STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di...

33
1. Dipartimento Scienze Economiche Aziendali Università del Sannio 1 STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo grado Mathesis Roma, 8 novembre 2016 Ferdinando Casolaro (1) [email protected] - [email protected] Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea in Scienze Ambientali) dell'Università del Sannio. I temi trattati in questi appunti sono reperibili nel volume Atti Terni 2011”, sul sito www.aifnapoli2.it nella sezione “RELAZIONI TRA FISICA E MATEMATICA”. Programma: da distribuire nel corso di 5 anni , come avviene per le geometrie e per l'algebra. Le medie: media aritmetica, media aritmetica ponderata; media geometrica ; media armonica. Medie di posizione: mediana; moda. Indici di variabilità: scarto semplice, varianza, scarto quadratico medio. Elementi di analisi combinatoria. Principi fondamentali del calcolo combinatorio. Fattoriale di un numero intero positivo, coefficiente binomiale, binomio di Newton. Disposizioni, permutazioni, combinazioni semplici e con ripetizioni. Introduzione alla Probabilità. Cenni storici; la definizione classica; la definizione frequentista; la definizione soggettiva; la definizione assiomatica. Eventi incompatibili; eventi indipendenti. La probabilità condizionata; Principio di probabilità totale e teorema di Bayes. Insiemi infiniti: numerabilità e continuità. Cenni sulle serie numeriche ed approccio intuitivo all’integrale definito; la serie geometrica nelle applicazioni probabilistiche: un esempio significativo. Le variabili casuali. Definizione di variabile casuale; distribuzione di probabilità. Variabili casuali discrete e continue: il valore medio, la varianza, la deviazione standard. Alcuni esempi di distribuzioni. Distribuzione binomiale. Distribuzione normale. Distribuzione di Poisson.

Transcript of STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di...

Page 1: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

1 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

1

STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo grado

Mathesis Roma, 8 novembre 2016

Ferdinando Casolaro(1)

[email protected] - [email protected]

Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di

Scienze MM.FF.NN. (laurea in Scienze Ambientali) dell'Università del Sannio.

I temi trattati in questi appunti sono reperibili nel volume “Atti Terni 2011”, sul sito

www.aifnapoli2.it nella sezione “RELAZIONI TRA FISICA E MATEMATICA”.

Programma: da distribuire nel corso di 5 anni, come avviene per le geometrie e per

l'algebra.

Le medie: media aritmetica, media aritmetica ponderata; media geometrica ; media

armonica.

Medie di posizione: mediana; moda.

Indici di variabilità: scarto semplice, varianza, scarto quadratico medio.

Elementi di analisi combinatoria. Principi fondamentali del calcolo combinatorio.

Fattoriale di un numero intero positivo, coefficiente binomiale, binomio di Newton.

Disposizioni, permutazioni, combinazioni semplici e con ripetizioni.

Introduzione alla Probabilità. Cenni storici; la definizione classica; la definizione

frequentista; la definizione soggettiva; la definizione assiomatica. Eventi

incompatibili; eventi indipendenti. La probabilità condizionata; Principio di

probabilità totale e teorema di Bayes.

Insiemi infiniti: numerabilità e continuità. Cenni sulle serie numeriche ed

approccio intuitivo all’integrale definito; la serie geometrica nelle applicazioni

probabilistiche: un esempio significativo.

Le variabili casuali. Definizione di variabile casuale; distribuzione di probabilità.

Variabili casuali discrete e continue: il valore medio, la varianza, la deviazione

standard.

Alcuni esempi di distribuzioni. Distribuzione binomiale. Distribuzione normale.

Distribuzione di Poisson.

Page 2: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

2 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

2

La probabilità

Calcolo delle probabilità: i vari aspetti della probabilità e le questioni riguardanti

gli insiemi discreti (finiti e numerabili). Il teorema di Bayes e la sua applicazione

nei quesiti assegnati agli esami di Stato.

1) Definizione classica di probabilità.

E’ il rapporto tra il numero fn dei casi favorevoli ed il numero n dei casi possibili:

n

nap

f)(

Tale definizione è valida solo se i casi sono equiprobabili.

2) Definizione frequentista di probabilità.

E’ una definizione che nasce dall’esperienza, cioè dall’osservazione di una ripetizione

di prove e dal numero di volte in cui si verifica l’evento richiesto.

La probabilità frequentista è, dunque, il rapporto tra la frequenza f con cui si è

verificato l’evento richiesto in n osservazioni precedenti ed il numero n stesso.

n

fap )(

quando il numero delle osservazioni è “abbastanza grande”. L’espressione

“abbastanza grande” ha un significato relativo allo specifico evento che si sta

analizzando. Guido Castelnuovo definisce la probabilità frequentista mediante la

seguente affermazione (legge empirica del caso):

“In una serie di prove ripetute un gran numero di volte, nelle stesse condizioni,

ciascuno degli eventi possibili si manifesta con una frequenza relativa (probabilità

frequentista) che è presso a poco uguale alla sua probabilità, l’approssimazione

cresce al crescere del numero delle prove”.

L’affermazione di Castelnuovo esprime la cosiddetta legge dei grandi numeri:

Con il crescere del numero delle prove, è sempre più probabile che la frequenza

relativa di un evento si avvicini alla sua probabilità.

3) Definizione soggettiva di probabilità.

Premettiamo il quesito assegnato nel liceo PNI nell’anno scolastico 2005/2006.

Page 3: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

3 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

3

Bruno de Finetti (1906-1985), tra i più illustri matematici italiani del secolo

scorso, del quale ricorre quest’anno il centenario della nascita, alla domanda:

“che cos’è la probabilità?” era solito rispondere: “la probabilità non esiste!”.

Quale significato puoi attribuire a tale risposta? E’ possibile collegarla a una

della diverse definizioni di probabilità che sono state storicamente proposte?

Il significato da attribuire alla frase “la probabilità non esiste!” si evince dal concetto

di probabilità soggettiva. La probabilità soggettiva p di un evento E è la misura del

grado di fiducia espresso dal numero reale p, tale che una scommessa di quota p su E

sia coerente, cioè tenga conto delle condizioni reali.

