Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati...

92
A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici Risultati e problematiche emergenti nel comportamento di sistemi strutturali non lineari sotto carico sismico simulato Alessandro Baratta "L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006 A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici "L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006 1. Comportamento sismico di strutture affette da nonlinearità geometriche e di materiale o da imperfezioni 2. Procedure di generazione di accelerogrammi sintetici 3. Analisi probabilistica e commenti sul criterio di sicurezza 4. Aspetti critici della risposta sismica 5. Scelta dell’ accelerogramma: procedimento del “peggior scenario” 6. Metodo del “peggior scenario” per strutture a comportamento nonlineare SOMMARIO

Transcript of Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati...

Page 1: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

1

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

lineari sotto carico sismico simulato

Alessandro Baratta

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

1. Comportamento sismico di strutture affette da nonlinearitàgeometriche e di materiale o da imperfezioni

2. Procedure di generazione di accelerogrammi sintetici3. Analisi probabilistica e commenti sul criterio di sicurezza4. Aspetti critici della risposta sismica5. Scelta dell’ accelerogramma: procedimento del “peggior

scenario”6. Metodo del “peggior scenario” per strutture a comportamento

nonlineare

SOMMARIO

Page 2: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

2

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Earthquakes produce desultory acceleration fieldsseemingly uncontrollable in the details, but with

well defined basic properties

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

N 200

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

t

y

Non-earthquake sample random function Earthquake accelerogram

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

The effects of dynamic forcing functions are strictlyrelated to the behaviour of the mechanical pattern

on which it acts

For a linear elastic system a w.n. may be a good model for seismic assessment

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

N 200

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

t

y

Page 3: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

3

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

The effects of dynamic forcing functions are strictlyrelated to the behaviour of the mechanical pattern

on which it acts

For a rigid system a permanent acceleration may be a good model for seismic assessment

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

a(t)

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 4,00 8,00 12,00 16,00 20,00 t (sec)

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

The effects of dynamic forcing functions are strictlyrelated to the behaviour of the mechanical pattern

on which it acts

For a rigid overturning block a permanent acceleration is a misleading model

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

permanent accelertion (misleading)

impulsive accelertion (may be effective)

Page 4: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

4

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Some characters of the excitation may be significant or not depending on how the system

reacts

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

AbstractAn approach to treat uncertainty in the response of structures under the action of earthquakes is presented. The main problem is focused on the unpredictability of the seismic accelerograms, and the research effort points at identifying the set of admissible quakes by a few basic parameters (duration, peak acceleration, gross information on the power spectrum, ...). The influence of the details of ground shaking, that really have a very significant influence on the structure's performance, is approached by the institution of a worst- case scenario. The basic idea is to build up a consistent model for the seismic hazard at the site, and to set up some rules which ground shaking must fit. Hence, the worst combination of details of the quake is sought by a search procedure, aiming at identifying the earthquake producing the extremum of some response parameters, in the set of admissible quakes. A number of reference models are set up, and results referred to a particular seismic area, the Campania region in Italy, are drawn, proving that the procedure is efficient and, to some extent, practical.

Accelerograms / Abstract

Page 5: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

5

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

2. Procedure di generazione di accelerogrammi sintetici3. Analisi probabilistica e commenti sul criterio di sicurezza4. Aspetti critici della risposta sismica5. Scelta dell’ accelerogramma: procedimento del “peggior

scenario”6. Metodo del “peggior scenario” per strutture a comportamento

nonlineare

SOMMARIO1. Comportamento sismico di strutture affette da nonlinearità

geometriche e di materiale o da imperfezioni

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

The structural modelLet consider the portal frame in the Figure subject to an horizontal acceleration a(t) acting on its beam and a vertical load w=m⋅g; denote by u(t) the horizontal displacement of the beam with respect to the base of the columns and by the superimposed dots its time derivatives.

The equation ruling the motion of the considered model, including the destabilising term due to the P-∆ effect by the vertical load, is

(1)where m is the beam mass, h the piles height and a function to be specified with the chosen model.

( ) ( ) ( ) ( )mhwtatuu,ugtu =θ=θ−+ 22 ;&&&

a(t)

h

a(t)

u(t)w/2 w/2 w/2 w/2

Page 6: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

6

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Elastic perfectly plastic modelFor an elastic perfectly plastic model, the restoring force is

being ζ the model damping coefficient, ωo its natural frequency and

with u’o , u”o and u’ , u” respectively the initial and instantaneous positive and negative yield displacements, and the plastic displacement cumulated throughout the loading history. Furthermore the shear stress standardised variable T(t), its yield limits and the P-∆ failure displacements are given

( ) ( ) ( )u,uUtuu,ug oo &&& 22 ω+ζω=

( )( )

U u u

u t u

uu

p

o

o

, & =

′′′

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

if u t u t u t, u, u

′′ ≤ ≤ ′

≥ ≥ ′

≤ ≤ ′′

if u t t u tif u t t u t

&

&

00

( ) ( )( )0 0 0T 0

with

22

2

′′=′′

θ

′=′′′=′′′=′

ω=−=

mTu>

mTu<uk>ukT

;mk,utuktT

oc

ocoooo

op

pu

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Elastic perfectly plastic model

u

s

up ue

u'u"

upu' >0

s" <0o

s' >0o

u" <0o

o

p'

eeo

L'o

L"o

L'

L"

p"

θ'=0

θ"=0

θ θ

.

Hysteresis loop

( )h

MM'T ooo

′′+′=

2

h

T ( t )

u ( t)

M'o

Page 7: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

7

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Elastic perfectly plastic model with P-∆ effect

u

s

up ue

u'

u"upu' >0

s" <0o

s' >0o

u" <0o

o

p'eeo

L'o

L"o

L'

L"p"

θ'<0

θ"<0

θ θ

.

uc

h

T ( t )

u ( t)w/2 w/2

M'o

( )

2

2

θ==

′′+′=

mT

WhTu

hMMT

ooc

ooo

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

ResultsThe frame subject to a periodic acceleration a(t)=ao⋅sin(ωt), with pulsation ω=1 rad⋅sec-1 and amplitude ao is considered for numerical investigation.

The frame is designed in order to overcome a forcing action of 0.2g; its characteristics are:

m=100 kg; h=300 cm, ζ=0.05, ωo= 40 rad⋅sec-1, θ=1.81 sec-1

and, in the symmetric resistance case,

cm 1420 kg, 20000 .uT oo ==

Page 8: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

8

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Symmetric, no P-∆ effect (mao /T’o=4)

Fig.2. Hysteretic cycles and time history for the elastic plastic frame, subject to horizontal acceleration of amplitude ao=0.8⋅g.

- 3 . 0

- 1 . 0

1 . 0

3 . 0

- 2 . 0

0 . 0

2 . 0

u ( t )

t 0 . 0 2 . 0 4 . 0 6 . 0 8

u

T

-2.0 -1.0 0.0 1.0 2.0 3.0

-2E+4

-1E+4

0E+0

1E+4

2E+4

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Symmetric (T”o/T’o = 1.0), P-∆ effect, (mao/T’o=4)Elastic-plastic

This difference is emphasised when increasing the amplitude of the forcing action to ao=0.8⋅g and its duration to Tf =12 sec.s,[Fig.7,8]; here the elastic plastic frame reaches the failure at t=11.85 sec.s, while, if adopting the SMA members, the frame behaviour keeps geometrically stable and there is no chance of reaching the failure point.

u

T

-4E+4

-2E+4

0E+0

2E+4

4E+4

-20.0 0.0 20.0 40.0 60.0FAILURE POINT:

T=0, u =58.10

Hysteretic cycles and time history for the symmetric elastic plastic frame, subject to vertical load and horizontal acceleration of amplitude ao=0.8⋅g.

u(t)

-20.0

0.0

20.0

40.0

60.0

t =11.85, u =58.10FAILURE POINT:

0.0 4.0 8.0 12.0

Page 9: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

9

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

No P-∆ effect P-∆ effect

No P-∆ effect vs. P-∆ effect, (mao/T’o=4)Elastic-plastic, symmetric

- 3 . 0

- 1 . 0

1 . 0

3 . 0

- 2 . 0

0 . 0

2 . 0

u ( t )

t 0 . 0 2 . 0 4 . 0 6 . 0 8

u(t)

-20.0

0.0

20.0

40.0

60.0

t =11.85, u =58.10FAILURE POINT:

0.0 4.0 8.0 12.0

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

In this case, even if it can not yet be appraised in the plastic cycles, the elastic plastic frame results asymmetric in its behaviour (even if the assumed model is symmetric)

u

T

-0.6 -0.4 -0.2 0.0 0.2 0.4

-2E+4

-1E+4

0E+0

1E+4

2E+4

Hysteretic cycles and time history for the symmetric elastic plastic frame, subject to vertical load and horizontal acceleration of amplitude ao=0.2⋅g.

