)](*)([)]([)]([ 111 ωωωω VUVU −−− ℑ=ℑℑ cvd

è ovviamente possibile dimostrare, ed è valido, il teorema inverso: )](*)([)]([)]([ tvtutvtu ℑ=ℑℑ

L'importanza di questo teorema è enorme in quanto molti processi fisici si presentano come convoluzione di altri e quindi tramite l'applicazione di questo teorema è possibile risalire ai processi primari. Questa metodo è noto come deconvoluzione (unfolding) delle componenti. Convoluzione tra due segnali esponenziali con modello matematico): s(t)=exp(-t) ; v(t)=exp(-kt) (Calcolo) (Video-Clip) u( )t exp ( )t k 10 v( )t exp ( )( ).k t t ..,0 .05 5 a ..,0 .05 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

u( )t

v( )t

t

conv ( )t d0

tλλ.exp ( )λλ exp ( ).( )t λλ k

conv ( )t

( )exp ( )t exp ( ).k t

( )1 k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.05

0.1

conv ( )t

t

spettroconv ( )ωω d

0

∞∞

t.( )exp ( )t exp ( ).k t

( )k 1exp ( )..i ωω t

spettroconv ( )ωωi

( ).( )i ωω ( )k .i ωω spettroconv ( )ωω

1

.1 ωω 2 k2 ωω 2

U ( )ωω d0

∞∞t.exp ( )t exp ( )..i ωω t

U ( )ωω

i

( )i ωω U ( )ωω

1

1 ωω 2

V ( )ωω d0

∞∞t.exp ( )( ).k t exp ( )..i ωω t

V ( )ωω

1

( )k .i ωω V ( )ωω

1

k 2 ωω 2

UV ( )ωω1

.1 ωω2 k2

ωω2

Dividendo lo spettro del prodotto di convoluzione per lo spettro di uno dei due segnali è possibile ottenere lo spettro

dell'altro segnale e quindi, antitrasformando, il segnale incognito.

Page 31: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

31

Questo procedimento, molto importante per lo studio dei sistemi e dei segnali, è noto come deconvoluzione ( unfolding ).

Spesso dal punto di vista sperimentale si procede eccitando un sistema con un segnale noto e si misura, acquisendo

dati relativi alla risposta del sistema, la funzione convoluzione dell'eccitazione e dell'operatore del sistema (incognito),

quindi si procede alla sua determinazione attraverso il metodo di deconvoluzione che viene eseguito numericamente per

mezzo della FFT (Fast Fourier Transform).

Y ( )ωω

i

( ).( )i ωω ( )k .i ωω

i

( )i ωω

Y ( )ωω1

( )k .i ωω la cui antitrasformata è

v ( )t .1.2 ππ

d

0

∞∞

ωω.1

( )k .i ωωexp ( )..i ωω t

ωω ..0 .3 101

0 5 10 15 20 25 300

0.5

1

U( )ωω

V( )ωω

UV ( )ωω

ωω

Spettro di segnali non integrabili

Molte funzioni largamente usate nella teoria delle comunicazioni non soddisfano i requisiti di " assoluta integrabilità " richiesta dalla trasformata. Comunque possiamo ancora parlare di spettro di tali segnali se assumiamo che questi spettri possono essere descritti da funzioni generalizzate.

Spettro di una costante

Sia dato il segnale con il seguente modello matematico .u(t) = u0 = costante

Supponiamo che questo segnale possa essere rappresentato dalla sua antitrasformata:

∫=+∞

∞−ωω

πω deSu ti)(

2

10

in cui S(ω) è sconosciuto. Invocando le proprietà della δ, si può vedere immediatamente che la S(ω) deve essere: S(ω) = 2π u0δ(ω)

Infatti:

∫=+∞

∞−ωωδπ

πω deuu ti)(2

2

100

Quindi lo " spettro " di una costante ha solo la componente a frequenza ω = 0.

Spettro di un esponenziale complesso

Sia tiets 0)( ω= il modello matematico del segnale con ω0 nota.

Si vede chiaramente che s(t) non gode della integrabilità assoluta in quanto per t → ±∞, essa non

tende a nessun limite finito. Ciononostante possiamo scrivere la sua antitrasformata:

Page 32: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

32

∫=+∞

∞−ωω

πωω deSe titi )(

2

10

L'identità è valida solo per S(ω) tale che: S(ω) =2πδ(ω-ω0)

e quindi si avrà: ∫ −=+∞

∞−ωωωδπ

πωω dee titi )(2

2

10

0

Nota:

1. Lo spettro è identicamente nullo ovunque tranne in ω = ω0 dove ha una singolarità.

2. Non è simmetrico rispetto a ω = 0 (ma giace o in ω > 0 oppure in ω < 0)

Spettro di una armonica Sia s(t) = cosω0t il modello matematico del segnale che possiamo anche scrivere:

( )titititi

eeee

ts 0000

2

1

2)( ωω

ωω−

−+=

+=

data la linearità della trasformata di Fourier e visto che lo spettro di un esponenziale complesso è:

)(2 00 ωωπδω −↔tie

possiamo scrivere:

[ ]∫ ++−=+∞

∞−ωωωδωωδπ

πω ω det ti)()(

2

1cos 000

cioè: cosω0t ↔ π[δ(ω-ω0)+δ(ω+ω0)]

analogamente per il seno avremo: sinω0t ↔ π[δ(ω-ω0)+δ(ω+ω0)]

Spettro di un segnale arbitrario periodico

Esso può essere rappresentato attraverso la serie di Fourier:

∑=+∞

−∞=n

ntinects 1)( ω

con ω1 = 2π/T. Data la linearità della trasformata e ricordando che: )(2 00 ωωπδω −↔tie

possiamo scrivere lo spettro di s(t):

∑ −=+∞

−∞=nn ncs )(2)( 1ωωδπω

che abbiamo già visto. Si tratta di impulsi di tipo δ nell'intervallo ±nω1.

Spettro della funzione di Heaviside σ(t)

Sia:

=0< t 0

0> t 1)(tσ il modello matematico che possiamo anche rappresentare come un

esponenziale del tipo :

=−

→0< t 0

0> tlim)( 0

tet

αασ

ricordando che la trasformata di un esponenziale vale ωα

αi

e t

+↔− 1

e quindi abbiamo:

ωασ

α it

+↔

1lim)(

0 che con il passaggio al limite diventa:

Page 33: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

33

ωσ

it

1)( ↔

che va bene per tutte le ω tranne che per ω = 0 dove c'è una singolarità. Trattiamo separatamente questo caso. Separiamo la parte reale da quella immaginaria.

2222

1

ωα

ω

ωα

αωα +

−+

=+

i

i Ricordando che:

)(lim220

ωπδωα

αα

=+→

visto che:

παω

αω

αωω

ωα

α==∫

+=∫

+

+∞

∞−

∞+

∞−

∞+

∞−)tan(arc)(

)(1

12222

dd

Allora lo spettro è " concentrato " in ω = 0. Quindi:

)(1

)( ωπδω

σ +↔i

t

la presenza della singolarità in zero indica la presenza di una costante del valore 1/2.

Spettro di un impulso " armonico"

Sia s(t) = uv cos(ω0t+ϕ0)

Supponiamo di conoscere la trasformata di uv: uv↔Sv(ω)

D'altronde la trasformata del cosω0t è già nota e vale :

( ) ( ) ( )[ ]00

0000cos ϕϕ ωωδωωδπϕω ii eet −++−↔+

E poiché la trasformata del prodotto di due segnali è dato dalla convoluzione dei rispettivi spettri:

[ ]∫ ++−−=+∞

∞−

− ξωξδωξδξωππ

ω ϕϕ deeSS iiv

00

00 )()()(

2

1)(

che, dalla proprietà di filtro della δ,

00

00 )(

2

1)(

2

1)( ϕϕ ωωωωω i

vi

v eSeSS −++−=

Quindi mentre lo spettro di uv, Sv(ω) è centrato intorno allo zero, quello di s(t) ha due centri uno in

ω0 e l’altro in -ω0. Vediamo ora lo spettro di un impulso rettangolare che " modula " un segnale armonico. Il modello matematico è

[ ] tttutur 0cos)()()( ωτσσ −−=

Ricordando la trasformata di un impulso rettangolare di durata τ:

2

2)(

ωτ

ωτ

τω

=sin

uS

si ha:

[ ] [ ]

++

+−

−=

2)(

2)(

2)(

2)(

2)(

0

0

0

0

τωωτωω

τωωτωωτ

ωsinsinu

Sr

Page 34: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

34

Page 35: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

35

Cenni sulla teoria dei segnali casuali

Nelle telecomunicazioni i segnali si identificano molto spesso con il termine "rumore"- " noise" - " disturbo ". L'origine fisica è il moto " casuale ", " caotico " degli elettroni sia nella materia che nel vuoto.