La probabilità soggettiva è utilizzata nel caso in cui non abbia senso considerare ciò

che è avvenuto per una successione di eventi analoghi o si deve assegnare una

probabilità anche agli eventi in cui i casi possibili sono infiniti.

Dato un numero reale p (0 < p < 1) ed una somma di danaro Q, diciamo che si effettua

una scommessa di quota p su un evento E se, versando la somma pQ si riceve

l’importo Q solo se si verifica l’evento E.

Il guadagno dello scommettitore, nel caso di vincita è:

Q – pQ = Q(1 – p)

Da cui si evince che se fosse p > 1, la scommessa sarebbe sempre in perdita.

4) Definizione assiomatica di probabilità. E’ una definizione che si basa su un’assiomatica che presenta analogie alla struttura

della geometria euclidea ed alla costruzione della teoria della misura.

Precisamente, si fissano degli assiomi su cui viene costruita una serie di operazioni

che permettono l’analisi della previsione di eventi.

Ad ogni evento A dello spazio campione ( A ) associamo un numero reale

p, tale che:

1) 0 p(A) 1

cioè, la probabilità è una funzione che ad ogni elemento dello spazio campione

associa un numero reale compreso tra 0 e 1.

2) Se S è l’evento certo, si ha p(S) = 1.

Page 4: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

4 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

4

3) Se è l’evento impossibile, si ha: p( ) = 0.

4) Se nAAA ,...,, 21 sono n eventi che si escludono a vicenda (cioè

jiAA ji , ), si ha:

n

i

i

n

i

i ApAp11

)()(

In una σ-algebra (cioè per un insieme di infinità numerabile), si ha:

11

)()(i

i

i

i ApAp .

La concezione assiomatica della probabilità permette di concepire l’insieme di tutti i

possibili esiti che si possono verificare come uno spazio (spazio di probabilità o

spazio dei campioni).

Un esito (o un evento) è detto punto campione.

Eventi incompatibili.

Due eventi si dicono incompatibili se si escludono a vicenda. In tal caso, se 1E ed

2E sono due eventi incompatibili, risulta:

21 EE

Esempio:

Estraendo una carta da un mazzo napoletano, siano 321 ,, EEE , i seguenti eventi:

1E : la carta sia 2;

2E : la carta sia una figura;

3E : la carta sia di spada.

Page 5: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

5 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

5

E’ evidente che i due eventi 1E ed 2E sono incompatibili; sono invece compatibili le

coppie di eventi ( 1E , 3E ) e ( 2E , 3E ).

Eventi indipendenti.

Due eventi si dicono indipendenti quando il verificarsi del primo non altera la

probabilità del verificarsi dell’altro.

Esempio: Un’urna contiene 100 palline di quattro colori diversi:

- 25 palline bianche;

- 25 palline nere;

- 25 palline rosse;

- 25 palline verdi.

La probabilità che, estraendo una pallina dall’urna, essa sia rossa è uguale a 4

1 .

Se rimettiamo la pallina nell’urna e ripetiamo una seconda estrazione, gli eventi:

1E : pallina rossa dalla prima estrazione;

2E : pallina rossa dalla seconda estrazione,

sono indipendenti in quanto si ha:

p( 1E ) = p( 2E ) = 4

1.

Se invece effettuiamo la seconda estrazione senza rimettere la pallina nell’urna,

indicato con 2E l’evento che la pallina sia rossa, 2E non è indipendente da 1E ,

perché risulta:

p( 1E ) = 100

25

4

1; p( 2E ) =

99

25.

Evento totale. Evento composto. Dati due o più eventi (parziali):

- si dice evento totale (unione degli eventi) di essi, l’evento che consiste nel verificarsi

dell’uno o dell’altro dei vari eventi parziali.

Page 6: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

6 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

6

- si dice evento composto (intersezione degli eventi) da essi, l’evento che consiste nel

verificarsi di tutti gli eventi parziali.

Principio della probabilità totale. Dati due eventi parziali, la probabilità del loro evento totale è uguale alla somma delle

probabilità dei due eventi parziali diminuita della probabilità del loro evento

composto. Nel linguaggio degli insiemi si ha:

)()()()( 212121 EEpEpEpEEp )

Nel caso che gli eventi siano incompatibili, risulta: 21 EE , per cui si ha:

)()()( 2121 EpEpEEp

che è il principio della probabilità totale per eventi incompatibili.

Principio della probabilità composta Se un evento è composto di due o più eventi indipendenti, la sua probabilità è il

prodotto delle probabilità dei vari eventi componenti. Nel linguaggio degli insiemi si

ha:

)()()( 2121 EpEpEEp

Esempio:

Si estrae una carta da un mazzo di 52; qual è la probabilità che sia una figura o una

carta di cuori?

Indicato con 1E l’evento che la carta sia una figura, e con 2E l’evento che la carta

sia di cuori, è evidente che i due eventi non sono incompatibili, perché una carta può

essere una figura di cuori. Quindi risulta:

)()()()( 212121 EEpEpEpEEp = 26

11

52

22

52

3

52

13

52

12

Probabilità condizionata. La valutazione della probabilità di un evento dipende anche dallo stato di

informazione di cui si è in possesso.

I due esempi che seguono rappresentano due situazioni diverse:

Page 7: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

7 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

7

1) Calcolare la probabilità che il getto di due dadi dia 10 (evento A).

2) Calcolare la probabilità che il getto di due dadi dia 10, sapendo che un dado ha

dato 6 (evento A/B).

Nel primo caso si deve considerare l’intero universo U degli eventi elementari

derivanti dal getto dei due dadi; nel secondo si deve considerare solamente un suo

sottoinsieme, e precisamente quello i cui elementi sono coppie di numeri di cui

almeno uno sia un 6.

Nel primo caso si ha:

U ≡ {(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,2);

(2,3); (2,4); (2,5); (2,6); (3,1); (3,2); (3,3); (3,4);

(3,5); (3,6); (4,1); (4,2); (4,3); (4,4); (4,5); (4,6);

(5,1); (5,2); (5,3); (5,4); (5;5); (5,6); (6,1); (6,2);

(6,3); (6,4); (6,5), (6,6)}

cioè, lo spazio dei campioni è costituito da 36 elementi.