Symmetric (T”o/T’o = 1.0), P-∆ effect, (mao/T’o=1)Elastic-plastic

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0

- 0 . 4

0.0

0 . 4

u ( t )

Page 10: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

10

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Asymmetric (T”o/T’o = 1.2), P-∆ effect, (mao/T’o=1)Elastic-plastic, (strength is increased in one sense)

Also a model with asymmetric resistance is considered, the plastic drift after 8 secs is 25 times the symmetric case:

Hysteretic cycles and time history for the asymmetric elastic plastic frame, subject to vertical load and horizontal acceleration of amplitude ao=0.2⋅g.

cm 1710u cm 1420 kg 24000 ,kg 20000 o .,.u,TT ooo =′′=′−=′′=′

u-4.0 0.0 4.0 8.0 12.0

-2E+4

0E+0

2E+4

T

-10.0

-5.0

0.0

5.0

10.0

0.0 2.0 4.0 6.0 8.0

u(t)

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Symmetric vs.Asymmetric (T”o/T’o = 1.2), P-∆ effect, (mao/T’o=1)

-10.0

-5.0

0.0

5.0

10.0

-4E+2

-2E+2

0E+0

2E+2

4E+2a (t)

0.0 2.0 4.0 6.0 8.0

u(t)

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0

- 0 . 4

0.0

0 . 4

- 4 E + 2

- 2 E + 2

0 E + 0

2 E + 2

4 E + 2 u ( t ) a ( t )

Symmetric Asymmetric

Page 11: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

11

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Symmetric (T”o/T’o = 1.0), P-∆ effect, (mao/T’o=4)Elastic-plastic

This difference is emphasised when increasing the amplitude of the forcing action to ao=0.8⋅g and its duration to Tf =12 sec.s,[Fig.7,8]; here the elastic plastic frame reaches the failure at t=11.85 sec.s, while, if adopting the SMA members, the frame behaviour keeps geometrically stable and there is no chance of reaching the failure point.

u

T

-4E+4

-2E+4

0E+0

2E+4

4E+4

-20.0 0.0 20.0 40.0 60.0FAILURE POINT:

T=0, u =58.10

u(t)

-20.0

0.0

20.0

40.0

60.0

-1E+3

0E+0

1E+3

2E+3

3E+3w(t)

t =11.85, u =58.10FAILURE POINT:

0.0 4.0 8.0 12.0

Hysteretic cycles and time history for the symmetric elastic plastic frame, subject to vertical load and horizontal acceleration of amplitude ao=0.8⋅g.

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Asymmetric (T”o/T’o = 1.2), P-∆ effect, (mao/T’o=4)Elastic-plastic, (strength is increased in one sense)

Finally one can observe that, if a forcing action of amplitude ao=0.8⋅g leads even more quickly the elastic plastic frame to the failure condition (for t=7.46 sec.s, due to the asymmetry)

Hysteretic cycles and time history for the asymmetric elastic plastic frame, subject to vertical load and horizontal acceleration of amplitude ao=0.8⋅g.

T

-4E+4

-2E+4

0E+0

2E+4

4E+4

-20.0 0.0 20.0 40.0 60.0FAILURE POINT:

T=0, u =58.10

u

u(t)

-20.0

0.0

20.0

40.0

60.0

-1E+3

0E+0

1E+3

2E+3

3E+3w(t)

0.0 2.0 4.0 6.0 8.0

t =7.46, u =58.10FAILURE POINT:

Page 12: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

12

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Symmetric vs.Asymmetric (T”o/T’o = 1.2), P-∆effect, (mao/T’o=4)

u(t)

-20.0

0.0

20.0

40.0

60.0

-1E+3

0E+0

1E+3

2E+3

3E+3w(t)

t =11.85, u =58.10FAILURE POINT:

0.0 4.0 8.0 12.0

u(t)

-20.0

0.0

20.0

40.0

60.0

-1E+3

0E+0

1E+3

2E+3

3E+3w(t)

0.0 2.0 4.0 6.0 8.0

t =7.46, u =58.10FAILURE POINT:

Symmetric Asymmetric

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3-D behaviour

a),b) 3-d.o.f. frame; c) base acceleration components, d) deformation pattern.

x

yz

x

y

G

O

1 23

54

a) b) fx(t)

fy(t)

t t

t

c)

d)

Page 13: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

13

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3-D behaviour

a(t)

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

site

epicentre

Bivariate accelerogram simulation

Page 14: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

14

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

2-D structure response

x

yz

v(t)

u(t)

-2.00

-1.00

0.00

1.00

2.00

-4.00 -2.00 0.00 2.00 4.00

Centroid trajectory in the plane

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

2-D structure responseT (t)

PILE 1y

T (t)x

-4000

-2000

0

2000

4000

-8000 -4000 0 4000 8000

Shear stress in the columns

T (t)PILE 2

y

T (t)x

-4000 -2000 0 2000 4000

-8000

-4000

0

4000

8000

Page 15: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

15

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

2-D structure responseT (t)

PILE 1y

T (t)x

-4000

-2000

0

2000

4000

-8000 -4000 0 4000 8000

Shear stress in the columns

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

2-D structure responseT (t)

PILE 1y

T (t)x

-4000

-2000

0

2000

4000

-8000 -4000 0 4000 8000

Shear stresshistory

in the columns

Tx(t)

Ty(t)

Plane response

up.

up.

Bidimensionalresponse

up. up

.

up.

Page 16: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

16

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

1. Comportamento sismico di strutture affette da nonlinearitàgeometriche e di materiale o da imperfezioni

3. Analisi probabilistica e commenti sul criterio di sicurezza4. Aspetti critici della risposta sismica5. Scelta dell’ accelerogramma: procedimento del “peggior

scenario”6. Metodo del “peggior scenario” per strutture a comportamento

nonlineare

SOMMARIO

2. Procedure di generazione di accelerogrammi sintetici

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purpose

Synthetic accelerogram generation

Macroseismic-basedsimulation

Response.spectrumcompatiblesimulation

A major part of a synthetic seismic generator depends on a large number of random parameters xi (i = 1,...,nx), correlated to the accelerogramsordinates, that reproduce the desultory character of the accelerogram, that should, in turn, comply with some site-dependent (or source-to-site-dependent) characters lj (j=1,...,nl) that qualify the algorithm which operates on the xi's to produce the accelerogram a(t).

Accelerograms / Simulation

Page 17: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

17

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purpose

In most cases the xi's are therefore responsible for the details of the ground shaking while the lj's reflect the macroseismic/site properties of the earthquake (i.e. the peak acceleration, the duration, the frequency range; or the average response spectrum form, etc.). The scheme for earthquake generation is outlined in Fig. 4.1, where reference is made to the procedure proposed by Ruiz and Penzien [9,10],

x Filter Tuner a(t)

l

w(t) f(t)

Scheme for earthquake generation

Accelerograms / Simulation

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purposeIn most cases the xi's are therefore responsible for the details of the ground shaking while the lj's reflect the macroseismic/site properties of the earthquake (i.e. the peak acceleration, the duration, the frequency range; or the average response spectrum form, etc.). The scheme for earthquake generation is outlined in Fig. 4.1, where reference is made to the procedure proposed by Ruiz and Penzien [9,10],

x Filter Tuner a(t)

l

w(t) f(t)

Scheme for earthquake generationAccording to such procedure, a vector x of numbers is first generated by repeated independent sampling of a random variable ~x with mean value µx and variance σx

2. By associating such numerical sequence to a sequence of time instants ti (i=1,...,nx) equally spaced by a small time lag ∆t, an approximation of a sample function of a white-noise ( )~w t with mean value µx and intensity Io = σx

2⋅∆t is produced. If the random variable ~x is Gaussian, ( )~w t is a Gaussian white noise. If ~x is a standard Gaussian random variable (i.e. µx =0 and σx =1), then ( )~w t is a zero-mean unit-variance white noise.