Materia → componenti: resistori, diodi

Vuoto → onde elettromagnetiche

Nella teoria dell'informazione si usa un modello matematico dei segnali casuali per una rappresentazione probabilistica delle relazioni esistenti nei messaggi sia in forma di testo che di immagine. Uso di algoritmi di ricostruzione come il Filtro di Kalman largamente usato sia in informatica, elettronica che in fisica sub nucleare ( ricostruzione delle tracce). Nei moderni link ottici si parla similmente di segnali casuali e di " rumore quantistico " legato alla natura probabilistica dell'emissione e dell'assorbimento. -- Accoppiamento fibraottica-fotorivelatore -- Accoppiamento guida di luce-fotocatodo

Segnali casuali e loro caratteristiche

Un segnale casuale, per definizione, é tale in quanto non si può predire il suo valore istantaneo in anticipo. Ciononostante alcune delle sue proprietà possono essere definite con sufficiente accuratezza in senso probabilistico. Ad esempio, la tensione ai morsetti di un resistore è la sovrapposizione di un livello medio e di rapide variazioni casuali dette "fluttuazioni". Le fluttuazioni sono tali che si osserveranno molto più frequentemente piccole variazioni rispetto al valore medio, piuttosto che grandi variazioni che avverranno raramente. Se conosciamo la probabilità delle fluttuazioni delle diverse ampiezze, possiamo sviluppare un modello matematico, abbastanza accettabile sia in senso teorico che pratico. Una legge probabilistica si manifesta, dal punto di vista fisico, ogni qualvolta un sistema fisico che genera un segnale casuale, è costituito da un gran numero di più piccoli sotto-sistemi che eseguono una operazione più o meno indipendente l'uno dagli altri. Ad esempio una corrente elettrica generata

da una sorgente di f.e.m. costante deve la sua costanza all'enorme numero di elettroni (∼1016 per I∼

1.6 mA ) che attraversano la sezione del conduttore al secondo. Le fluttuazioni nella velocità degli elettroni, tra loro, possono avere solo trascurabili effetti sul valore medio. • Probabilità : Teoria assiomatica. La base della teoria è il concetto di " popolazione di eventi casuali ".

Sia: Ω = Ai dove Ai rappresenta l'accadere di qualche evento casuale. A ciascun evento Ai∈Ω

è assegnato un numero reale P(Ai) detto probabilità2. Vediamo gli assiomi formulati da A.N.

Kolmogorov nel 1930.

1. La probabilità è non negativa e non eccede l'unità 0 ≤ P(Ai) ≤ 1

2. L'unione di tutti gli eventi appartenenti a Ω è un evento certo. 1)( =∑Ω∈iA

iAP

3. Se A è un evento complesso, la sua probabilità è la somma di tutte le probabilità

elementari. )()( APAPAiA

i =∑∈

2 La stima della probabilità è così definita: p An

Ns ( ) =

dove n : numero di casi in cui accade l' evento N : tentativi indipendenti

Page 36: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

36

Funzioni di distribuzione e densità' di probabilità'

Sia X una variabile casuale che può assumere tutti i valori reali x tali che -∞ ≤ x ≤ +∞. Possiamo

descrivere esaustivamente le proprietà statistiche di X se conosciamo una funzione , F(x), non

casuale, di variabile reale x, tale che essa sia uguale alla probabilità, p, che la variabile casuale X possa assumere qualsiasi valore x uguale o minore di un dato valore:

F(x) = P(X ≤ x) F(x) è detta, allora, funzione di distribuzione di probabilità della variabile casuale X. Se X può assumere qualsiasi valore, allora F(x) è una funzione " smooth " non decrescente con

valori tali che: 0 ≤ F(x) ≤ 1

con i limiti F(-∞) = 0 ; F(+∞) = 1

Si può allora definire la derivata di F(x):

dx

xdFxp

)()( =

che prende il nome di densità di probabilità della variabile casuale X. Allora:p(x)dx = P(x < X ≤ x+dx ) è la probabilità che la variabile casuale X possa assumere

valori compresi tra x e x+dx. Se X è una variabile casuale discreta che può assumere solo determinati valori:x1, x2, ..., xn

con probabilità relative:p1, p2, ...,pn, allora:

∑ −=i

ii xxpxp )()( δ

In ogni caso sussistono le condizioni: 1. p(x) ≥ 0 ( non negatività)

2. 1)()()(

)( ====∞+

∞−

+∞

∞−

+∞

∞−

+∞

∞−∫∫∫ xFxdFdx

dx

xdFdxxp ( normalizzazione)

Momenti di una variabile casuale

Se ϕ(x) è una specificata funzione di x, allora, per definizione, il suo valore medio è dato da:

∫=+∞

∞−dxxxpx )()()( ϕϕ

In ogni teoria statistica si usano particolari valori numerici delle variabili casuali che caratterizzano la distribuzione di probabilità: i momenti della variabile casuale X. Il momento n-esimo di una variabile casuale è il valore medio dello n-esimo ordine della stessa variabile:

∫=+∞

∞−dxxpxx nn )(

Il primo momento sarà perciò:

∫==+∞

∞−dxxxpxm )(1

Questo è anche detto valore aspettato o medio della variabile casuale X. Esso è una stima per la

media ottenuta con un gran numero di tentativi. Il secondo momento è:

∫==+∞

∞−dxxpxxm )(22

2

Page 37: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

37

detto valore aspettato o medio dei quadrati della variabile casuale X. Altri importanti valori caratteristici sono i momenti centrali di una variabile casuale, definiti come:

∫ −=−=+∞

∞−dxxpxxxx nn

n )()()(µ

Il più importante è il secondo momento centrale :

2222 )()()( xdxxpxxxx σµ =∫ −=−=

+∞

∞− detto varianza della variabile casuale che può essere espresso anche, in modo ovvio, come:

2222 )(2)( xxxdxxpxxdxxpxx −=+∫−∫=+∞

∞−

+∞

∞−σ

dalla quale si ricava anche la deviazione standard:

2xx σσ =

Densità di probabilità uniforme

Sia X una variabile casuale definita nell'intervallo chiuso x1 ≤ x ≤ x2 tale che essa abbia un uguale probabilità di assumere valori compresi tra x e x+dx qualsiasi entro l'intervallo, allora:

<≤≤=

xx

xxxh

x < x

xp

2

21

1

0

0

)( poiché: 1)(2

1

=∫x

xdxxp

risulta: 12

1)(

xxxp

−=

Perciò abbiamo:

22

11)( 12

2

1

2

12

2

1 12

2

11

xxx

xxxdx

xxdxxxpm

x

x

x

x

x

x

+=

−=∫

−=∫=

e ( ) 333

11 2121

22

12

31

32

2

1

3

12

2

1

2

122

xxxx

xx

xxx

xxdxx

xxm

x

x

x

x

++=

−−

=−

=∫−

=

e quindi il secondo momento centrale:

( )1223

212

212

2121

222

122

2xxxxxxxx

mmx−

=

+

−++

=−== σµ

da cui la deviazione standard:

32

122 xxxx

−== σσ

La funzione di distribuzione F(x) si ottiene attraverso un'operazione d'integrazione della

corrispondente densità di probabilità p(x). • Nell'intervallo x1 ≤ x ≤ x2 si ottiene:

12

1

1 12

1)(

xx

xxdx

xxxF

x

x −−

=∫−

=

• Per x< x1 F(x) = 0

Page 38: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

38

• Per x > x2:

11

)(2

1 121 =∫

−=>

x

xdx

xxxxF

Densità di probabilità gaussiana

Sia:

( )22

2

2

1)( σ

πσ

mx

exp

−−

=

Per calcolare il primo momento conviene fare una sostituzione di variabile:

t= (x-m)/σ ; dt = dx/σ ; x= m+σt allora:

∫+∫=∫ +=∞+

∞−

−∞+

∞−

−∞+

∞−

−dttedtemdtetmm

ttt

2

2

2

2

2

2

12

1

2

1)(

2

ππσ

π Poiché il secondo integrale è nullo perché è una funzione dispari e il primo, per definizione, è uguale a uno, risulta allora:

mxm ==1 cioè il parametro m della densità di probabilità gaussiana è proprio il valore aspettato della variabile

casuale x. La varianza o secondo momento centrale è:

( ) ( )( )

∫−

=−=∞+

∞−

−−

dxemx

mx

mx22

22

22

2

1 σσπ

µ

con la sostituzione x = m+σt si ha:

∫=∞+

∞−

−dtet

t

2

2

22

22π

σµ

che risolto per parti ci dà:

∫+−=∞+

∞−

∞+

∞−

−dtete

tt

2

2

2

22

22π

σµ

Il primo termine è nullo poiché è una funzione dispari. Allora si ha:

22

22

22

σπ

σµ =∫=

∞+

∞−

−dte

t

Quindi il parametro σ2 della densità di probabilità gaussiana è proprio la varianza della variabile

casuale x. La funzione di distribuzione, F(x), si ottiene integrando la p(x) da -∞ a x.

( )

∫=∞−

−−x

mx

dxexF22

2

2

1)( σ

π Facendo la solita opportuna sostituzione si ha:

Page 39: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

39

( )∫=

∞−

−σ

π

mx t

dtexF 2

2

2

1)(

Funzione caratteristica

Una media molto interessante è:

∫==Θ+∞

∞−dxxpeev ivxivx )()(

con v ∈ ℜ . Θ(v) è la funzione caratteristica della variabile casuale x. E' da notare che, a meno di

fattori costanti, Θ(v) è la trasformata di Fourier della densità di probabilità p(x). Dalla Θ(v) è

possibile quindi ottenere la p(x) antitrasformando.

∫ Θ=+∞

∞−

− dvevxp ivx)(2

1)(

π usare la Θ(v) o la p(x) è quindi equivalente e dipende dalla comodità o convenienza matematica.

Funzione caratteristica per una variabile casuale con p(x) uniforme.

Sia:

12

1)(

xxxp

−=

2

112

2

112

2

1i

111)()(

x

x

ivxx

x

ivxx

x

ivx evxx

dxexx

dxxpev−

=∫−

=∫=Θ

se x1 = 0 allora si avrà:

1)(1

)( 2

2−=Θ ivxe

ivxv

Notare che Θ(v = 0) = 1 infatti:

1)()()(0

=∫=∫==Θ+∞

∞−=

+∞

∞−dxxpdxxpeev

v

ivxivx

•Nel caso della distribuzione uniforme:

1)(e1

)( 2

2−=Θ ivx

ivxv

Per cui per v → 0 si ha:

Page 40: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

40

1lim1)(1

lim2

22

02

20=÷−

→→ ix

eixe

ivx

ivx

v

ivx

v •Per una densità di probabilità gaussiana si ricava la funzione caratteristica:

Θ 2-i

22

e=)(

vmv

v

σ

•Una interessante caratteristica della Θ(v), che le dà un aspetto significativo, si ottiene

determinando la derivata d'ordine n. Infatti si ha:

∫=Θ ∞+

∞−dxexpxi

v

vd ivxnnn

n)(

d

)(

calcolandola in ν = 0 otteniamo:

nnnnn

nxidxxpxi

v

vd=∫=

Θ ∞+

∞−)(

d

)0=(

quindi essa rappresenta il momento n-esimo della variabile casuale X. Si possono allora ricavare i

momenti facendo la derivata di ordine n desiderato della Θ(v) calcolata per v = 0.

0v=

− Θ=

n

nn

ndv

dim

Facciamo un esempio.

Esempio: Funzione caratteristica per una p(x) uniforme

Per una distribuzione di probabilità uniforme nell'intervallo 0 ≤ x ≤ a cioè con p(x)= 1/a. La funzione caratteristica vale:

( )iva

ev

iva 1)(

−=Θ

e il valore medio sarà:

01

1

=

Θ=

vdv

d

im

ossia:

[ ]2

102

ia

aiv

ivaee

dv

dv

ivaiva= →

++−=

Θ→

da cui:

21a

m =

come sapevamo.

Page 41: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

41

Densità di probabilità di una funzione di variabile casuale

Sia y una variabile casuale correlata a x, altra variabile casuale,

attraverso la funzione unica: y = f(x)

La scelta di un punto casuale x nell'intervallo dx e l'occorrenza di un

punto y nel corrispondente intervallo |dy| = |f(x)|dx, sono eventi

equi probabili: px(x)dx = py(y) dy

quindi:

[ ]dy

dgygp

dy

dxxpyp xxy )()()( ==

essendo g(y) la funzione inversa di f(x) = y.

Esempio. Trasformazione lineare di una variabile casuale gaussiana.

y = ax + b e la p(x) è:

( )22

2

2

1)( σ

πσ

mx

x exp

−−

=

Vogliamo ricavare la densità trasformata py(y).Poiché:

aa

by

dy

d

dy

dx 1=

=

e ricordando che:

dy

dxxpyp xy )()( =

si ha:

( )[ ]222

222

2

2

1

2

1)( σ

σ

πσπσa

mabym

a

by

y ea

ea

yp

+−−

−−

==

Quindi la variabile casuale y mantiene il comportamento gaussiano con il nuovo valore medio: maby +=

e la nuova varianza: 222xy a σσ =

Caratteristiche statistiche di due o più variabili casuali

Siano X1, X2,...,Xn n variabili casuali che formano un vettore o un insieme a n dimensioni

variabile casuale X~

. Come nel caso ad una dimensione è possibile definire una funzione di distribuzione F:

F( x1, x2,..., xn) = P( X1≤ x1, X2≤ x2,...Xn≤xn) La corrispondente densità di probabilità p(x), soddisferà la relazione: p( x1, x2,..., xn)dx1dx2...dxn =P(x1<X1≤ x1+dx1, x2<X2≤ x2+dx2,...,xn<Xn≤xn+dxn)

La F( x1, x2,..., xn) potrà essere dedotta integrando la densità di probabilità:

Page 42: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

42

∫ ∫ ∫=∞− ∞− ∞−

1 2212121 ...),...,(...),...,,(

x x nx

nnn dddpxxxF ξξξξξξ

Anche in questo caso sussistono le relazioni: 1. p(ξ1, ξ2,...ξn) ≥ 0 non negativa

2. 1...),...,(... 2121 =∫ ∫ ∫+∞

∞−

+∞

∞−

+∞

∞−nn dddp ξξξξξξ

E' possibile trovare la densità di probabilità m-dimensionale, conoscendo la densità di probabilità n-

dimensionale quando m < n, integrando sulle " coordinate ridondanti ":

∫ ∫ ∫=+∞

∞−

+∞

∞−

+∞

∞−+ nmnmm ddpp ξξξξξξξ ...),..,..(...)...( 111

• Momenti:

Conoscendo la p(ξ1, ξ2,...ξn) è possibile trovare le varie medie di qualsiasi combinazione delle

variabili casuali coinvolte, e quindi i corrispondenti momenti. Limitandoci al caso più ricorrente, cioè quello bidimensionale, abbiamo, per analogia col caso unidimensionale:

∫ =∫=+∞

∞−

+∞

∞−11212111 ),( mdxdxxxpxx

e

∫ =∫=+∞

∞−

+∞

∞−22212122 ),( mdxdxxxpxx

e le varianze:

( )∫ ∫+∞

∞−

+∞

∞−

−= 21212

1121 ),( dxdxxxpxxσ

( )∫ ∫+∞

∞−

+∞

∞−

−= 21212

2222 ),( dxdxxxpxxσ

Ciò che è " nuovo " rispetto al caso unidimensionale è che ora possiamo formare anche un momento del secondo ordine " congiunto " tra le due variabili casuali x1 e x2 che viene chiamato " momento covariante " o " correlazione ".