Nel secondo caso si deve considerare solamente un suo sottoinsieme, precisamente

quello i cui elementi sono coppie di numeri di cui almeno uno sia 6:

6U ≡ {(1,6); (2,6); (3,6); (4,6); (5,6); (6,6); (6,1); (6,2);

(6,3); (6,4); (6,5)}.

Nel primo caso, il sottoinsieme 3U dei punti di U costituiti da coppie che danno per

somma 10 è:

3U ≡ {(4,6); (6,4); (5,5)}

e, quindi, essendo gli eventi equiprobabili, ci basta applicare la definizione classica; la

probabilità p(A) è 36

3 =

12

1.

Nel secondo caso, l’insieme 6U è costituito da 11 elementi, per cui il sottoinsieme

2U dei punti di 6U costituiti da coppie che danno per somma 10 è:

Page 8: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

8 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

8

2U ≡ {(4,6); (6,4)}

per cui risulta che la probabilità p(B) è 11

2.

Questo secondo esempio ci introduce il concetto di probabilità condizionata, cioè si

chiede di:

calcolare la probabilità che si verifichi l’evento A ≡ {il getto di due dadi dia 10}, a

condizione che sia dato l’evento B ≡ {un dado ha dato 6}, che è individuato dai punti

di 6U .

In tal caso diciamo che si calcola la probabilità che si verifichi l’evento A

condizionato a B che si esprime con p (A/B).

Osserviamo che l’insieme 2U ≡ {(4,6); (6,4)} è costituito dai punti comuni sia ad A

che a B, cioè ad BA la cui probabilità nello spazio campione U, è data da:

p( BA ) = 36

2,

mentre l’insieme 6U , costituito dai punti che hanno una coordinata uguale a 6, è

costituito da 11 elementi, per cui la probabilità che si verifichi l’evento B è:

p (B) = 36

11.

Allora risulta:

p (A/B) = )(

)(

Bp

BAp =

11

2

36

1136

2

Tale relazione si può considerare anche di tipo classico, perché la probabilità del

verificarsi di una qualsiasi coppia è 36

1, cioè gli eventi sono equiprobabili:

- i casi favorevoli sono 2 su 36: {(4,6); (6,4)};

- i casi possibili (un dado abbia dato 6) sono 11 su 36:

{(1,6); (2,6); (3,6); (4,6); (5,6); (6,6); (6,1); (6,2); (6,3); (6,4); (6,5)}

Page 9: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

9 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

9

Generalizzando quanto detto, si hanno dunque le due relazioni:

p (A/B) = )(

)(

Bp

BAp ;

)()/()( BpBApBAp ,

che individuano le leggi della probabilità condizionata.

OSSERVAZIONE –

Nell’esempio del lancio di due dadi, vogliamo determinare la probabilità, che dato 4 il

valore del primo dado, lanciando il secondo,

- la somma sia 6: evento A;

- la somma sia 7: evento B;

Indicato con E l’evento che il primo dado dia 4, è evidente che

EA = {(4,2)}

per cui la probabilità che A ed E si verifichino contemporaneamente è 36

1.

Osserviamo che i punti degli spazi campioni di A e di B sono rispettivamente:

A ≡ {(1,5); (2,4); (3,3); (4,2); (5,1)}

B ≡ (4,1); (4,2); (4,3); (4,4); (4,5); (4,6)}

Dove, essendo E l’evento che il primo dado dia 4, la probabilità p(E) è 36

6.

Si ha allora:

p (A/E) = )(

)(

Ep

EAp = 6

1

36

636

1

;

mentre: p (A)· p (E)= 36

6

36

5 =

216

5,

per cui gli eventi A ed E non sono indipendenti, essendo:

Page 10: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

10 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

10

)( EAp p (A)· p (E)

Ripetendo lo stesso ragionamento con l’evento B per calcolare la probabilità p (B/E)

(cioè, la somma sia 7 dato 4 per il primo dado), si vede che :

EB = {(4,3)}, cioè: 6

1)( EBp

quindi:

p (B/E) = )(

)(

Ep

EBp = 6

1

36

636

1

,

come nel caso precedente. Osserviamo, però, che lo spazio campione di B è costituito

da 6 punti, per cui risulta:

p (B)· p (E)= 36

6

36

6 =

36

1 = )( EBp ,

per cui i due eventi sono indipendenti.

Teorema di Bayes. Nelle applicazioni (in particolare in ambito ambientale e geologico), due qualsiasi

eventi 1H e 2H , si possono immaginare come cause possibili per un evento A

osservato.

Il teorema di Bayes permette di calcolare la probabilità affinché si possa verificare

l’evento 1H (l’evento 2H ) una volta che si è osservato l’evento A già verificato.

Con semplici passaggi algebrici, dalla relazione di probabilità condizionata, si deduce

la formula di Bayes:

)/()()/()(

)/()()/(

2211

111

HApHpHApHp

HApHpAHp

Tale relazione va estesa ad un numero n di eventi (cause per l’evento A)

nHHH ,...,, 21 :

)/()(...)/()()/()(

)/()()/(

2211

111

nn HApHpHApHpHApHp

HApHpAHp

Page 11: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

11 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

11

Esempio

Il montaggio di un’apparecchiatura è effettuato con componenti di buona qualità o con

componenti di qualità mediocre. Nel primo caso, la probabilità di funzionamento

corretto per una durata di tempo T è di 0,95, mentre nel secondo caso è di 0,70. Il

40% delle apparecchiature contiene componenti di buona qualità. Supponendo che al

collaudo un’apparecchiatura funzioni correttamente per la durata T, si calcoli la

probabilità che essa sia costituita da componenti di buona qualità (si applichi il

teorema di Bayes).

Evento A: “l’apparecchiatura funziona al collaudo per un tempo T”.

Evento 1H : “l’apparecchiatura è montata con elementi di buona qualità”.

Evento 2H : “l’apparecchiatura è montata con elementi di mediocre qualità”.

La probabilità )( 1Hp = 0.40;

La probabilità )( 2Hp = 0.60;

La probabilità )/( 1HAp = 0.95;

La probabilità )/( 2HAp = 0.70;

Pertanto, risulta:

)()/()()./(

)()/()/(

2211

111

HpHApHpHAp

HpHApAHp

=

= 475.060.070.040.095.0

40.095.0

Page 12: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

12 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

12

Distribuzione di probabilità Variabili casuali discrete e continue

Si chiama variabile casuale una funzione che associa ad ogni evento

elementare E dello Spazio Campionario S uno ed un solo numero reale.