Accelerograms / Simulation

Page 18: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

18

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purpose

Scheme for earthquake generation

Step 1: w.n. generation

t

y

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

x

fx(x)

fy(y)

y=Px(x)Px(x)

fx(x)

dx

dy

fy(y)dy fx(x)dx

1

fy(y)=1

x Filter Tuner a(t)

l

w(t) f(t)

Accelerograms / Simulation

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purpose

Scheme for earthquake generation

Step 2: Filtering

The white noise w(t) is filtered by means of a second-order linear system with damping ratio ξ and undamped circular frequency Ω

( )( )

&& &

&

η ξΩη η

ξΩη η

+ + = −

= − −

2

2

2

2

Ω

Ω

w t

f t (4.1)

whose frequency-response-function is

( )( )

H24 2 2 2

2 2 2 2 2 2

4

ξ ω

ω ξ ω=

+

− +

Ω Ω

Ω Ω (4.2)

(Kanai-Tajimi spectral form)

The parameters of the filter are chosen in way to shift the energy of the final generated accelerogram in the frequency ranges that are the most prone to be excited at the site.

Average spectral density and Kanai-Tajimi approximation

0,00

250,00

500,00

750,00

0,06 5,86 11,66 17,46 23,26 29,06 34,86 40,66 46,46 52,26

ω (sec-1)

S a (cm2 sec-3)

Average s.d.K.T. app.n

Ω ==

=

10 50 93

197

1

2 3

. sec.

sec

ξ

S cmo

x Filter Tuner a(t)

l

w(t) f(t)

Page 19: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

19

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purpose

Step 2: FilteringThe Kanai-Tajimi spectral form can be generalized as follows

( )K q fa a b b a a b b( | , , , ) | , , ,ω ξ ξ ω ξ ξΩ Ω Ω Ω=

( ) ( ) ( )[ ]bbaabbaa ,|G,|G,,,|f ξΩω+ξΩω=ξΩξΩω

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Seismic Simulation

Scheme for earthquake generationBy modulating the resulting coloured noise f(t), one obtains the pseudo-acclerogram s(t) s t f t t( ) ( ) ( )= ϕ (4.3) where ϕ(t), the modulating function, aims at reproducing the shape of the energy build-up, strong-motion phase and decay of earthquakes at the site; it is assumed of the type

( )

( )[ ]ϕ

ν

t

tt

if t t

if t t t

t t if t t

ii

i d

d d

=

<

≤ ≤

− − >

2

1

exp

(4.4)

Step 3: Modulation

Seismic shaking simulation for structural analysis purpose

x Filter Tuner a(t)

l

w(t) f(t)

Average intensity function and conventional approximation

0,00

250,00

500,00

750,00

1000,00

0,00 8,00 16,00 24,00 32,00 40,00 t (sec)

Φ(t) (cm2 sec4)

t ti d

o

= =

= =

4 2 109

01 276

. sec ; . sec

. −1sec ; cm −2 4secν Φ

Observed av.ge int. [eq. (4.14)]Φ = Φ ϕo(t) (t)

f(t)

Page 20: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

20

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purposeStep 3: Modulation

Average intensity function and conventional approximation

0,00

250,00

500,00

750,00

1000,00

0,00 8,00 16,00 24,00 32,00 40,00 t (sec)

Φ(t) (cm2 sec4)

t ti d

o

= =

= =

4 2 109

01 276

. sec ; . sec

. −1sec ; cm −2 4secν Φ

Observed av.ge int. [eq. (4.14)]Φ = Φ ϕo(t) (t)

f(t)

The modulating function ϕ(t) can be given a more general form, in way tofit better possible superposition of subsequent shakes

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purpose

x Filter Tuner a(t)

l

w(t) f(t)

Scheme for earthquake generation

Step 4: Baseline correction

Finally, the pseudo-accelerogram is treated as a numerical record, and it is submitted to standard procedure of baseline correction yielding the final accelerogram in the form

( ) ( )a t s t s s t s to= + + +1 22 (4.5)

where so, s1 and s2 are sought in a way that ground acceleration, velocity and displacement are vanishing at the end of the motion.

Modulated noise

-3,50

-2,50

-1,50

-0,50

0,50

1,50

2,50

3,50

0,00 4,00 8,00 12,00 16,00 20,00 t (sec)

( ) ( ) ( )s t f t t= Φ

Baseline-corrcted accelerogram

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 4,00 8,00 12,00 16,00 20,00 t (sec)

Page 21: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

21

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purposeTABLE 4.I

Variance and spectral density functions at the four stages of the gneration process

Simulation stage

Standardized variance function ( ) ( )ϕ t t o= Φ Φ

Spectral density

1) w.n. generation

t

ϕ

ω

Sa

2) Filtering

t

ϕ

ω

Sa

3) Modulation

t

ϕ

ω

Sa

4) Baseline

correction

t

ϕ

ω

Sa

Synthesis

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Seismic shaking simulation for structural analysis purpose

Simulated white-noise - ∆t = 0.02 sec.

-3,50

-2,50

-1,50

-0,50

0,50

1,50

2,50

3,50

0,00 4,00 8,00 12,00 16,00 20,00 t (sec)

w(t)

Filtered White-noise - Coloured noise .

-3,50

-2,50

-1,50

-0,50

0,50

1,50

2,50

3,50

0,00 4,00 8,00 12,00 16,00 20,00 t (sec)

f(t)

Modulated noise .

-3,50

-2,50

-1,50

-0,50

0,50

1,50

2,50

3,50

0,00 4,00 8,00 12,00 16,00 20,00 t (sec)

f(t)

Final accelerogram

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 4,00 8,00 12,00 16,00 20,00 t (sec)

a(t) (cm sec ) − 2

( ) ( ) ( )s t f t t= Φ

Synthesis

Accelerograms / Simulation

Page 22: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

22

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Basic test accelerograms

Accelerograms / Basic test accelerograms

TABLE OF BASIC RECORDED ACCELEROGRAMS (Irpinia, 23/11/1980)

152.2979.11.316.022.3BAGNOLI268.2586.11.528.521.0CALITRI284.5370.72.256.034.8STURNO185.1978.72.247.041.3BRIENZA

79.4652.90.597.080.1TORRE DEL GRECO

Norm(cm.sec-3/2)

Duration(sec)

PGA(g/10)

Local Intensity(MSK)

EpicentralDistance

(Km)

Site

Data collection for issuing site-compatible simulation

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Basic test accelerograms

Recorded accelerogram: Torre del Greco - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a(t) (cm sec-2)

Plot of Fourier expansion: Torre del Greco - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a*(t) (cm sec-2)

Power Spectrum : Torre del Greco - NS

0,00

5,00

10,00

15,00

0,12 11,98 23,85 ω(sec -1)

Sa (cm2sec -2)

a)

b)

c)

TORRE DEL GRECO - Campania Earthquake of 11/23/80a)Recorded accelerogram, b)Fourier approximation, c)Power spectrum

Data collection for issuing site-compatible simulation

Page 23: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

23

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Basic test accelerograms

BRIENZA - Campania Earthquake of 11/23/80a)Recorded accelerogram, b)Fourier approximation, c)Power spectrum

Recorded accelerogram: Brienza - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 58,20 69,84 t (sec)

a(t) (cm sec-2)

Plot of Fourier expansion: Brienza - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 58,20 69,84 t (sec)

a*(t) (cm sec-2)

Power Spectrum : Brienza - NS

0,00

0,50

1,00

1,50

2,00

2,50

0,08 8,06 16,04 24,03 32,01 39,99 47,97 55,95 ω(sec-1)

Sq (cm2sec -2)

a)

b)

c)

Data collection for issuing site-compatible simulation

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Basic test accelerograms

STURNO - Campania Earthquake of 11/23/80a)Recorded accelerogram, b)Fourier approximation, c)Power spectrum

Recorded accelerogram:Sturno - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 14,64 29,28 43,92 58,56 t (sec)

a(t) (cm sec-2)

Plot of Fourier expansion: Sturno - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 14,64 29,28 43,92 58,56 t (sec)

a*(t) (cm sec-2)

Power Spectrum : Sturno - NS

0,00

0,50

1,00

1,50

2,00

2,50

0,09 8,97 17,85 26,74 35,62 44,50 53,38 62,27 ω(sec-1)

Sa (cm2sec -2)

a)

b)

c)

Data collection for issuing site-compatible simulation

Page 24: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

24

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Basic test accelerograms

CALITRI - Campania Earthquake of 11/23/80a)Recorded accelerogram, b)Fourier approximation, c)Power spectrum

Recorded accelerogram: Calitri - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 14,64 29,28 43,92 58,56 73,20 t (sec)

a(t) (cm sec-2)

Plot of Fourier expansion: Calitri - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 14,64 29,28 43,92 58,56 73,20 t (sec)

a*(t) (cm sec-2)

Power Spectrum: Calitri - NS

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0,07 7,37 14,66 21,96 29,25 36,55 43,84 51,14 ω (sec-1)

Sa (cm2sec-2)

a)

b)

c)