∫ ∫==+∞

∞−

+∞

∞−2121212112 ),( dxdxxxpxxxxk

Correlazione

Supponiamo di aver fatto una serie di tentativi ciascuno dei quali ha dato come risultato una

variabile casuale bidimensionale x1, x2. Se riportiamo sul piano cartesiano i risultati di ciascun

tentativo per mezzo di un punto, possono accadere due casi: 1. I punti si dispongono lungo una retta; ciò significa che x1 e x2 hanno lo stesso segno. Questo

suggerisce l'esistenza di una " associazione statistica " o " correlazione " tra le due variabili x1 x2.

2. I punti si distribuiscono in modo caotico su tutto il piano; questo suggerisce una non consistente associazione statistica. Allora le due variabili si dicono "

Page 43: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

43

scorrelate " quantitativamente; il grado di associazione può essere misurato attraverso il " momento covariante " k12 oppure, più spesso, dalla quantità:

( )( )∫ ∫ −−=+∞

∞−

+∞

∞−2121221112 ),( dxdxxxpxxxxH

detta " momento di correlazione ".

211212 xxkH −= Notare che esso rappresenta una sorta di varianza. Nel caso, infatti, che x1=x2=x si ha:

22212 σ=−= xxH

Si può introdurre anche un coefficiente di correlazione:

21

1212 σσ

HR =

Se x1 = x2 si ha: R12 = 1 .cioè abbiamo correlazione completa, come è ovvio che sia.

Nel caso che il vettore casuale abbia più di due dimensione si ha:

( )( )∫ ∫ −−=+∞

∞−

+∞

∞−nnjjiiij dxdxxxpxxxxH ..)..(.. 11

con i, j = 1,2,..,n e i rispettivi coefficienti di correlazione:

ji

ijij

HR

σσ=

Ovviamente k e R sono matrici del tipo:

nnn

n

kk

kk

k

..

..

..

..

1

111

=

1..

..

..1

1

221

1

n

n

n

R

RR

R

R =

con Rij ≤ 1 in generale e Rij = 1 quando xi = ± xj caso di completa correlazione.

Indipendenza statistica di variabili casuali

Per definizione se delle variabili casuali X1, X2,..., Xn sono statisticamente indipendenti, la densità

di probabilità multi dimensionale p(x1,..,xn) può essere espressa come prodotto delle densità :

p(x1,..,xn) =p(x1)p(x2)..p(xn)

Le variabile casuali statisticamente indipendenti sono, a coppie, scorrelate. Infatti, per i ≠ j si ha:

∫ =∫∫=∫=+∞

∞−

+∞

∞−

+∞

∞−

+∞

∞−jijjjiiijijijiij xxdxxpxdxxpxdxdxxxpxxk )()(),(

Quindi:

0=−= jiijij xxkH ed anche:

0==ji

ijij

HR

σσ Il contrario non è sempre vero. Se delle variabili casuali sono scorrelate non significa

automaticamente che esse sono statisticamente indipendenti

Page 44: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

44

Trasformazione funzionale di variabili casuali multidimensionali

Siano Y e X~~

due vettori casuali relazionati funzionalmente in questo modo: y1=f1(x1, ..,xn) yn=fn(x1,..,xn)

tali per cui siano note le trasformazioni inverse: x1=g1(y1,..,yn) xn=gn(y1,..,yn)

e la densità di probabilità iniziale porig.(x1,..,xn). Allora la densità di probabilità trasformata è:

ptrasf.(y1,..,yn) = porig.(x1,..,xn) |D|

dove |D| è lo Jacobiano della trasformazione:

n

nn

n

y

g

y

g

y

g

y

g

D

∂∂

∂∂

∂∂

∂∂

..

..

..

..

1

1

1

1

=

avendo tenuto presente quanto già ottenuto nel caso di variabile unidimensionale.

Esempio. Cambio di coordinate variabili casúali

Siano x1 e x2 le variabili casuali rappresentanti le coordinate dell'estremo di un vettore nel piano.

Se passiamo a coordinate polari ( ρ, ϕ ) ≡ ( y1, y2) :

====

),(sin

),(cos

22

11

ϕρϕρϕρϕρ

gx

gx

con

πϕ

ρ

20

0

≤≤

∞≤≤

|D| sarà allora:

ρϕρϕρϕρϕϕρϕ

∂ϕ∂

∂ρ∂

∂ϕ∂

∂ρ∂

=+=−

== 22

22

11

sincoscos

cos

sin

sinxx

xx

D

Quindi la densità trasformata è: ptrasf.(ρ,ϕ) = ρ⋅porig.(x1,x2)

Distribuzione gaussiana multidimensionale Calcolo con MATHCAD

Supponiamo che per una variabile n-dimensionale casuale X = X1, X2,..., Xn siano note:

1. Le medie m1, m2,..., mn

2. Le varianze 221 ,..., nσσ

3. La matrice R dei coefficienti di correlazione

In generale queste informazioni non sono sufficienti per formare la densità di probabilità p(x1,..,xn). La sola eccezione è quando X è un vettore casuale di tipo gaussiano. Allora la densità

di probabilità si scrive:

Page 45: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

45

( )

( ) ( )

=

−−− ∑

=

n

ji j

jmjx

i

imixijD

D

nn

n e

D

xxp 1,2

1

21

21

12...

1),..,(

σσ

πσσ

in cui D è il determinante della matrice R e Dij è il cofattore dell'elemento Rij nella R. Se il

vettore casuale X è formato da variabili casuali " scorrelate " tali che Rij = δij

con δij delta di Kronecker, allora la matrice R conserva solo gli elementi della diagonale principale uguali a uno ed annulla tutti gli altri.

10

.

.

0..1

=R

e DR= 1

Quindi la p(x1,..,xn) è:

( )

( )

=

−− ∑

=

n

i i

imix

nn

n exxp1

2

2

2

1

21

12...

1),..,(

σ

πσσ

ovvero p(x1,..,xn) =p(x1)p(x2)..p(xn) in cui ciascuna densità di probabilità p(x)

unidimensionale ha: 1. Un valore medio mi

2. Una varianza 2iσ

Risulta quindi che, nel caso della gaussiana, se le variabili casuali, che formano il vettore casuale, sono " scorrelate " esse sono anche " statisticamente indipendenti ". Nel caso più frequentemente usato di variabile bidimensionale, la gaussiana si scrive, nel caso più generale:

1

1

21

12

R

RR =

D = 1- R12R21

( )( ) ( ) ( ) ( ) ( ) ( )

−+

−−−

−−−

−−

−⋅−

=22

222

2

22

1

1121

2

22

1

11122

1

211

211221122121

12

1exp

12

1),(

σσσσσσπσσ

mxmxmxR

mxmxR

mx

RRRRxxp

Se ci limitiamo al caso in cui: R12 = R21 = R ;m1 = m2 = 0 ; σ1 =σ2 = σ si ha

( ) [ ]

+−−

−⋅−

= 2221

21222221 2

12

1exp

12

1),( xxRxx

RRxxp

σπσ

Funzione caratteristica multidimensionale

E' una generalizzazione di quella unidimensionale. Abbiamo quindi:

( )∫ ∫==Θ

+∞

∞−

+∞

∞−nn

nvn...xvxinnn ...dxdx,...,xxpev,...,ixvix,...,v,vv 11

111121 )(...)exp()(

Page 46: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

46

Essa definisce un sistema di variabili casuali dello stesso grado di completezza della anti-trasformata di Fourier della corrispondente densità di probabilità:

∫ ∫ Θ=+∞

∞−

+∞

∞−

−n

)nvn...xvi(xnn ...dvdv,...,vvxxp 1

1111 )e(...