Una variabile casuale si dice discreta quando può assumere solo particolari valori in

punti isolati di un intervallo.

Una variabile casuale si dice continua se i suoi valori possono variare con continuità in

un intervallo, che può essere limitato o illimitato.

Dal punto di vista didattico-metodologico è opportuno introdurre questi concetti

attraverso semplici esempi che possano permettere agli allievi un apprendimento di

carattere laboratoriale.

Problema 1. - Consideriamo lo spazio degli eventi (spazio campionario) associato al

lancio di tre monete. Qual è il numero totale delle volte in cui si presenta croce? Osserviamo che, lanciando contemporaneamente le tre monete, croce si può presentare:

1. zero volte (evento E0) (tre volte testa). 2. una volta (evento E1) (due volte testa).

3. due volte (evento E2) (una volta testa). 4. tre volte (evento E3) (zero volte testa).

E’ opportuno far rappresentare agli allievi la seguente tabella, da cui si evince

immediatamente la variabile indipendente che indichiamo con X:

Punti dello spazio campionario Numero di volte che esce croce:

CCC 3

CCT 2

CTC 2

CTT 1

TCC 2

TCT 1

TTC 1

TTT 0

Attribuendo ad ogni valore della variabile casuale X la corrispondente probabilità, si

ottiene la distribuzione di probabilità di X.

Nel nostro caso lo spazio campionario S è costituito da otto elementi:

S ≡{CCC, CCT, CTC, CTT, TCC, TCT, TTC, TTT}.

Page 13: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

13 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

13

Poiché la variabile X può assumere: {una sola volta il valore zero, tre volte il valore

uno, tre volte il valore due, una volta il valore tre}, l’insieme

{X0=0, X1=1, X2=2, X3=3}

individua il dominio D della nostra funzione ai cui valori sono associate,

rispettivamente, le seguenti probabilità:

D≡{p0=1/8, p1=3/8, p2=3/8, p3=1/8}.

La legge che associa ad ogni valore della variabile casuale Xk - k = 0…3 - il

corrispondente valore della probabilità pk è detta distribuzione di probabilità della

variabile casuale discreta X.

Non è superfluo far notare agli allievi che se chiedo la probabilità affinché si verifichi

uno solo degli eventi dello spazio campionario S (precisamente, lanciando i dadi uno

alla volta, chiedo la probabilità affinché si verifichi CCC, oppure TTC,…ecc.) ci

troviamo ad operare nel caso classico di eventi equiprobabili, per cui la probabilità di

ogni evento è 1/8.

In questo caso la corrispondenza tra gli elementi dello spazio campionario S e gli

elementi del dominio D della variabile casuale X è biettiva per cui, operativamente, il

dominio D si può identificare con lo spazio campionario S.

Problema 2. - Determinare la distribuzione di probabilità della variabile X che

esprime il punteggio ottenuto lanciando due dadi:

I valori di X ai quali corrispondono le probabilità p(X) sono:

X: 2 3 4 5 6 7 8 9 10 11 12

p(X): 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36.

Pertanto, l’insieme

{1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36}

rappresenta la distribuzione di probabilità della variabile casuale X.

E’ opportuno far rappresentare agli allievi le coppie [X, p(X)] sul piano cartesiano

perché uno degli aspetti più significativi dei problemi proposti è l’osservazione che, con

i valori di X sulle ascisse e i valori di p(X) sulle ordinate, i punti ad ordinata massima si

hanno nella parte centrale della rappresentazione e i punti ad ordinata minima agli

Page 14: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

14 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

14

estremi della rappresentazione, come gli stessi allievi avranno modo di constatare negli

anni successivi con la rappresentazione della curva di Gauss.

Indicato con x il numero reale che rappresenta il valore della variabile casuale X, la terna

{S, D, p(x)} è detta Spazio di Probabilità.

Pertanto, uno spazio di probabilità è una terna {S, D, p(x)}, dove S è un insieme

qualunque (in genere pensato come l’insieme dei risultati possibili di un esperimento

casuale), D è detta σ-algebra, ovvero un insieme (gli eventi) per i quali si può calcolare

una probabilità, e p(x) è una misura di probabilità su S; precisamente:

p(x) : S→ [0, 1].

Distribuzione di variabili casuali continue

Se i valori di una variabile casuale variano con continuità in un intervallo, essa si dice

continua.

I parametri essenziali nella rappresentazione analitica di una variabile casuale continua

sono:

1. La media aritmetica μ (che nella curva normale, essendo simmetrica, coincide con la

moda e la mediana) corrisponde all'asse di simmetria della curva e definisce la

posizione, sull'asse delle ascisse, della curva. Cambiando la media della curva questa

trasla lungo l'asse x.

2. La deviazione standard σ (o scarto quadratico medio) corrisponde alla distanza tra la

media e il punto di flesso della curva (dove la curva attraversa la sua tangente) e

determina l'ampiezza della curva stessa.

3. La varianza σ2 fornisce una misura di quanto i valori assunti dalla variabile si

discostino dalla media, per cui la varianza è un indice di variabilità.

Data una distribuzione di una variabile su una popolazione di elementi, la varianza

è la media aritmetica del quadrato delle distanze dei valori dalla loro media

n

xi Xi

X

2

2

doven

xi i

X

è la media aritmetica di .

Page 15: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

15 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

15

In statistica viene molto spesso utilizzata la radice quadrata della varianza, cioè

lo scarto quadratico medio (o deviazione standard o scarto tipo) 2

XX . Con

riferimento a questa notazione la varianza si trova quindi anche indicata come 2 .

In statistica si utilizzano solitamente due stimatori per la varianza su un campione di

cardinalità :

n

xxS

n

i i

n

1

2

2

1

1

2

2

1

n

xxS

n

i i

n

Dove n

xxxx n...21 è la media campionaria. Il primo è detto varianza campionaria,

mentre il secondo è detto varianza campionaria corretta.