Data collection for issuing site-compatible simulation

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Basic test accelerograms

BAGNOLI IRPINO - Campania Earthquake of 11/23/80a)Recorded accelerogram, b)Fourier approximation, c)Power spectrum

Recorded accelerogram: Bagnoli Irpino - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 17,46 34,92 52,38 69,84 t (sec)

a(t) (cm sec-2)

Plot of Fourier expansion: Bagnoli Irpino - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 17,46 34,92 52,38 69,84 t (sec)

a*(t) (cm sec-2)

Power Spectrum:Bagnoli Irpino - NS

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0,08 8,02 15,96 23,89 31,83 39,77 47,71 55,65 -1ω (sec )

Sa (cm2sec -2)

a)

b)

c)

Data collection for issuing site-compatible simulation

Page 25: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

25

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Basic test accelerograms

Displacement response spectra (linear) of recorded earthquakes

0,00

0,50

1,00

1,50

2,00

10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00

ω (sec-1)

S u (c

m)

Envelop of recorded spectra Torre del Greco BrienzaSturno Calitri Bagnoli Irpino

Response spectra for the five test earthquakes and their envelope.Data collection for issuing site-compatible simulation

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

1. Comportamento sismico di strutture affette da nonlinearitàgeometriche e di materiale o da imperfezioni

2. Procedure di generazione di accelerogrammi sintetici

4. Aspetti critici della risposta sismica5. Scelta dell’ accelerogramma: procedimento del “peggior

scenario”6. Metodo del “peggior scenario” per strutture a comportamento

nonlineare

SOMMARIO

3. Analisi probabilistica e commenti sul criterio di sicurezza

Page 26: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

26

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Structural seismic response

Standard simulation coupled with MonteCarlo statistics

Pf has been evaluated by extensivesample simulation.

It can be observed that Pf decays to small values for ao/ap > 0.5, a result in accord with standard codes prescribingthe action of statical forces equal to0.1g (this yields a lateral strengthabout 0.2g, taking account of usualsafety factors).

To = 0.3 secap = 0.4g

Pf

ao/ap

1.0

1.000.750.500.25

0.2

0.4

0.6

0.8

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Structural seismic response

Standard simulation coupled with MonteCarlo statistics

To = 0.3 secap = 0.4g

µw, σw

ao/ap

0.5

1.000.750.500.25

0.1

0.2

0.3

0.4

0.0

µw

σw

In the figure the conditionedmean value µ and standard deviations σ of up, under the condition that failure does notoccur, are plotted. As can benoted, the coefficient of variationσ/µ is very large and approximates 1, once more denoting large uncertainty in the results

Page 27: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

27

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Structural seismic response

Standard simulation coupled with MonteCarlo statistics

To = 0.3 secap = 0.4g

µw, σw

ao/ap

0.5

1.000.750.500.25

0.1

0.2

0.3

0.4

0.0

µw

σwTo = 0.3 secap = 0.4g

Pf

ao/ap

1.0

1.000.750.500.25

0.2

0.4

0.6

0.8

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Interpretation of “static” seismic assessmentStructural seismic response

In the figure, the unconditionedexpectation of the plastic drift isplotted. Such plot can be used toget an interpretation of the common practice to model earthquake actions by staticalhorizontal forces.

y = 1.

000

y = 0.

875

y = 0.

750

y =

0.62

5

y =

0.50

0

y =

0.37

5

To = 0.3 secap = 0.4 g

µw

r = ao/ap

1.0

1.000.750.500.25

0.2

0.4

0.6

0.8

y =

0.25

0

wp

ao/apas/ap

Page 28: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

28

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Interpretation of “static” seismic assessmentStructural seismic response

Assume that after the quake the drift (i.e. the damage) is up. The structure will notcollapse if the lateral strength is such to balance the horizontal force equivalent toP-∆ action, expressed asan acceleration by y = ap/a’o

This equation is represented by straight lines in the figure

ya

wawh

umWa p

popp

s =′==

a ( t )

h

mas

up w /2 w /2 w /2 w /2

c

pp

c2o

c2

uu

w;uuw;

θau;θ

hg

mhW

==′

===

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Interpretation of “static” seismic

assessment

Structural seismic response

It follows that if a structure with ao/ap = 0.5 is investigated, the meandamage can be evaluatedas the correspondingordinate of the curve. Drawing a horizontal line through such point, the abscissa of the intersection with the straight line corresponding to ao yieldsthe residual static action as. (y = ap/a’o)

y = 1.

000

y = 0.

875

y = 0.

750

y =

0.62

5

y =

0.50

0

y =

0.37

5

To = 0.3 secap = 0.4 g

µw

r = ao/ap

1.0

1.000.750.500.25

0.2

0.4

0.6

0.8

y =

0.25

0

wp

ao/apas/ap

Page 29: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

29

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Interpretation of “static” seismic

assessment

Structural seismic response

First: under the thresholdr = 0.25 no seismic safetywould exist; by contrast, safety can be expectedfor r > 0.4 (dashed area in the figure).

s

soa

aas −=

y = 1.

000

y = 0.

875

y = 0.

750

y =

0.62

5

y =

0.50

0

y =

0.37

5

To = 0.3 secap = 0.4 g

µw

r = ao/ap

1.0

1.000.750.500.25

0.2

0.4

0.6

0.8

y =

0.25

0

wp

ao/apas/ap

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Interpretation of “static” seismic assessment

Structural seismic response

Second: a criterion for conversion of dynamic excitation to static action isprovided. With the results at hand, the following table of equivalence can beestablished

33.003%1.00

13.335%1.50

5.0010%2.00

2.1319%2.50

sas / apap / ao

y = 1.

000

y = 0.

875

y = 0.

750

y =

0.62

5

y =

0.50

0

y =

0.37

5

To = 0.3 secap = 0.4 g

µw

r = ao/ap

1.0

1.000.750.500.25

0.2

0.4

0.6

0.8

y =

0.25

0

wp

ao/apas/ap

Page 30: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

30

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

1. Comportamento sismico di strutture affette da nonlinearitàgeometriche e di materiale o da imperfezioni

2. Procedure di generazione di accelerogrammi sintetici3. Analisi probabilistica e commenti sul criterio di sicurezza

5. Scelta dell’ accelerogramma: procedimento del “peggior scenario”

6. Metodo del “peggior scenario” per strutture a comportamento nonlineare

SOMMARIO

4. Aspetti critici della risposta sismica

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

An investigation of the sensitivity of the response to small percent variations of the ordinates of the accelerogram can be performed.

All earthquakes dealt with have the same peak acceleration ap (say 0.4g) and duration (T = 20 sec), and the same spectral and intensity-vs.time forms.

They are therefore similar earthquakes, nominally all of them site-compatible.

Dangerous effects deriving from asimmetry have already been pointed out, so that all results are concerned with a strength-symmetric pattern. Therefore, in the following, only the case α = 1 is considered, and the common value of the acceleration strength is set equal in both senses

As a measure of the structural damage, the plastic displacement up is assumed.

ooo aaa =′′−=′

Response sensitivity to accelerogram’s perturbationsStructural seismic response

Page 31: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

31

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Response sensitivity to accelerogram’s perturbationsStructural seismic response

Considering any given accelerogram, random independent perturbations of the ordinates, uniformly distributed in the interval (-p, p) are executed, and the relevant, different, values of up can be calculated.

The range of variation

And the percent variation

are calculated. The results prove that the accelerogram perturbation is magnified in the damage up.

min,pmax,pV uuC −=

( )min,pmax,pV uuC2V +=

5.4554.5%3.00 x 10−210.0%6.2415.6%0.74 x 10−22.5%V/pVCVp

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

From the results briefly presented, it is possible to understand that dynamicseismic analysis yields rather unreliable results, unless a very complete analysisof stability of results is performed.

In particular, it would not be safe to assess the adequateness of a aseismicstructure founding on its performance under a single, or even more, earthquake, unless more effective and complete checkings are met.

It should be definitely realized that structures exposed to seismic shakingcannot have the same reliability as buildings in non-seismic sites.

One possible way to approach the problem, is to base the safety assessment on a full probabilistic model. A difficult task, when nonlinear response is delat with.

An alternative approach is to build up a worst scenario approach, searching for ground shaking that makes any response component the largest in the set of admissible (or “credible”) accelerograms.