2

1),...,(

π se le variabili X1,...,Xn sono statisticamente indipendenti, allora, come per le densità di

probabilità, le funzioni caratteristiche possono essere scritte come prodotto delle funzioni Θ(v)

individuali:

∏ Θ=Θ=

n

iiin )(v),..,v(v

11

Si può dimostrare che la Θ(ν) di una densità di probabilità gaussiana multi dimensionale è:

∑−∑=Θ

==

n

k,llkkllk

n

kkkn vvRssvmi),...,v(v

111

2

1exp

dove mk, σk2 sono la media e la varianza del vettore variabile casuale Xk e Rkl è un elemento

della matrice dei coefficienti di correlazione.

Densità di probabilità della somma di variabili casuali

Se nella Θ(v) multi dimensionale poniamo v1 =v2 = v essa si trasforma in una Θ(v)

unidimensionale della somma x1 +x2 +..+xn:

)nx...xiv(xev +++Σ =Θ 21)(

e facendo l'antitrasformata di Fourier otteniamo la densità di probabilità della somma.

Se leX1,...,Xn sono gaussiane, indipendenti, ciascuna con valore medio mk e varianza σk2

allora:

∑−∑=Θ

==Σ

n

1lk,

22n

1k 2

1exp)( kk vmivv σ

ricordando la Θ(v) di una gaussiana unidimensionale:

−=Θ 22

2

1exp)( σvivmvuni

possiamo concludere che la somma di variabili gaussiane è ancora distribuita in modo normale, cioè è ancora gaussiana ma con:

∑=∑==

Σ=

Σn

kk

n

kkmm

1

22

1 σσ

• Nella teoria della probabilità esiste anche un più generale teorema (Lyapunov) detto del limite centrale che afferma: Sotto certe condizioni, usualmente soddisfatte dai sistemi fisici, la distribuzione della somma di N

variabili casuali indipendenti, le cui varianze sono finite e con distribuzioni arbitrarie, tendono ad

una distribuzione gaussiana per N → ∞.

Page 47: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

47

Processi casuali

La teoria finora sviluppata delle variabili casuali, tratta i fenomeni probabilistici in modo " statico " cioè come risultati di un determinato esperimento. Le tecniche della teoria classica della probabilità

si dimostra inadeguata a rappresentare segnali che a loro volta sono una rappresentazione di fenomeni casuali variabili nel tempo. Questi sono materia per la teoria dei processi casuali. Per

definizione un processo casuale X(t) è una funzione caratterizzata dal fatto che in qualsiasi istante t i valori che essa assume sono casuali.

Insiemi di osservazioni

I segnali deterministici, già visti, sono rappresentati tramite una relazione funzionale o una forma d'onda. Quando abbiamo a che fare con processi casuali le cose si complicano abbastanza. In un sistema fisico spesso accade che qualche sorgente di segnali è capace di produrre un set qualsiasi di funzioni del tempo. A scopo di analisi, è conveniente assegnare una legge di probabilità che descriva le occorrenze (variazioni, fluttuazioni,..) di ciascun membro del set (insieme). Il termine " set " è

riferito all'insieme di segnali prodotti da una particolare sorgente. Diremo allora che tale sorgente produce un segnale X chiamato processo casuale o stocastico. La descrizione di tali processi

stocastici sarà, ovviamente, molto diversa da quella già fatta per i segnali deterministici, comunque i concetti relativi allo spazio dei segnali ( distanza, norma, prodotto scalare, ortogonalità) sono un processo stocastico. In questo senso il processo casuale X(t) va visto non come uno scalare ma come

un vettore nello spazio di Hilbert. Annotando i valori istantanei di un processo casuale X(t) entro un

certo intervallo di tempo, otteniamo solo una singola osservazione:

t

x

Teoricamente, un processo casuale è espresso in termini di un set di infinite osservazioni le quali formano un insieme statistico.

t

x1

t

x2

t

x3

Un esempio di tale insieme può essere rappresentato da un insieme di segnali x1(t),

x2(t),...,xn(t) che possono essere simultaneamente osservati alle uscite di generatori di tensione di

rumore assolutamente identici. In un sistema termodinamico è come se osservassimo una delle

variabili di stato ( T,v,p) in punti " identici " del sistema stesso: T1(t), T2(t),...,Tn(t) Non

sempre un processo casuale è rappresentato da una funzione complicata. Spesso abbiamo a che fare

con processi casuali rappresentati da semplici armoniche del tipo uocos (ωt+ϕ) in cui una delle

variabili uo, ω, ϕ sono variabili casuali. I processi casuali che sono determinati da un numero

finito di variabili casuali si chiamano quasi-deterministici.

Page 48: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

48

Densità di probabilità di un processo casuale

Sia X(t) un processo casuale definito da un insieme di osservazioni e t1 un generico istante di

tempo. Annotando i valori x1(t), x2(t),...,xn(t) assunti dal processo, in osservazioni individuali,

prendiamo una sezione unidimensionale attraverso il processo stesso e costruiamo la X(t1).

Otteniamo così la densità di probabilità p(x, t1) unidimensionale del processo X(t) al tempo t = t1.

t

x1

t 1 t

x2

t 1 t

x3

t 1 E' come se osservassimo la variabile casuale X(t1) quindi dp = p(x,t1)dx è la probabilità che

l'osservazione del processo casuale, prenderà al tempo t = t1, un valore compreso tra x e x+dx. Le informazioni desunte da una tale densità di probabilità unidimensionale, sono insufficienti per

stabilire come si evolverà nel tempo. Maggiori informazioni si possono avere prendendo due sezioni attraverso il processo stocastico a tempi diversi t1 e t2. Otteniamo così una densità di probabilità

bidimensionale della variabile bidimensionale rappresentata da X1(t), X2(t) ossia p(x1,x2,t1,t2). Quindi dp = p(x1,x2,t1,t2)dx1dx2 rappresenta la probabilità che l'osservazione del processo

stocastico, assumerà un valore che al tempo t1 sia compreso tra x1 e x1+dx1 e al tempo t2 tra x2 e

x2+dx2.

La naturale estensione della densità di probabilità bidimensionale è la densità di probabilita’ multi dimensionale: p(x1,...,xn,...,t1,...,tn) che deve soddisfare le stesse condizioni, già viste, imposte

alle altre densità di probabilità. Anche in questo caso si può fare uso della funzione caratteristica multi dimensionale.

( )∫ ∫=Θ

+∞

∞−

+∞

∞−nnn

nvn+...+xvxinn ...dxdx,...,t,t,...,xxpe,...,t,t,...,vv 111

1111 )(...)(

• Densità di probabilità multi dimensionale con un ordine n sufficientemente grande possono

descrivere abbastanza bene i processi stocastici però esse sono molto difficili da ottenere e da manipolare. Quindi in pratica ci si riduce a calcolare i momenti delle variabili casuali X(t1) e X(t2)

ottenute da una " sezione " al tempo t1 e t2 del processo stocastico.