Distribuzione di Poisson

Consideriamo il caso delle cosiddette “n prove ripetute”: ad esempio, si debba calcolare

la probabilità p che un evento si verifichi un numero k di volte su n prove ripetute, con n

relativamente piccolo. In generale, in questi casi la probabilità p assume valori

abbastanza piccoli e si può determinare solo con un grande numero di prove.

Si utilizzano allora delle formule approssimate di cui la più significativa è la

distribuzione di Poisson che è espressa dalla relazione:

ek

pk

k!

dove λ è il valore medio della variabile casuale binomiale x e k è il numero di volte in

cui si verifica l’evento richiesto.

Esempio.

Ad un centralino di una ditta pervengono mediamente 10 telefonate al minuto, la

probabilità che in un minuto pervengano 6 telefonate è data da:

%3.6103.61054.4720

10

!

256

106

6 ek

p

Page 16: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

16 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

16

Statistica 1. La curva di Gauss e semplici esempi di fenomeni naturali per

l’analisi statistica. Partendo da un quesito assegnato agli esami di Stato nell’anno scolastico 2006/2007

(Corso sperimentale PNI) vogliamo esporre un percorso che riteniamo possa facilitare,

già dal primo anno, l’apprendimento del significato della curva di Gauss analizzando

semplici fenomeni naturali..

Quesito 4 - Si consideri la funzione

2

2

2

2

1)(

x

exf

Se ne spieghi l’importanza nelle applicazioni della Matematica illustrando il

significato di μ, σ, σ2

e come tali parametri influenzino il grafico di f(x).

Soluzione

E' un quesito di Statistica, che chiede di analizzare la cosiddetta "curva degli errori"

(funzione gaussiana) che caratterizza l'andamento di tutti i fenomeni naturali. Il grafico

in oggetto è il seguente:

fig. 1

La funzione gaussiana è alla base delle analisi statistiche in ogni disciplina e la sua

conoscenza permette lo studio sociologico di gran parte dei fenomeni attraverso la

Statistica e il Calcolo delle Probabilità, discipline essenziali per la formazione delle

nuove generazioni che, a causa della velocizzazione degli eventi, vivono una realtà

dominata dall’incertezza.

Page 17: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

17 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

17

Questo quesito è stato molto criticato dai docenti perché ritenuto difficile ed estraneo

alle indicazioni ministeriali. Per affrontarlo, l’allievo deve conoscere alcuni elementi che

non si possono estrarre direttamente dalla formula.

Prima di analizzare i dettagli della relazione analitica proposta e specificare gli elementi

che essa contiene (μ, σ, σ2), riteniamo opportuno, già nel primo anno di corso

(ma anche nelle classi del primo ciclo) che l’insegnante proponga, attraverso

grafici, l’andamento di alcuni fenomeni naturali che dimostrano come -

nell’analisi di eventi giornalieri e naturali - la concentrazione maggiore è

situata nel periodo medio.

Costruzione di semplici grafici relativi a problemi naturali.

Primo approccio alla comprensione della gaussiana.

1) Con un campione di mille studenti, costruire un istogramma che presenta sull’asse

delle ascisse le seguenti fasce di altezza (in centimetri):

< 150 - da 150 a 160 - da 160 a 170 - da 170 a 180 - da 180 a 190 - da 190 a

200 - > 200,

e sull’asse delle ordinate, il numero di studenti per ogni fascia.

Si vede immediatamente che la fascia centrale presenta i valori massimi, mentre gli

studenti di altezza inferiore a 150 cm e gli studenti di altezza superiore a 200 centimetri

presentano i valori più bassi (fig. 3.1).

fig. 1.1

2) Costruire l’istogramma che presenta sull’asse delle ascisse i mesi dell’anno e sulle

ordinate la misura della fascia oraria compresa tra l’alba e il tramonto.

Page 18: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

18 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

18

Si hanno i seguenti dati: gennaio e dicembre: 8.00 17.00 - giugno-luglio: 5.00

21.00.

I valori massimi sono concentrati nei mesi centrali, giugno-luglio, i valori minimi agli

estremi rappresentati dai mesi di gennaio e dicembre (fig. 3.2).

fig. 1.2

3) Disegnare un vulcano ed indicare sulla figura i punti in cui si sviluppa la massima

energia.

E’ evidente che la figura del vulcano ha l’andamento della curva di Gauss; è interessante

far notare agli allievi come i valori di massima energia si hanno nella parte centrale in

cui è concentrata una massa maggiore, coerentemente al principio di equivalenza massa-

energia (fig. 3.3).

fig. 1.3

Come ultimo esempio, possiamo osservare il grafico ufficiale del censimento 2001,

relativo alla distribuzione della popolazione residente in Italia per sesso e classi di età

(fig. 3.4).

Page 19: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

19 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

19

fig. 1.4

Censimento 2001- tratto da “Matematica per la scuola superiore, vol.1” – A. Giambò,

R. Giambò

Page 20: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

20 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

20

2. - Le funzioni a campana e la distribuzione normale.

Per comprendere la relazione (1)

bisogna che si chiarisca il significato dei parametri che presenta e l'andamento del

grafico della funzione di fig. 1.1 che rientra nelle cosiddette "funzioni a campana" per

rappresentare le "distribuzioni normali". Precisamente:

1. la media aritmetica μ;

2. lo scarto quadratico medio σ (o deviazione standard) [misura la dispersione dei dati

intorno al valore atteso];

3. la varianza σ2

[fornisce una misura di quanto i valori assunti dalla variabile, si

discostino dalla media];

4. la distribuzione normale.

5. Il grafico della funzione exp x

E se parliamo a studenti di lingue diverse?

1. Proporre inizialmente esempi del mondo reale attraverso semplici grafici.

2. Successivamente i primi elementi analitici di Statistica descrittiva.

3. Di seguito rappresentare graficamente le funzioni elementari, in particolare exp x

e ln x mediante costruzione tabulare.

Un discorso analogo va fatto per il calcolo delle Probabilità, partendo già dal primo

biennio con giochi di dadi, carte e classifiche dei campionati di calcio.

Questi concetti, (abbastanza semplici), devono però essere legati al processo logico che

è alla base della costruzione del grafico della funzione, in particolare la funzione

esponenziale, essenziale alla comprensione delle funzioni a campana e, quindi, la

logaritmica.