PROBLEM: To select accelerograms for nonlinear analysis

Page 32: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

32

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

1. Comportamento sismico di strutture affette da nonlinearitàgeometriche e di materiale o da imperfezioni

2. Procedure di generazione di accelerogrammi sintetici3. Analisi probabilistica e commenti sul criterio di sicurezza4. Aspetti critici della risposta sismica

6. Metodo del “peggior scenario” per strutture a comportamento nonlineare

SOMMARIO

5. Scelta dell’ accelerogramma: procedimento del “peggior scenario”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.1) The Drenick's approach

The basic idea, that was first set up by Drenick [11], is to find the base accelerogramfunction yielding the maximum possible value of the response u(t). Following Drenick, assume that a(t) has a finite duration, say T, and a bounded energy Eo

Drenick,R.F. (1970): Model-Free Design of AseismicStructures, Proc. ASCE, Journ. of Engineering MechanicsDivision, Vol. 96,N. EM4, pp. 483-493,1970.

( )a t dt ao

T

o2 2 2∫ = =E (5.1)

Let I(Eo) be the set collecting all functions defined in (0,T) and possessing the given energy Eo

2 . As proved by Drenick

( )( ) ( )

( )U u t u Hd t Ta t

T o T

o

= = =∈

max,0

I E

E (5.2)

where

( )( ) ( )H h t s ds h t s dsT

t To

TT2

0

2 2

00= − = −

∈∫∫max

, (5.3)

5) Worst scenario approach

Page 33: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

33

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.1) The Drenick's approachAs T → ∞ , the base accelerogram ( )a tc yielding the maximum peak response, named by Drenick in a later paper [12] the "critical excitation", tends to assume a shape coincidentwith the impulse response function reversed with respect to time, and is given by

( ) ( )a tH

h tco

= ± −∞

E (5.4)

and the time to at which the maximum response occurs is 0. A plot of the critical acceleration for T → ∞ is shown in Fig.5.1

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

-3,0 -2,0 -1,0 0,0

t

a (t)c

Fig. 5.1: Drenick's critical excitation

( ) ∞∞ === H0uuU ocd EThe maximum peak response is given by

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.1) The Drenick's approachFig. 5.1: Drenick's

critical excitation

5) Worst scenario approach ( ) ( ) ( )

( )

==

=ττ−τ=

2o

2T

o

2

t

0

Eadttasub

maxdthatu

Dip. di Scienza delle Costruzioni - Università di Napoli “Federico II”

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

-3,0 -2,0 -1,0 0,0

t

a (t)c

( ) ∞∞ === H0uuU ocd EThe maximum peak response is given by

( ) ( )a tH

h tco

= ± −∞

E( ) ( )a t

Hh tc

o= ± −

E

( )( ) ( )

( )U u t u Hd t Ta t

T o T

o

= = =∈

m ax,0

I E

E

( )( ) ( )H h t s ds h t s dsT

t To

TT2

0

2 2

00= − = −

∈∫∫m ax

,

Page 34: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

34

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.1) The Drenick's approachIn the same paper, Drenick also proved that the peak response of a structure to the critical excitation as T → ∞ coincides with the standard deviation of its response to a white noise with mean value equal toEo

2 .

Also a suggestion to investigate the critical excitation for spectrum-constrained excitations and a result for band-limited excitation were given by Drenick. Some criticism was argumented in the paper by Drenick himself,mainly about the circumstance that aseismic design based on critical excitation is "far too pessimistic to be practical".

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.1) The Drenick's approach

Drenick also investigated the ratio of the maximum response due tocritical excitation to the maximum response of actually recorded seismicaccelerograms [12]. Response spectra were derived on the basis both of thecritical excitation and of a number of accelerograms from a set of recorded earthquakes, and the results were compared. From the comparison of theresults, one can conclude that in the range of structures with natural vibrationperiod from 0.5 sec. to 1.2 sec. and damping coefficient in the range 0.02-0.10, the ratio of the critical to experimental response was almost always inthe neighborhood of 2

5) Worst scenario approach

Page 35: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

35

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5) Worst scenario approach 5.1) The Drenick's approach

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

-3,0 -2,0 -1,0 0,0

t

a (t)c

Not credible to be an earthquake

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

It should be stressed that by extending the class of possible accelerograms from only the recorded ones to linear combinations of these

the above ratio still decreases in this range to values between 1.3 and 1.6.

( ) ( )∑=i

ii tactaRecorded accelerogram: Torre del Greco - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a(t) (cm sec-2)

Recorded accelerogram: Bagnoli Irpino - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 17,46 34,92 52,38 69,84 t (sec)

a(t) (cm sec-2)

……………….……………………

a1(t)

………………

an(t)

( )( )∑

∈=

iii

nc,...,ct,0tmax tucmaxu

1

6.13.1uu

max,i

max ÷≈=α

5) Worst scenario approach

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

-3,0 -2,0 -1,0 0,0

t

a (t)c

5.1) The Drenick's approach

100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a*(t) (cm sec-2)

Page 36: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

36

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

( ) ( )∑=i

ii tacta

( )( )∑

∈=

iii

nc,...,ct,0tmax tucmaxu

1

6.13.1u

uc

max ÷≈=α

5) Worst scenario approach 5.1) The Drenick's approach

100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a*(t) (cm sec-2)

Recorded accelerogram: Torre del Greco - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a(t) (cm sec-2)

Recorded accelerogram: Bagnoli Irpino - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 17,46 34,92 52,38 69,84 t (sec)

a(t) (cm sec-2)

……………….……………………

a1(t)

………………

an(t)

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.2) The Shinozuka’s approach In Shinozuka's approach (1970), one assumes that it is possible to identifya power-spectrum function Π(ω) yielding an upper bound on the ordinates of the power spectrum of any admissible accelerogram. Following Shinozuka'smodel, one obtains the following bound for the maximum displacement overthe whole duration of the excitation

U H ds =−∞

+∞

∫1

2πω ω ω( ) ( )Π (5.6)

where H2

02 2 2 2

02 2

14

( )( )

ωω ω ζ ω ω

=− +

is the frequency response function of the oscillator. It can be easily verified that the bound (5.6) is a generalization of the Drenick's bound (5.2).

0,00

5,00

10,00

15,00

0,12 11,98 23,85

ω(sec -1)

P(w) 2 (cm sec-2 )Spectrum Kanai

Ω

Ω

a

a

b

b

==

==

9 9312%

14 718%

1

1

. sec

. sec

ξ

ξ

5) Worst scenario approach

Page 37: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

37

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.2) The Shinozuka’s approach

5) Worst scenario approach

0,00

5,00

10,00

15,00

0,12 11,98 23,85

ω(sec -1)

P(w) 2 (cm sec -2 )Spectrum Bound

ωωΠωπ

= ∫+∞

∞−d)()(H

21U os

H2

02 2 2 2

02 2

14

( )( )

ωω ω ζ ω ω

=− +

( ) ( ) ( )

( ) ( )

ωΠ≤ωΠ

=ττ−τ= ∫

o

t

0

sub

maxdthatu

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.2) The Shinozuka’s approachThe difference can be sought in the circumstance that in Shinozuka's approach the upperbound (5.6) can be specialized with respect to some particular shape of the spectrumpower of the earthquake that is expected at the site, by suitably modeling the function Π(ω), while in Drenick's approach the distribution of power over the frequency range isnot differentiated, and the maximum value of Us is sought regarding Us as a functional of Π(ω). It can be proved that the maximum of Us with varying the function Π(ω) under the condition Π(ω) = const., is attained for Π(ω) ≡ H(ω)

( )max ( ) ( ) ( )Π

Πω π

ω ω ωπ

ω ω1

21

22H d H d

− ∞

+∞

− ∞

+∞

∫ ∫

= (5.8)

Recalling that the impulse response function h(x) and the frequency response H(ω) function are Fourier transforms of each other

12

2 2

0πω ωH d h x dx( ) ( )

− ∞

+∞ +∞

∫ ∫= (5.9)

the coincidence of Us with Ud when Π(ω) ≡ H (ω) is fully proved. It is of interest to note that Us < Ud , and therefore that Shinozuka's approach is sharper than Drenick's one ifΠ(ω) is properly chosen.

5) Worst scenario approach

Page 38: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

38

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3) Ellipsoidal modeling and convex optimization

Assume that any possible accelerogram a(t) can be approached by a linearcombination of some base functions

( ) ( )a t c a ti ii

n=

=∑

1 (5.10)

where it has been assumed that the average acceleration, i.e. the possible constant term in the expansion, is null. One trivial example of such space is the one of generally continuous functions of time, where Fourier expansion yields a denomerable basis, and every accelerogram can find a representation by a linear combination of harmonic functions.