Page 49: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

49

Momenti delle funzioni dei processi stocastici

Naturalmente, in questo caso, i momenti sono funzioni del tempo e non parametri delle distribuzioni. Il valore medio del processo X(t) all'istante t è:

∫==+∞

∞−dxtxxptxtm ),()()(

La media è fatta sulle osservazioni dell'intero sistema. Una misura dell'indeterminazione dei valori istantanei presi da osservazioni individuali in una determinata sezione, rispetto al valore medio, è data da:

[ ] [ ]∫ −=−=+∞

∞−dxtxptmtxtmtxt ),()()()()()( 222σ

Il secondo momento centrale è dato da:

[ ][ ] [ ][ ]∫ ∫ −−=−−=+∞

∞−

+∞

∞−2121212211221121 ),,,()()()()()()()()(),( dxdxttxxptmtxtmtxtmtxtmtxttK

è detto funzione di auto correlazione del processo stocastico X(t). Essa ci dà informazioni circa

come i valori di X(t) al tempo t1 sono correlati con quelli osservati al tempo t2. Ovviamente se le

sezioni coincidono, cioè se t1 = t2 , allora:

)(),( 22121 tttK ttt σ===

Processi stocastici stazionari

Il termine stazionario significa che le caratteristiche statiche di un processo stocastico rimangono invariate nel tempo.

definizione:

Un processo stocastico si dice stazionario in senso stretto se la densità di probabilità multi

dimensionale di ordine n è invariante per traslazione temporale, cioè t → t+τ. Quindi

p(x1,...,xn,t1,...,tn) = p(x1,...,xn,t1+τ,...,tn+τ) per qualsiasi t e n. Questo va sotto il nome di

narrow-sense. Se ci limitiamo alla richiesta che solo m e σ2 siano indipendenti dal tempo ma che

la funzione di auto correlazione dipenda dalla differenza di tempo τ = t2 - t1 , allora si parla di

processo stocastico " stazionario in senso allargato " cioè se K(t1,t2) =K( t2 - t1) .

Questo va sotto il nome di wide-sense. Vediamo alcune proprietà di K(t1,t2):

1. In seguito alla definizione del processo stocastico stazionario ( indipendenza delle

caratteristiche statistiche dal tempo ), la funzione K(t1,t2) è pari: K(τ) = K(-τ) e K(t2-t1)

= K(t1-t2)

2. K(τ) ≤ K(0) = σ2 per qualsiasi τ. Infatti dalla ovvia disuguaglianza:

[ ] [ ] 0)()( 2 ≥−+−− mtxmtx τ si ha:

[ ] [ ][ ] [ ] 2222 )(2)()()(2)( στσττ +−=−++−+−−− Kmtxmtxmtxmtx

Page 50: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

50

perché m e σ2 sono indipendenti da t. Quindi:

2σ2-2K(τ) ≥ 0 dalla quale si deduce: σ2 ≥ K(τ) e K(0) ≥ K(τ)

frequentemente si usa il " coefficiente di correlazione " R(τ): 2

)()(

σ

ττ

KR = è ovvio che R(0) = 1.

Esempio. Stazionarieta’ di un processo

Un processo stocastico è costituito da osservazioni della forma: u(t) = u0cos (ω0t+ϕ) in cui u0 e

ω0 sono costanti mentre la fase ϕ è una variabile casuale uniformemente distribuita nell'intervallo :

-π ≤ ϕ ≤ +π. Quindi la densità di probabilità p(φ): πϕ 2

1=p

il valore medio del processo e’:

( ) ( ) 02

cos2

)( 00

00 =+=∫ += +

+

ππ

π

πϕω

πϕϕω

πtsin

udt

utu

la varianza:

( ) ( )[ ]2

cos2

20

02

2022222 u

dtu

uuuuu =+==−=−= ∫+

π

π

ϕϕωπ

σ

la funzione di auto correlazione:

[ ][ ])()()()(),( 221121 tmtutmtuttK −−= essendo m(t1) = 0 allora segue che m(t1) = m(t2) = 0; quindi:

[ ] ( ) ( ) [ ] [ ])(cos2

)(cos2

coscos2

)()(),( 120

20

120

20

2010

20

2121 ttu

ttu

dttu

tututtK −=−=∫ ++==+

−ωπω

πϕϕωϕω

π

π

π allora il processo stocastico studiato risponde ai requisiti: 1. m = 0 ⇒ indipendente dal tempo

2. σ2 = u02/2 ⇒ indipendente dal tempo

3. [ ])(cos2

),( 120

20

21 ttu

ttK −= ω cioè dipendente solo dalla differenza di tempo t2 - t1 = τ

Per cui concludiamo che esso è un processo stocastico in senso allargato ( Wide sense) Invece se lo stesso processo avesse ω0 e ϕ costanti con u0 variabile casuale in modo arbitrario,

allora:

( ) ( )ϕωϕω +=∫+=+∞

∞−tudxtxputu 0000 cos),(cos

che è indipendente da t solo per u0 = 0 quindi il processo stocastico non sarebbe stazionario.

Page 51: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

51

Ergodicità

Un processo stazionario X(t) è ergodico se le medie del suo insieme possono essere sostituite dalle

medie temporali. La media è realizzata su una singola osservazione x(t) la cui durata T tende

all'infinito. Indicando con < > la media temporale, il valore medio m di un processo stocastico

ergodico, è:

∫==∞→

T

Tdttx

Ttxm

0)(

1lim)(

Questo rappresenta il termine costante in una osservazione. La varianza è:

[ ] [ ] 22

0

222 )()(1

lim)( mtxdtmtxT

mtxT

T−=∫ −=−=

∞→σ

Questa ha un significato fisico importante:

poiché <x2(t)> è la potenza media del processo in una osservazione e m2 è la potenza del termine

costante, la varianza rappresenta la potenza del termine fluttuante del processo ergodico.

La funzione di auto correlazione è: K(τ) = < [x(t)-m][x(t+τ)-m] > = < x(t)x(t+τ) > - m2

Affinché un processo stocastico sia ergodico occorre anzitutto che esso sia stazionario in senso allargato ( Wide sense ). Una condizione sufficiente per l'ergodicità di un processo stocastico è quella

che fa tendere a zero la funzione di auto correlazione al tendere del tempo di traslazione τ all'infinito:

0)(lim =∞→

ττ

K

Comunque la condizione matematica determinata da Slusky è:

0)(1

lim0

=∫∞→

T

TdK

Tττ

Ciò lo si può interpretare dicendo che il valore medio della funzione di auto correlazione deve essere nullo. Questo è rispettato dal primo esempio fatto.

Misurare le caratteristiche di un processo casuale

Se un processo è ergodico, l'osservazione, per un periodo " sufficientemente " lungo è rappresentativa dell'intero insieme, anche se si osserva un solo " pattern ". Uno strumento per misurare la densità di probabilità unidimensionale di un processo stocastico si può realizzare, ad esempio, nel modo seguente. La densità di probabilità unidimensionale di un processo ergodico può essere considerata come una quantità proporzionale all'intervallo di tempo durante il quale il " pattern " del processo ha

un valore compreso tra x e x+∆x (v. fig.).

Page 52: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

52

Se costruiamo un sistema, a due ingressi (comparatore), capace di dare una risposta di tipo discreto al raggiungimento di un predeterminato valore analogico del segnale presente ad uno di essi e

all'altro applichiamo un livello costante aggiustabile tra x0 e x0+∆x, in uscita sarà disponibile un

segnale con ampiezza costante, e durata variabile in proporzione alla derivata nell'istante t. Il valore

medio della corrente in uscita, è proporzionale alla densità di probabilità p(x0), a meno di una

costante.

Page 53: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

53

Teoria della correlazione dei processi stocastici

La teoria dei processi stocastici basata sull'uso delle funzioni del secondo momento centrale e non è detta teoria delle correlazioni. Vedremo che vi è una profonda e stretta relazione tra la correlazione e le proprietà' dei segnali stocastici.

Rappresentazione spettrale dei processi stocastici stazionari

In linea di principio i metodi di analisi utilizzati per i segnali deterministici, non potrebbero andare bene per i segnali stocastici. Comunque un certo numero di importanti caratteristiche dei segnali stocastici possono essere derivate utilizzando le trasformate di Fourier ( diretta ed inversa ) delle funzioni formate mediando le osservazioni.