A tale scopo, riteniamo che già nel primo biennio si debbano proporre agli allievi

esercitazioni sulla costruzione di semplici grafici relativi a problemi naturali, per

evidenziare come questi hanno sempre l’andamento della curva di Gauss che, in ambito

statistico, fa parte di quei grafici che individuano le “cosiddette” distribuzioni normali.

Che cos'è una distribuzione normale?

Le distribuzioni normali sono una famiglia di distribuzioni che hanno le stesse

caratteristiche e lo stesso andamento. Graficamente sono rappresentate da curve

2

2

2

2

1)(

x

exf

Page 21: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

21 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

21

simmetriche rispetto ad una retta, con valori più concentrati verso il centro e meno

nelle estremità laterali, che hanno un andamento di curve a campana (ma non tutte le

curve a campana sono distribuzioni normali).

Una distribuzione normale può essere espressa matematicamente in funzione di due

parametri: la media (µ) e lo scarto tipo (o deviazione standard) (fig. 2.1) come caso

particolare della curva a campana

e del grafico della funzione

ottenuta da:

avendo posto:

fig. 2.1

I parametri essenziali sono:

La media aritmetica μ (che nella curva normale, essendo simmetrica, coincide con la

moda e la mediana) corrisponde all'asse di simmetria della curva e definisce la

posizione, sull'asse delle ascisse, della curva. Cambiando la media della curva questa

trasla lungo l'asse x.

La deviazione standard σ (o scarto quadratico medio) corrisponde alla distanza tra la

media e il punto di flesso della curva (dove la curva attraversa la sua tangente) e

determina l'ampiezza della curva stessa.

la varianza σ2

fornisce una misura di quanto i valori assunti dalla variabile si discostino

dalla media.

In fig. 2.2 sono rappresentati grafici di distribuzione normale in cui si può notare come

le curve normali differiscano per il modo in cui i valori si distribuiscono.

2

)( zezf

2

)( zekzf

2

2

2

2

1)(

x

exf

2

1k

2

xz

Page 22: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

22 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

22

In fig. 2.3 si può osservare come, al variare della media e della varianza, la curva subisca

sia uno spostamento sull’asse delle ascisse, sia un appiattimento; se si fa variare solo la

varianza e si tiene costante la media, la curva si appiattisce quando la varianza cresce e

diventa più appuntita quando la varianza cala, mentre il centro rimane lo stesso.

fig. 2.2

fig. 2.3

Per calcolare le probabilità che una variabile casuale X assuma valori compresi

all’interno di intervalli della retta reale, si utilizza la distribuzione normale

standardizzata, la cui importanza sta nel fatto che le probabilità corrispondenti alle

superfici racchiuse dalla curva normale sono state tabulate e vengono riportate in

apposite tabelle, per cui possono essere determinate senza dover ricorrere al calcolo di

integrali.

La distribuzione normale standardizzata presenta le stesse caratteristiche della

distribuzione normale non standardizzata. Ciò che distingue le due distribuzioni è che la

normale standardizzata ha Media = 0 e Deviazione standard = 1, per cui è rappresentata

da una sola curva (fig. 2.4), mentre la distribuzione normale generale è costituita da

infinite curve.

Page 23: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

23 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

23

fig. 2.4

Equazione della curva normale

L'ordinata di un punto sulla curva normale che rappresenta la funzione di distribuzione è definita da:

dove µ è la media e è lo scarto tipo, è un numero costante uguale a 3,14159,

ed e è la base dei logaritmi naturali ed è uguale a 2,718282.

La variabile casuale X può variare da + a - .

La funzione y tende a 0 quando x si allontana di più di tre scarti tipo dalla media, sia a

sinistra che a destra.

Una tale densità di probabilità presenta come parametri caratteristici la media μ, la

varianza σ2, o la devazione standard σ definita come la radice quadrata della varianza

Page 24: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

24 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

24

e che rappresenta la distanza, sull’asse delle ascisse, tra la media μ e i flessi della

curva stessa che si trovano a x = σ ± μ.

Discutiamo ora il significato della media μ e della varianza σ2 al variare dell’una e

fissata l’altra.

- Fissata la varianza σ2, al variare della media μ, la forma della campana non

muta, ma trasla lungo l’asse delle ascisse, come mostra la figura sottostante. Infatti x

= μ è asse di simmetria e in corrispondenza di x = μ la funzione assume valore

massimo 2

1.

- Fissata la media μ, al variare della varianza σ2, la densità cambia forma.

Infatti, al decrescere della varianza σ2 (e quindi di σ), la campana si restringe sempre

di più e il massimo, raggiunto per x = μ, aumenta. Viceversa, al crescere della

varianza σ2 (e quindi di σ), la campana si allarga sempre di più, il suo massimo

diminuisce, fino a che la densità tende a coincidere con l’asse delle ascisse se σ2 tende

all’infinito. Infatti, in questo caso, il valore massimo è nullo.

Queste considerazioni mostrano che la media μ è un parametro posizionale, mentre σ2

misura la dispersione intorno a μ, Infatti, al variare di μ, a parità di varianza σ2, la

densità subisce solo una traslazione, mentre a parità di μ, al crescere di σ2, i flessi x =

σ ± μ si allontanano da μ e la densità di probabilità attribuisce maggiore probabilità ai

valori più lontani dal valore centrale. Invece, al decrescere di σ2, a parità di μ, i flessi

si avvicinano al valore centrale ed aumenta la probabilità che la variabile aleatoria

assuma valori attorno al valore centrale.

Page 25: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

25 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

25

3. Temi assegnati agli esami di Stato

Anno 2007/2008.

Quesito 1 – Siano dati un cono equilatero e la sfera in esso inscritta. Si scelga a

caso un punto all’interno del cono. Si determini la probabilità che tale punto sia

esterno alla sfera.

Soluzione:

Il Volume del cono equilatero con raggio R è V =3

3

3R

.

Dalle relazioni: 3

4 3rsferaArea

;

3

3

6RtgRr

,

si deduce il volume della sfera inscritta nel cono equilatero che è dato da:

V = 3

27

34R

.

La probabilità che il punto P sia interno alla sfera è data dal rapporto tra i due volumi

e vale 9

4. Allora, la probabilità richiesta (cioè, che il punto sia esterno alla sfera, è:

9

5

9

41 ep .