Recorded accelerogram: Torre del Greco - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a(t) (cm sec -2)

Recorded accelerogram: Bagnoli Irpino - NS

-100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 17,46 34,92 52,38 69,84 t (sec)

a(t) (cm sec -2)

……………….…………………………………

a1(t)

………………

……

……

……

an(t)

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

( ) ( )∑=i

ii tacta

( )( )∑

∈=

iii

nc,...,ct,0tmax tucmaxu

1

6.13.1u

uc

max ÷≈=α

5) Worst scenario approach 5.3) Ellipsoidal modeling

100,00

-75,00

-50,00

-25,00

0,00

25,00

50,00

75,00

100,00

0,00 11,64 23,28 34,92 46,56 t (sec)

a*(t) (cm sec-2)

……………….……………………………………………………………………………………………………………………………………………………………

a1(t)

………………

……

……

……

an(t)

sen wt

-1,5

-1

-0,5

0

0,5

1

1,5

t

a(t)

sen wt

-1,5

-1

-0,5

0

0,5

1

1,5

t

a(t)

( ) ( )( ) ( ) T

i2niNtcosAta

NitsinAtai

ioi

ioi π=ω

≤<ω=

≤ω=

Page 39: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

39

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

5) Worst scenario approach

Sn

co

c1

c2

If all the components have the same energy, the population of accelerogramswith common energy can be built up, and the maximum response at anyinstant t in (0,T) spreads from the solution of the problem:

( )

=

1

min)(ormaxt

tosubjecttgiven,nRFind

T

T

cc

cu

c

( ) ( ) ( ) ( )( )u t u t t tTmax min= − = u u

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3) Ellipsoidal modeling and convex optimization

( ) ( )a t c a ti ii

n=

=∑

1

In this case, assuming that T is the duration of the oscillation

( ) ( )( ) ( )

a t A sin t i ma t A t m i n

i o i

i o i

= ≤

= < ≤

ω

ωcos (5.11)

with n even, m = n/2, Ao a constant and

ωπ

ii

Ti m= =

2 1( ,..., ) (5.12)

the problem reduces to set logics to give appropriate values to the coefficients ci.

5) Worst scenario approach

Page 40: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

40

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3) Ellipsoidal modeling and convex optimizationNote that the response ui(t) to any of the base functions ai(t), withhomogeneous initial conditions is given by

( ) ( )

( )

( ) ( )

( )

u t

e A sin t B t sin t t

u te A t B sin t e A sin t B t t sin t

i

ti d i d o i i o i i

o i o i

i

ti d i d o

ti d i d i o i i o i i

o i o i

o

o o

=

=+ + − −

− +

=− − + + − +

− +⋅

− −

ζω

ζω ζω

ω ω ω ω ω ζω ω ω

ω ω ζ ω ω

ω ω ζω ω ω ω ω ω ω ζω ω ω

ω ω ζ ω ω

cos cos

&cos cos cos

2 2

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

2

4

2

4

( )( )

( )( )

( )( )[ ]

( )( )[ ]

( )

uB

B

uA B A

A

hence

u te

ii o i

o i o i

i o i

ii o i i o i

o i o i

i i o i

o i o i

i i i o

i

ti i

o

02

40 2

04

1 2

40 1 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

2

=−

− += → =

=− + −

− +=

+ − −

− += → = − −

=−−

ζω ω

ω ω ζ ω ωζω ω

ζω ω ω ω

ω ω ζ ω ω

ω ω ζ ω

ω ω ζ ω ωω ω ω ζ

ω ωζω

&

( )[ ] ( )( )

ω ζ ω ζω ω ω ω ω ω ζω ω ω

ω ω ζ ω ω

ω ω ζ

o d o i d o i i o i i

o i o i

d o

sin t t sin t t

i m

2 2 2 2

2 2 2 2 2 2

2

1 2 2 2

4

1 1

− + + − −

− +

= = −

cos cos

( , ... , ) ;

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3) Ellipsoidal modeling and convex optimizationand

( ) ( )

( )

( ) ( )

u te A sin t B t t sin t

u te A t B sin t e A sin t B t sin t t

i m

ti m d i m d o i i o i i

o i o i

i m

td i m d d i m d o

ti m d i m d i o i i o i i

o

o o

+

−+ +

+

−+ +

−+ +

=+ + − +

− +

=− − + − − +

ζω

ζω ζω

ω ω ω ω ω ζω ω ω

ω ω ζ ω ω

ω ω ω ω ζω ω ω ω ω ω ω ζω ω ω

cos cos

&cos cos cos

2 2

2 2 2 2 2 2

2 2 2

2

4

2

( )

( )( )

( )( )

( )( )

( )( )

ω ω ζ ω ω

ω ω

ω ω ζ ω ωω ω

ω ζω ζω ω

ω ω ζ ω ω

ω ζω ω ω

ω ω ζ ω ω

o i o i

i mi m o i

o i o i

i m o i

i md i m o i m o i

o i o i

d i m o o i

o i o i

uB

B

uA B A

2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

2

2 2 2 2 2 2

2 2

2 2 2 2 2 2

4

04

0

02

4 40

− +⋅

=+ −

− += → = − −

=− +

− +=

+ +

− +=

++

+

++ + +

&( )

( )( )

( ) ( ) ( )

→ = −+

=− +

−+

+ −

+ − +

= = −

+

+−

A

hence

u t e sin t t t sin t

i m

i mo o i

d

i m

o i o i

t o o i

dd o i d o i i o i i

d o

o

ζω ω ω

ω

ω ω ζ ω ω

ζω ω ω

ωω ω ω ω ω ω ω ζω ω ω

ω ω ζ

ζω

2 2

2 2 2 2 2 2

2 22 2 2 2

2

1

42

1 1

cos cos

( , . . . , ) ;

5) Worst scenario approach

Page 41: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

41

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3) Ellipsoidal modeling and convex optimization

( )( )[ ] ( )

( )

( )

( ) ( ) ( )

u te sin t t sin t t

u t

e sin t t t sin t

i

ti i o d o i d o i i o i i

o i o i

i m

t o o i

dd o i d o i i o i i

o i

o

o

=− − + + − −

− +

=

−+

+ −

+ − +

+

ζω

ζω

ω ω ω ζ ω ζω ω ω ω ω ω ζω ω ω

ω ω ζ ω ω

ζω ω ω

ωω ω ω ω ω ω ω ζω ω ω

ω ω

2 2 2 2 2

2 2 2 2 2 2

2 22 2 2 2

2

1 2 2 2

4

2

cos cos

cos cos

( )2 2 2 2 2

2

4

1 1

+

= = −

ζ ω ω

ω ω ζ

o i

d oi m( , ... , ) ;

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3) Ellipsoidal modeling and convex optimization

and, by the linearity of the oscillator, the response to a(t) is

( ) ( )u t c u ti ii

n=

=∑

1 (5.14)

If nothing else is specified, it is clear that the structure is exposed to undergo

uncontrollably high stress.

5) Worst scenario approach

Page 42: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

42

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

The approach is calibrated on the five accelerographic records presented in Sec. 3. Assume that one knows that earthquakes, in general, should exhibit a mean power

spectrum whose shape is constrained to fit the following expression

( )K q fa a b b a a b b( | , , , ) | , , ,ω ξ ξ ω ξ ξΩ Ω Ω Ω= (5.15)

with ( ) ( ) ( )[ ]f G Ga a b b a a b bω ξ ξ ω ξ ω ξ| , , , | , | ,Ω Ω Ω Ω= + (5.16)

( )( )

G ω ξξ ω

ω ξ ω| ,Ω

Ω

Ω=

+

− +

2 2 2

2 2 2 2 2

4

4 (5.17)

where Ω and ξ are parameters governing the shape of the spectrum, and q is a

normalizing factor. These parameters are assumed to have assigned values for any given site under examination, so that eq. (5.15) is intended to have a well defined

expression for the problem at hand.

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.1) Basic test accelerograms and central spectrum

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.1) Basic test accelerograms and central spectrumNote that eq.(5.15) is nothing else than the sum of two functions of theKanai-Tajimi type. Moreover, the superposition is introduced in order tohave a better approximation for spectra of recorded earthquakes exhibitingmore than one dominant frequency.

After this shape is assumed as the central spectrum, it is to be expected that accelerograms to be considered in the analysis should not differ from thecentral spectrum by more than a given amount. Let co be the vector of combination coefficients fitting the central spectrum, i.e, with reference to a basis of the type (5.11)

( ) ( )c c K i mo i o i m i a a b b2 2= = ≤+, , , , ,ω ξ ξΩ Ω ∆ω (5.18)

Let ( )ci

j be the i-th coefficient of the Fourier expansion of the j-th accelerogram (i =1,...,n; j=1,...,5), normalized to unit modulus ( ( )c j = 1).