Lo spettro delle " osservazioni "

Consideriamo un processo stocastico stazionario X(t) con valore medio 0=x . Se prendiamo una

singola osservazione o " pattern " x(t) del processo stocastico X(t), questa può essere assimilata, o

meglio, è una funzione deterministica che può essere quindi rappresentata attraverso la trasformata di Fourier ( anti )

∫=+∞

∞−ωω

πω deStx ti)(

2

1)(

in cui S(ω) è un certo spettro deterministico. Se vogliamo ora descrivere l'intero insieme delle

osservazioni che formano il processo X(t), dobbiamo assumere che le corrispondenti S(ω) una per

ogni osservazione, sono funzioni stocastiche della frequenza.

x1(t) ↔ s1(ω);xn(t) ↔ sn(ω); X(t) ↔ S(ω)

Allora un processo stocastico nel dominio di t è connesso ad un altro processo nel dominio di ω .Vi è

una corrispondenza puntuale tra le singole osservazioni dei due processi.

La questione cruciale è: Quali proprietà dovrebbero possedere le funzioni casuali S(ω) affinché il

processo stocastico X(t) sia stazionario?

Proprietà di uno spettro stocastico

Per rispondere alla questione, prendiamo il valore medio dei valori istantanei dell'insieme:

∫=+∞

∞−ωω

πω deSx ti)(

2

1

e poniamolo uguale a zero. Tale condizione è soddisfatta per qualsiasi t solo se:

0)( =ωS Possiamo allora dire che, per un processo stocastico stazionario [ 0=x ], lo spettro casuale deve

avere un valore medio nullo a tutte le frequenze, per ciascuna osservazione individuale.

Vediamo ora le condizioni che devono essere soddisfatte dalla funzione di auto correlazione K(τ)

che, nel dominio di t, deve dipendere solo da una traslazione temporale τ.

Page 54: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

54

Osserviamo che, essendo x(t) un segnale reale: x(t) = x*(t) e quindi

∫+∞

∞−

−= ωωπ

ω deStx ti)(2

1)( **

Poiché 0=x , K(τ) si può scrivere:

)()()()()( * τττ +=+= txtxtxtxK utilizzando l'espansione spettrale otteniamo:

( )( )

∫ ∫ ′=+∞

∞−

+∞

∞−

′−+ ωωωωπ

τ ω ddeeSSK tiôtiù)'(*)(2

1)(

2

che possiamo anche riscrivere:

( ) ∫ ∫ ′=+∞

∞−

+∞

∞−

′−− ')()(2

1)( )(*

2ωωωω

πτ ωωτ ddeeSSK tiiù

Separando i due integrali abbiamo:

( ) ∫ ∫ ′′=+∞

∞−

+∞

∞−

′−− ωωωωπ

τ ωωωτ deSSdeK tii )(*2

)()(2

1)(

nella quale il fattore )()( * ωω ′SS ha il significato di una funzione di auto correlazione spettrale

cioè di una spettro casuale. Affinché K(τ) dipenda solo da τ e non da t, occorre che:

)()()( * ωωδωω ′−∝′SS cioè proporzionale ad una δδ .

Vale a dire che lo spettro S(ω) di un processo stocastico stazionario ha una struttura molto specifica:

• Gli spettri corrispondenti a qualsiasi due frequenze non coincidenti sono mutuamente correlati mentre • La varianza dello spettro casuale è infinitamente larga

Questa forma di associazione statistica si chiama, appunto, δδ-correlation.

Spettro di potenza di un processo stocastico stazionario

Se riscriviamo la condizione di probabilità tra )()( * ωω ′SS e la δ(ω-ω') introducendo come

fattore di proporzionalità una funzione della frequenza, W(ω), abbiamo:

)()()()( * ωωδωωω ′−=′ WSS Questa nuova funzione gioca un ruolo fondamentale nella teoria dei processi stocastici stazionari.

Essa infatti rappresenta lo spettro della densità di potenza o, più semplicemente, lo spettro di

potenza del processo X(t). Con questa posizione si ha che K(τ) diventa:

( )( ) ∫=∫ ′′−∫=

+∞

∞−

+∞

∞−

+∞

∞−ωω

πωωωδωω

πτ ωτωτ deWdWdeK ii )(

2

1)(

2

1)(

2

Possiamo allora affermare che: la funzione di auto correlazione, K(τ), e lo spettro di potenza di un processo stocastico stazionario con valore medio nullo, sono uno la trasformata di Fourier dell'altro. Questo è quello che va sotto il nome di relazione di Wiener-Khinchin (W-K). Quindi:

Page 55: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

55

∫∞+

∞−

+∞

∞−

=

=

ττω

ωωπ

τ

ωτ

ωτ

deKW

deWK

i

i

)()(

)(2

1)(

Per chiarire meglio il significato dello spettro di potenza consideriamo il valore K(0) cioè il punto

τ = 0. Sappiamo che K(0) = σ2, allora:

∫=+∞

∞−ωω

πσ dW )(

2

12

cioè, la varianza, valore medio della potenza del processo stocastico stazionario, è data dalla somma dei contributi di tutte le frequenze e la W(ωω) è una misura della potenza media del processo per unità d'intervallo di frequenza. Naturalmente, dal punto di vista fisico, lo spettro di potenza dovrà essere reale e non negativo [ W(ω) ≥ 0 ]. Una cosa importante che va notata è che essendo W(ω) ≥ 0 reale, esso non dà nessuna

informazione sulla relazione di fase esistente tra le componenti spettrali individuali. Perciò è in linea di principio e’ impossibile ricostruire ciascuna osservazione individuale di un processo stocastico, partendo dal suo spettro di potenza.

Spettro di potenza " one-sided "

Poiché K(τ) è una funzione pari, anche W(ω) è pari, quindi la coppia di trasformate di Fourier può

essere così scritta:

∫∫

∫∫∞+∞+

∞−

+∞+∞

∞−

==

==

0

0

cos)(2)()(

cos)(1

)(2

1)(

τωττττω

ωωτωπ

ωωπ

τ

ωτ

ωτ

dKdeKW

dWdeWK

i

i

Allora è d'uso introdurre lo spettro di potenza " one-sided " F(ω) definito:

=0<per 0

0>per )()(

ωωπω

ωW

F

In questo modo, la varianza si può esprimere come integrale sulle frequenze reali:

∫==+∞

0

2 )()0( ωωσ dFK

Il teorema di W-K è uno dei più importanti nel campo della teoria applicata e permette una facile

manipolazione dei problemi.

Esempio. Processo con autocorrelazione, K(τ), esponenziale.

Un processo stocastico ha una funzione K(τ) di forma esponenziale. Supponiamo di conoscere la

forma della K(τ):

con )( 2 ℜ∈= − αστ ταeK Allora lo spettro di potenza W(ω) sarà:

[ ]22

2

022

2

0

2 2sincos2cos2)(

ωαασ

ωασ

ωτωωτατωτσω τατα

+=

+−==

+∞−

+∞−∫ edeW

Page 56: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

56

Quindi lo spettro " one sided " è: 22

22)(

ωα

ασπ

ω+

=F

che ha un massimo in zero e " un carattere di bassa frequenza ".

Esempio. Spettro di potenza, W(ω), Gaussiano.

Supponiamo che lo spettro W(ω) di potenza di un processo stocastico X(t), abbia un andamento

gaussiano: 2

0)( βωω −= eWW

Troviamo la corrispondente K(τ): βτ

βω

πβωωτ

πτ 4

2

0

0

20 1

2cos)(

−∞+ − =∫= eW

deW

K

quindi uno spettro di potenza gaussiana dà una funzione di auto correlazione ancora gaussiana

dalla quale si può dedurre la σ2 del processo stocastico:

πβσ

2)0( 02 W

K ==

Esempio. Spettro di Potenza, W(ω),limitato in frequenza.

Un processo stocastico stazionario con uno spettro di potenza limitato in frequenza inferiormente. Sia:

<<

=ovunque 0

- )( 110 ωωω

ωW

W

Allora la K(τ):

===∫=

τωτω

πω

ττω

πτωτ

πωωτ

πτ

ωω

1

110101

0

01

00 cos

1)(

sinWsinWsinWdWK

e la varianza del processo: πω

σ 102 )0(W

K ==

Page 57: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

57

Se usassimo la " one sided " F(ω) avremo una scrittura più significativa della varianza:

=

=0

<<0 )( 100 ωωπ

ωWF

F e la varianza: 10102 ωω

πσ F

W==

Tempo di correlazione

In generale le funzioni di auto correlazioni, K(τ), dei processi stocastici, in particolare quelli trattati

nella teoria delle comunicazioni, tendono a zero all'aumentare della traslazione temporale τ.