Page 26: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

26 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

26

Anno 2007/2008.

Quesito 9 - In una classe composta da 12 maschi e 8 femmine, viene scelto a caso

un gruppo di 8 studenti. Qual è la probabilità che, in tale gruppo, vi siano

esattamente 4 studentesse?

Soluzione

20 studenti

12 maschi 8 femmine

Gruppo di 8 studenti

(4 maschi, 4 femmine)

1) Quanti punti ha il mio spazio campione? Cioè quante combinazioni di 8 studenti

posso avere?

!12!8

!20

8

208,20

CNt = 125970

2) Affinché nel gruppo ci siano 4 studentesse, gli altri 4 devono essere studenti,

quindi, nello spazio campione di 12 maschi devo individuare quanti gruppi di 4

studenti posso ottenere, cioè le combinazioni di 12 elementi a 4 a 4:

!4!8

!12

4

124,12

C

3) Analogamente, nel gruppo di 8 femmine devo individuare quanti gruppi di 4

studentesse posso ottenere, cioè le combinazioni di 8 elementi a 4 a 4:

!4!4

!8

4

84,8

C

Poiché gli eventi:

Page 27: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

27 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

27

A: uscita femmina;

B: uscita maschi;

sono indipendenti, la probabilità di avere, nel gruppo di 8 studenti, 4 maschi e 4

femmine (cioè A∩B che rappresenta i casi favorevoli) è data dal prodotto p(A) ∙ p(B).

Essendo A e B eventi equiprobabili, posso applicare la definizione classica di

probabilità:

- casi favorevoli:

!4!4

!8

!4!8

!12

4

8

4

124,84,12 CC

- casi possibili: !12!8

!20

8

208,20

C

Pertanto, indicato con E l’evento <nel gruppo di 8 ci sono 4 femmine>, la probabilità

affinché tale evento si verifichi è:

p(E) =

8

20

4

12

4

8

= 4199

1155

!8!12

!20

!4!8

!12

!4!4

!8

= 0.275

Page 28: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

28 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

28

Anno 2006/2007

Quesito 8 - A Leonardo Eulero (1707-1783), di cui quest’anno ricorre il terzo della

nascita, si deve il seguente problema: “Tre gentiluomini (Filomeno, Patrizia,

Serafina) giocano insieme: nella prima partita il primo perde, a favore degli altri

due tanto denaro quanto possiedono. Nella seconda partita, il secondo perde la

somma delle quantità che possiedono il primo e il terzo giocatore (il primo e il terzo

raddoppiano la somma che posseggono). Da ultimo, nella terza partita, il primo e il

secondo guadagnano ciascuno dal terzo gentiluomo tanto denaro quanto ne

avevano prima. A questo punto smettono e trovano che ciascuno ha la stessa

somma, cioè 24 luigi. Si domanda con quanto denaro ciascuno si sedette a giocare”.

Soldi Filomeno Patrizia Serafina

- iniziali x y z

- dopo 1° x-y-z 2y 2z

giocata

- dopo 2° 2(x-y-z) 2y-(x-y-z)-2z = 4z

giocata = -x+3y-z

- dopo 3° 4(x-y-z) 2(-x+3y-z) 4z-2(x-y-z)-(-x+3y-z) =

giocata = -x-y+7z

Poichè la somma finale è di 24 luigi per ognuno dei giocatori, bisogna risolvere il

seguente sistema :

247

24)3(2

24)(4

zyx

zyx

zyx

247

123

6

zyx

zyx

zyx

le cui soluzioni sono:

x = 39; y = 21; z = 12.

Anno 2005/2006 – Corso di ordinamento e PNI

Page 29: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

29 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

29

Quesito 1 - Si narra che l’inventore del gioco degli scacchi chiedesse di essere

compensato con chicchi di grano: un chicco sulla prima casella, due sulla seconda,

quattro sulla terza e così via, sempre raddoppiando il numero dei chicchi fino alla

64-esima casella. Assumendo che 1000 chicchi pesino circa 38 grammi, si calcoli il

peso in tonnellate della quantità di grano pretesa dall’inventore.

Soluzione

Indicato con N il numero dei chicchi di grano, si ha:

63

0

63321 22.....2221n

nN

che è una serie geometrica di ragione 2, la cui somma è:

63

0

6464

0

1

1212

12

1

1h

n

h

q

q,

valore che rappresenta il numero di chicchi di grano. Poiché ogni chicco pesa 0.038 g.,

il peso della quantità di grano pretesa è:

ttgP 1066464 107010038.0)12(038.0)12(

Quesito 5 - Si dimostri che la somma dei coefficienti dello sviluppo (a+b)n

è uguale

a 2n per ogni n N.

Soluzione

Basta ricordare la formula del binomio di Newton:

knkn

k

nba

k

nba

0

In cui, ponendo a = b = 1, si ha:

Nnk

nnknk

n

k

n

,211110

Quesito 7 - Bruno de Finetti (1906-1985), tra i più illustri matematici italiani del

secolo scorso, del quale ricorre quest’anno il centenario della nascita, alla

domanda: “che cos’è la probabilità?” era solito rispondere: “la probabilità non

Page 30: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

30 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

30

esiste!”. Quale significato puoi attribuire a tale risposta? E’ possibile collegarla a

una delle diverse definizioni di probabilità che sono state storicamente proposte?

Soluzione

La probabilità soggettiva p di un evento E è la misura del grado di fiducia espresso

dal numero reale p, tale che una scommessa di quota p su E sia coerente, cioè tenga

conto delle condizioni reali.

La probabilità soggettiva è utilizzata nel caso in cui non abbia senso considerare ciò

che è avvenuto per una successione di eventi analoghi o si deve assegnare una

probabilità anche agli eventi in cui i casi possibili sono infiniti.

Dato un numero reale p (0 < p < 1) ed una somma di danaro Q, diciamo che si effettua

una scommessa di quota p su un evento E se, versando la somma pQ si riceve

l’importo Q solo se si verifica l’evento E.

Il guadagno dello scommettitore, nel caso di vincita è:

Q – pQ = Q(1 – p)

Da cui si evince che se fosse p > 1, la scommessa sarebbe sempre in perdita.