5) Worst scenario approach

Page 43: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

43

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.1) Basic test accelerograms and central spectrumThe central distribution of coefficients, collected in the vector co, are obtained for each of the five sites analyzed, through the following steps: 1) For every site find the best values of the parameters q(j), Ωa

(j), ξa(j), Ωb

(j), ξb

(j) that give the optimal fit of the ordinates of the Kanai-Tajimi eq. (5.15) with the values of the spectrum from the recorded accelerograms on thecorresponding pulsations, with q(j), the normalizing factor in eq. (5.15), such that after calculating

( ) ( ) ( ) ( ) ( )s q foijj

i aj

aj

bj

bj2 =

ω ξ ξΩ Ω, , , (5.19)

it results

soiji

n2

11=

=∑ (5.20)

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.1) Basic test accelerograms and central spectrum2) Put

( )

( )γ iji n

j

ij

c

c= +

(5.21)

Finally, calculate the ordinates of the nominal target spectra at the considered sites

( )

( )( )

( ) ( )

cs

c

c c

oij oij

ij

ij

o i nj

ij oij

=+

=+

1 2γ

γ

sgn

,

(5.22)

5) Worst scenario approach

Page 44: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

44

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.1) Basic test accelerograms and central spectrum

3) Calculate for every site the squared scatter of the coefficients obtained by direct processing the accelerogram and those calculated by the target spectrum

( ) ( )ρ j ij

oij

i

nc c2

1

2

= −

=∑ (5.23)

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.1) Basic test accelerograms and central spectrumIn the following table, the final values of ρ j

2 are quoted, showing that the inequality ρ2 4≤ is largely verified.

TABLE 5.I

Site ρ2 Ωa sec-1 ξa Ωb sec-1 ξb

TORRE DEL GRECO 0.261 9.920 0.109 14.550 0.171 BRIENZA 0.219 32.980 0.478 37.670 0.403 STURNO 0.186 17.940 0.347 3.770 0.399 CALITRI 0.358 0.070 0.059 6.350 0.211 BAGNOLI 0.257 5.150 0.142 28.640 0.762 Assuming that the central spectrum is site-dependent, but that independence holdsfor the squared scatter, it is possible to state that the above results represent a definite specific character of possible ground motion at the site.

5) Worst scenario approach

Page 45: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

45

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.1) Basic test accelerograms and central spectrum

Power Spectrum: Calitri - NS

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0,07 7,37 14,66 21,96 29,25 36,55 43,84 51,14

ω (sec-1)

Spectrum Kanai

Ω

Ω

a

a

b

b

==

==

0 076%

65422%

1

1

. sec

. sec

ξ

ξ

Sa 2 (cm sec-2 )

d)

Power Spectrum:Bagnoli Irpino - NS

0,00

0,501,00

1,50

2,00

2,503,00

3,50

4,00

0,08 8,02 15,96 23,89 31,83 39,77 47,71 55,65

ω (sec-1)

Spectrum Kanai

Ω

Ω

a

a

b

b

==

==

51514%

30 766%

1

1

. sec

. sec

ξ

ξ

Sa 2 (cm sec-2 )

e)

Power Spectrum : Torre del Greco - NS

0,00

5,00

10,00

15,00

0,12 11,98 23,85

ω(sec -1)

Sa 2 (cm sec-2 )

Spectrum Kanai

Ω

Ω

a

a

b

b

==

==

9 9312%

14 718%

1

1

. sec

. sec

ξ

ξ

a)

Power Spectrum : Brienza - NS

0,00

0,50

1,00

1,50

2,00

2,50

0,08 8,06 16,04 24,03 32,01 39,99 47,97 55,95

ω(sec-1)

Spectrum Kanai

Ω

Ω

a

a

b

b

==

==

37 5741%

331847%

1

1

. sec

. sec

ξ

ξ

Sa 2 (cm sec-2 )

b)

Power Spectrum : Sturno - NS

0,00

0,50

1,00

1,50

2,00

2,50

0,09 8,97 17,85 26,74 35,62 44,50 53,38 62,27

ω(sec-1)

Spectrum Kanai

Ω

Ω

a

a

b

b

==

==

38741%

18 3737%

1

1

. sec

. sec

ξ

ξ

Sa 2 (cm sec-2 )

c)

Fig. 5.2: Processed spectra fromrecorded accelerograms and fittedcentral spectra.

a)Torre del Greco; b)Brienza; c)Sturno; d) Calitri; e) Bagnoli Irpino

These results are graphically illustrated in Fig. 5.2

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

Let assume that the duration T of the quake is a-priori known, and that it is possible -from geophysics, for instance - to assume a given bound for the energy of the function, like in Drenick's problem

( )a t dt oo

t2 2≤∫ E (5.24)

If the base functions ai(t) are orthogonal and all scaled to the same energy, every functionof the type (5.10)-(5.11) will be respective of the constraint (5.1), provided that

c and ATi

i

n

o o2

1

2 212

≤ ==∑ E (5.25)

5) Worst scenario approach

Page 46: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

46

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energyAny possible function that verifies (5.24) is called an admissible accelerogram. Thus, admissible functions can be mapped in the Euclidean space of n-dimensional numerical vectors c. Admissible accelerograms are not external to the unit sphere Sn, centered in 0. The diagram in (0,T) of the maximum and minimum displacement of the structure isrequired for a(t) varying in Sn. To this end, consider ui(t), the response function under ai(t). The response under any a(t) expressed by eq.(5.10), by the system's linearity, is yielded in a straightforward way by eq.(5.14) re-written under vector form denoting vectors and matrices by boldface characters and transposition by superscript "T"

( ) ( ) ( )u t c u t ti ii

nT= =

=∑

1c u (5.26)

where c and u(t) are the n-dimensional column vectors representing, respectively, all the coefficients ci and all the displacement values at instant t when the oscillator is acted on byai(t).

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

Thus, the problem is set as follows for any fixed instant t in (0,T)

( )

Find Rn for given tsubject to

t T

T

c

u c

c c

=

,

max (or min)

1

(5.27)

5) Worst scenario approach

Page 47: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

47

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

It is well known that in this case - a linear function to be optimized on a convex domain -the solution point is on the boundary of Sn. Thus, problem (5.27) is equivalent to

( )

Find Rn for given tsubject to

t T

T

c

u c

c c

=

=

,

max (or min)

1

(5.28)

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energyThe problem is easily solved for any t in (0,T). Indeed, put

( ) ( )g f cT Tc u c c c= = −; 1 (5.29) At the solution point

( )grad = - gradf k g Tfor =u c max (5.30)

( )grad = gradf k g minTfor =u c (5.31) whence

( ) ( )c u= ±γ t t (5.32) with

( ) ( )γ 2 1t T= u u (5.33)

5) Worst scenario approach

Page 48: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

48

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

The maximum displacement at any instant t in (0,T) is finally given by

( ) ( ) ( ) ( )( )u t u t t tTmax min= − = u u (5.34)

A numerical example has been carried assuming that admissible functions are generallycontinuous, and taking all ai's to be harmonic functions, as in the Fourier expansion [see eqs. (5.11)÷(5.12)] In Fig. 5.3, the bound (5.34) is plotted for different values of m = 25÷200, for t ranging in the interval 0÷15 secs. This shows how the refinement of the source functional spacemakes the bounds to increase progressively, and a good convergence is attained for m =100.

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

-10,00

-5,00

0,00

5,00

10,00

0,00 7,50 15,00

t

m=200 m=100 m=75 m=50 m=25

0

5

10

0 50 100 150 200

m

u max

(t)u max (cm)

Fig. .5.3: Influence of n, the number of harmonics, on the bound (5.34) (n = 2m)

5) Worst scenario approach

Page 49: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

49

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

As it can be seen in Fig. 5.4, where a sample maximizing function for t = 30 secs. and m =100 is plotted, these bounds are of the type of Drenick's critical excitation, and it is highlyquestionable that such functions can be accepted as credible earthquakes. It is possible to investigate how this bound is influenced by an improved information.

5) Worst scenario approach

Sn

co

c1

c2

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.2) Accelerograms as forcing functions with assigned energy

Fig. 5.4: Upper and lower bound and sample maximal accelerogram for t = 30 secs: a) Bounds (5.34), b) uimax of anyharmonic component.