Cioè K(τ) → 0 per τ → ∞. Più rapidamente tende a zero K(τ) più debole è la relazione statistica

tra i valori istantanei di un segnale casuale osservato a due istanti differenti di tempo. E' quindi utile valutare quantitativamente la " velocità di cambiamento " delle osservazioni di un processo

stocastico in termini di un " tempo di correlazione " τcorr che può essere definito:

∫=∫=+∞+∞

00)()(

)0(

1τττττ dRdK

Kcorr

Rozzamente, possiamo " predire " in senso probabilistico il comportamento di ciascuna osservazione

su un intervallo di tempo τcorr se conosciamo il comportamento di quella osservazione nel passato.

Qualsiasi tentativo di predire il comportamento per un tempo eccedente τcorr potrebbe essere futile,

oltre questo intervallo i valori istantanei del processo sono sostanzialmente variabili indipendenti,

cioè il valore medio del prodotto x(t)⋅x(t+τ) è molto prossimo a zero.

Banda effettiva

Consideriamo un processo che sia caratterizzato da una " one-sided " F(ω) tale che esista un valore

estremo della funzione Fmax. Da un punto di vista concettuale possiamo rimpiazzare questo

processo stocastico con un altro qualsiasi in cui lo spettro di potenza è costante e uguale a Fmax

entro la banda [ ∆ωeff ] frequenze scelta, purché la potenza media sia la stessa per entrambi i

processi. Possiamo allora scrivere:

∫=∆⋅+∞

0max )( ωωω dFF eff

e poiché: 2

0

)0()( σωω ==∫+∞

KdF ricaviamo: σ2 = Fmax ⋅∆ωeff molto utile nel calcolo della

tensione di rumore.

Esempio. Calcolo numerico del rumore

Se consideriamo il valore di Fmax e la banda effettiva ∆ωeff allora possiamo ricavare il rumore

del processo. Sia infatti Fmax = 5 10-9 V2s e ∆ωeff = 3 105 s-1 allora σ2 = 15 10 -4 V2

da cui σ = 39 mV che è il valore efficace del rumore o R.M.S..

Page 58: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

58

Rumore bianco

Il termine rumore bianco, forzosamente mutuato dalla luce bianca nel caso ottico, si riferisce ad un processo stocastico in cui lo spettro di potenza è lo stesso a tutte le frequenze, cioè è costante:

W(ω) = W0 = cost.

Dal teorema W-K possiamo ricavare la K(τ) del processo:

)(2

)( 00 τδωπ

τ ωτ WdeW

K i =∫=+∞

∞−

in quanto lo spettro di una delta è una costante, ossia: AdtteAS ti =∫=+∞

∞−

− )()( δω ω

che ci indica come lo spettro del rumore bianco è infinitamente esteso, o che è lo stesso, la

funzione di auto correlazione è una delta temporale. La scorrelatezza dei valori istantanei delle osservazioni implica che essi variano nel tempo con una velocità infinitamente grande. Il rumore bianco è solo un modello matematico e non esiste in natura nessun processo stocastico che si comporti così.

Derivata di un processo stocastico

Supponiamo che sia possibile applicare ad una qualsiasi osservazione x(t) di un processo stocastico

X(t), una rete che operi una differenziazione e produca in uscita una nuova osservazione

y(t) = dx(t)/dt. L'insieme delle osservazioni y(t) formano un processo stocastico Y(t) detto derivata

di X(t). Simbolicamente: dt

tdXtY

)()( = . Se xmx = è il valore medio di un processo stocastico

stazionario, al fine di trovare il valore medio del processo derivato, dovremo prendere la media delle osservazioni in uscita. Quindi:

0)(

==== xy mdt

d

dt

tdxym

stocasticamente parlando. Quindi la differenziazione di un processo stocastico stazionario, produce

un nuovo processo con valore medio nullo. La funzione di auto correlazione K(τ) richiede

l'assunzione, per semplicità di calcolo, che il valore medio del processo sia nullo. Non si perde in generalità in quanto possiamo sempre pensare che al processo x(t) sia associato un

altro x*(t) = x(t) - mx. Allora considerando che: t

txttx

dt

dx

t ∆−∆+

=→∆

)()(lim

0 possiamo

scrivere la )()()( ττ += tytyK y

come:

( )[ ])()()()()()()()(

1lim

)()()()(lim)(

20

0

ττττ

τττ

+++∆+−+∆+−∆++∆+∆

=∆

+−∆++⋅

∆−∆+

=

→∆

→∆

txtxtxttxtxttxttxttxt

t

txttx

t

txttxK

t

ty

Questi quattro termini se considerati a tempi diversi possono essere rappresentati come funzioni di auto correlazione del processo originario X(t). Infatti:

Page 59: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

59

x(t+∆t)⋅x(t+τ+∆t) con t' = t+∆t diventa x(t')⋅x(t'+τ) che insieme al termine x(t)⋅x(t+τ) dà

2Kx(τ).

x(t+∆t)⋅x(t+τ) può essere scritto come: x(t+∆t-∆t)⋅x(t+τ-∆t) e allora è il Kx(τ-∆t)

x(t)⋅x(t+τ+∆t) è evidentemente il termine Kx(τ+∆t)

Otteniamo quindi:

( )[ ])()()(2

1lim)(

20tKtKK

tK xxx

ty ∆+−∆−−

∆=

→∆ττττ

che può essere vista come la derivata seconda cambiata di segno di Kx(τ). Possiamo allora scrivere:

Ky(τ) = - Kx''(τ) = -σ2xR''(τ); con 2

)()(

στ

τK

R = coefficiente di correlazione.

Integrale di un processo stocastico

Sia z(t) un processo stocastico definito dall'integrale limitato al tempo t di un processo stocastico

X(t). Esisterà allora una corrispondenza tra le osservazioni z(t) e x(t):

∫=t

dttxtz0

11 )()(

Il significato fisico è quello di una osservazione del segnale stocastico in uscita da un integratore ideale che inizia al tempo t = 0. Se il processo X(t) è stazionario con valore medio mx, il valore

medio del segnale stocastico in uscita sarà:

tmdttxtzm x

t

z =∫==0

11)()(

Quindi se il valore medio mx è diverso da zero il processo in uscita non è stazionario.

La K(τ) del processo integrato è: ∫ ∫ ′′′′′′=2

1

2

121 )()(),(

t

t

t

tz tdtdtxtxttK

che stocasticamente possiamo scrivere:

∫ ∫ ′′′′′′=1

0

2

021 )()(),(

t ttdtdtxtxttK

quindi: ∫ ∫ ′′′′′′=1

0

2

021 ),(),(

t t

x tdtdttKttK

Se il processo stocastico in ingresso X(t) è stazionario allora la Kx(t',t'') si può scrivere come

dipendente solo dalla differenza dei tempi: Kx(t'' - t') e quindi Ky(t1,t2) sarà:

∫ ∫ ′′′′−′′=1

0

2

021 )(),(

t t

xy tdtdttKttK

Risolvendo l'integrale definito, si vede che esso dipenderà dai tempi t1 e t2 e non dalla differenza.

Si conclude che il processo stocastico integrato non è stazionario. Allora l'importanza fisica sta nel fatto che il livello delle fluttuazioni in uscita di un integratore ideale cresce senza limiti.

Page 60: Teoria dei Segnali - phys.uniroma1.it · anche nell'uso quotidiano del linguaggio comune. Altrettanto spesso pero' ad esso viene attribuito, in modo improprio, indifferentemente il

60

Un corrispondente in termodinamica si ha con il moto browniano. Le particelle ideali, avendo uguale probabilità di essere colpite in due direzioni opposte, rimangono mediamente nella stessa posizione ma la loro deviazione aumenta progressivamente nel tempo senza limitazione.