Quesito 8 – Un tiratore spara ripetutamente a un bersaglio; la probabilità di

colpirlo è di 0.3 per ciascun tiro. Quanti tiri deve fare per avere probabilità ≥

0.99 di colpirlo almeno una volta?

Soluzione

La probabilità che il tiratore colpisca il bersaglio è p = 0.3, mentre la probabilità che

non lo colpisca è pc = 0.7. Pertanto, la probabilità che su n tiri non colpisca mai il

bersaglio, ma lo colpisca all’n+1-esimo tiro è:

pn+1

= 1-0.7n.

Tale valore deve essere maggiore o uguale a 0.99, per cui si ha:

pn+1

= 1-0.7n ≥ 0.99 0.7

n ≤ 0.01

cioè:

ln(0.7)n ≥ ln 0.01 n·ln(0.7) ≥ ln (0.01)

da cui:

n ≥ 911.12)7.0(ln

)01.0(lnn

Page 31: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

31 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

31

cioè, il numero di tiri richiesti è: n = 13.

Anno 2004/2005 .

Quesito 9 – Qual è la probabilità di ottenere 10 lanciando due dadi? Se i lanci

vengono ripetuti qual è la probabilità di avere due 10 in sei lanci? E qual è la

probabilità di avere due 10 in almeno sei lanci?

Soluzione

Lo spazio campione relativo al lancio di due dadi è costituito dai seguenti punti:

U ≡ {(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,2);

(2,3); (2,4); (2,5); (2,6); (3,1); (3,2); (3,3); (3,4);

(3,5); (3,6); (4,1); (4,2); (4,3); (4,4); (4,5); (4,6);

(5,1); (5,2); (5,3); (5,4); (5;5); (5,6); (6,1); (6,2);

(6,3); (6,4); (6,5), (6,6)}

cioè, da 36 elementi, di cui i tre punti: (4,6); (5,5); (6,4) sono i casi favorevoli, cioè

l’evento che indichiamo con A, che la somma dia 10.; pertanto, essendo gli elementi

equiprobabili (ogni coppia ha probabilità uguale ad 36

1), la probabilità affinché si

verifichi il nostro evento A, può essere calcolata con il rapporto tra il numero dei casi

favorevoli ed il numero dei casi possibili:

p(A) = 12

1

36

3

.

(Cancellare) Nel secondo caso si deve considerare solamente un suo sottoinsieme,

precisamente quello i cui elementi sono coppie di numeri di cui almeno uno sia 6:

6U ≡ {(1,6); (2,6); (3,6); (4,6); (5,6); (6,6); (6,1); (6,2);

(6,3); (6,4); (6,5)}.

Nel primo caso, il sottoinsieme 3U dei punti di U costituiti da coppie che danno per

somma 10 è:

3U ≡ {(4,6); (6,4); (5,5)}

Page 32: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

32 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

32

e, quindi, essendo gli eventi equiprobabili, ci basta applicare la definizione classica; la

probabilità è 36

3 =

12

1.

Nel secondo caso, l’insieme 6U è costituito da 11 elementi, per cui il sottoinsieme

2U dei punti di 6U costituiti da coppie che danno per somma 10 è:

2U ≡ {(4,6); (6,4)}

per cui risulta che la probabilità è 11

2.

Anno 2002/2003 .

Quesito n.2: Tre scatole A, B e C contengono lampade prodotte da una certa fabbrica

di cui alcune difettose. A contiene 2000 lampade con il 5% di esse difettose, B ne

contiene 500 con il 20% difettose e C ne contiene 1000 con il 10%

difettose.

Si sceglie una scatola a caso e si estrae a caso una lampada. Qual è la probabilità che

essa sia difettosa?

Il quesito è abbastanza semplice e la sua risoluzione è pressoché immediata.

Considerati i tre eventi:

EA=<< è estratta una lampada difettosa dalla scatola A>>,

EB=<< è estratta una lampada difettosa dalla scatola B>>,

EC=<< è estratta una lampada difettosa dalla scatola C>>,

l’evento E richiesto è l’unione logica dei tre eventi suddetti che sono incompatibili.

Per il teorema della probabilità totale la probabilità dell’evento è

P(E)=P(EA)+ P(EB)+ P(EC))

60

1

100

5

3

1)( AEP

15

1

100

20

3

1)( BEP

30

1

100

10

3

1)( CEP

60

7

30

1

15

1

60

1)( EP

Page 33: STATISTICA E PROBABILITA’ nella Scuola Secondaria di secondo … · Appunti estratti dal corso di Statistica (periodo 2004-2007) tenuto alla Facoltà di Scienze MM.FF.NN. (laurea

33 Dipartiment1Ddi Scienze Economiche Aziendali 1. Dipartimento Scienze Economiche Aziendali – Università del Sannio

33

Un meteorite cade sulla Terra; qual è la probabilità che il punto d’incontro si trovi fra

l’equatore e il tropico del Cancro (latitudine λ = 23° 27’ nord)?

Si determini la probabilità che, lanciando 8 volte una moneta non truccata, si ottenga 4

volte testa.

Bibliografia.

[1] F. Casolaro - Appunti di "Statistica e Calcolo delle Probabilità" tenuto al corso di

Scienze Ambientali dell'Università del Sannio negll'anno accademico 2006/2007.

[2] F. Casolaro-L. Paladino: "Didactics of Statistics in Sociology". First International

Conference on Recent Trends in Social Sciences: Qualitative Theories and

Quantitative Models (RTSS) - Iaşi (Romania), 23-25 September, 2012. Pagg. 228-241.

[2] A. Ventre - Decisioni utili - Editori Riuniti.

[3] Aldo G.S. Ventre - Viviana Ventre - “La decisione: comportamenti e scelte

razionali dell’individuo”. Liguori Editore.

[4] M. R. Spiegel - Statistica, coll. Schaum, ETAS libri

[5] M. R. Spiegel - Probabilità e Statistica, coll. Schaum, ETAS libri

[6] L. M. Ricciardi - S. Rinaldi , Esercizi di calcolo delle probabilità, Liguori Editore.

[7] A. Di Crescenzo - L. M. Ricciardi, Elementi di statistica. Liguori Editore.