-10,00

-5,00

0,00

5,00

10,00

0,00 7,50 15,00t

u(t)m=100 Harmonics

-100-50

050

a(t) (cm sec-2)

-100-50

050

100

7,50

a(t) (cm sec-2)

Maximal accelerogram at t=5 sec Maximal accelerogram at t=10 secMaximal accelerogram at t=7 sec

-100-50

050

100

0,00 7,50 15,00 0,00 15,000,00 7,50 15,00

a(t) (cm sec-2)100

a)b)

5) Worst scenario approach

Page 50: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

50

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

which is coupled with the condition

(5.37)

expressing the circumstance that co yields an accelerogram of given norm, realized byassigning Eo a proper value. The introduction of this additional information means thatone intends to deal with functions that are not so far from earthquake-typeaccelerograms, rather than with generic generally continuous forcing functions, thustranslating the original "mechanical" problem into an "aseismic engineering" one.

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

∑=

=n

iic

1

2 1 ( )∑=

θ≤−n

iioi cc

1

22

∑=

=n

iioc

1

2 1

Assume that after analysis of the ground firmness and/or of previous recordedearthquakes, or anything else, it is possible to qualify earthquakes, and their desultoryvariability, as accelerograms with given norm (eq.5.1), as in the previous section, butwith "distance" from co not larger than a given amount, say “ρ”. So, the constraints on the coefficients are of the type

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

The expected result is the maximum stress in a linear sdof structure acted-on byspectrum-compatible earthquakes, where"spectrum-compatible" means that at a given site seismic excitation is qualified byits "distance" (eq. 5.36) from a given originfunction named the "central spectrum".The problem is similar to the one dealt within Sec. 3, except the fact that now the admissible set of forcing functions is givenby the intersection of the unit sphere Sn[eq.(5.35), the "energy" constraint] and the side-sphere Sρ [eq.(5.36), the "spectrum-compatibility" sphere], Fig. 5.5.

Sn

co

c1

c2

Fig. 5.5: The set of admissible coefficients

5) Worst scenario approach

Power Spectrum : Torre del Greco - NS

11,98 23,85

ω(sec-1)

2m sec-2 )

Spectrum Kanai

Ω

Ω

a

a

b

b

==

==

9 9312%

14 718%

. sec

. sec

ξ

ξ

Page 51: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

51

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

Following the lines set forth in the previous section, the problem is now set as follows:

Sn

co

c1

c2

Fig. 5.5: The set of admissible coefficients

( ) ( )( ) ( )minresp.maxt

1Find

2oo

:nR

=′ρ≤−′−

=′∈

cucccc

ccc

where , otherwiseSρ includes Sn, and the problem shifts to the formulation (5.28), in whichthe second constraint isabsent

ρ2 4≤

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

Following the lines set forth in the previous section, the problem is now set as follows:

Sn

co

c1

c2

Fig. 5.5: The set of admissible coefficients

( ) ( )( ) ( )minresp.maxt

1Find

2oo

:nR

=′ρ≤−′−

=′∈

cucccc

ccc

where , otherwiseSρ includes Sn, and the problem shifts to the formulation (5.28), in whichthe second constraint isabsent

ρ2 4≤

5) Worst scenario approach

Page 52: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

52

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

( ) ( )( ) ( )min

)38.5(12

:

resp.maxt

Find

oo

nR

=′ρ≤−′−

=′∈

cucccc

ccc

( ) ( )min)28.5(1

:

resp.maxt

Find nR

=′=′

cucc

c

Problem (5.38) can be solved in two steps. Step #1: Solve the simpler problem (5.28), and find c1. If c1 is included in the set Sρ,

then it represents also the solution of the problem (5.38). If c1 is on Sn but it is outside Sρ then no internal point to Sρ exists where the optimal condition (5.30) [respectively (5.31)] holds, and the solution must be searched on theboundary of the intersection of Sn and Sρ, as described in step 2.

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

Step #2: After some algebra, the problem transforms into a modified one

( ) ( )minresp.maxt1aa

1Find

o

:nR

=′

≤=′=′

cucc

ccc

(5.43)

where the constraints are all under equality form. In order to solve the latter problem,consider the Lagrangian function

( ) ( ) ( ) ( )L c u c c c c c, ,r r t t r r aT ToT

1 2 1 21= + − + − (5.44)

5) Worst scenario approach

Page 53: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

53

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

In conclusion, after solving the Lagrangian, the solution for the problem of the maximumresponse is yielded by:

( )( ) ( )[ ]

rU b

ar r a b

tr

r to

1

2 2

2

2 1

12

12

41

21

2

= −−

= − +

= = − +c c c u

And, in turn the solution for the problem of the minmum responseresponse is given by changing the sign of r1

( )( ) ( )[ ]

r U b

ar r a b

tr

r to

1

2 2

2

2 1

12

12

41

21

2

= +−

= − +

= = − +c c c u

( ) ( ) ( ) ( )u c u uTo

Tt b t t U t= =; 4 2

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

After introducing this value in the results discussed in above, one gets the boundsplotted in Fig. 5.6, for ωo = 30 sec-1, where it is also possible to get a comparison withthe previous, spectrum-free bound, showing that the new bound is approximately a halfof the one constrained only by the intensity upper bound.

5) Worst scenario approach

Page 54: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

54

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhood constraint" with respect to the central spectrum

Fig. 5.6:Upper and lower bounds byproblems (5.28) and (5.38)

a) Sample maximal accelerogram at t=10 secs

b) Sample maximal accelerogram at t=20 secs

c) Sample maximal accelerogram at t=30 secs

Torre del Greco: Envelopes of response in (0, 50sec)

-1,20

-0,80

-0,40

0,00

0,40

0,80

1,20

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00t (sec)

u(t) (cm)

Eq. (4.28) Eq. (4.38) Accelerogram

-60,00

-40,00

-20,00

0,00

20,00

40,00

60,00

0,00 15,00 30,00 45,00 t (sec) 0,00 15,00 30,00 45,00 0,00 15,00 30,00 45,00

a) t = 10 sec b) t = 20 sec c) t = 30 sec

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhoodconstraint" with respect to the central spectrum

In Fig. 5.7, the response displacement spectrum calculated bythe present procedure is finally plotted, for a value of the damping coefficient ζ = 5%, and the comparison with the envelope of the same spectra calculated with reference to the accelerograms processed, shows that the present results, although better founded and less sensitive to uncertainparameters than recorded accelerograms, are not tooconservative, but yield a percentage increase in the design forces.

5) Worst scenario approach

Page 55: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

55

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhoodconstraint" with respect to the central spectrum

Present bounds and displacement spectra of recorded earthquakes

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

10,00 20,00 30,00 40,00 50,00 60,00 70,00

ω (sec-1)

S u (c

m)Norm Bound Local Bound Torre del Greco BrienzaSturno Calitri Bagnoli Irpino

Fig. 5.7: Response spectra of displacement: Comparison of bounds by problems (5.28) and (5.38) with the envelope of spectra from recorded accelerograms normalized to the same norm as Torre del Greco

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhoodconstraint" with respect to the central spectrum

In Fig. 5.8 the same spectra obtained via the procedures developped in secs. 3 and 4, are compared to the response spectrum yielded by the Drenick's approach and Shinozuka's approach. As expected, Drenick's bound is practically coincident with the resultsyielded by problem (5.28). In Shinozuka's approach, one assumes that eq. (5.15), withthe parameters presented in Table 5.I yields an upper bound on the ordinates of the power spectrum of any admissible accelerogram. Following Shinozuka's model, one can apply the bound (5.6) for the maximum displacement over the entire duration of the excitation giving Π(ω) the functional form introduced by eq. (5.15)

[ ]Π Ω Ω( ) ( , ) ( , )ω ω ξ ω ξ= +q G Ga a b b (5.58)

with q such that 1

22

02

πω ωΠ ( ) d E=

−∞

+∞

∫ (5.59)

5) Worst scenario approach

Page 56: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

56

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhoodconstraint" with respect to the central spectrum

Present bounds and displacement spectra of recorded earthquakes

0,00

1,00

2,00

3,00

4,00

5,00

10,00 20,00 30,00 40,00 50,00 60,00 70,00

ω (sec-1)

S u (c

m)Norm Bound Local BoundEnvelop of recorded spectra Shinozuka's boundDrenick's Bound

Fig.5.8: Response spectra of displacement: Comparison of bounds by problems (5.28) and (5.38) withDrenick's and Shinozuka's spectra.

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhoodconstraint" with respect to the central spectrum

From inspection of Figs. (5.7) and (5.8) it is possible to see that problem (5.28), the bound in the norm, yields results substantially coincident with Drenick's original approach, apart from the range of higher frequencies, due to the truncation of the expansion (5.11) after a finite number of harmonics (say, for ωi > 50sec-1). Moreover, problem (5.38), the spectrum-compatible bound, isnot significantly different from Shinozuka's approach, although in the range of low frequencies ityields slightly closer bounds. The opposite happens in the range of higher frequencies.

Present bounds and displacement spectra of recorded earthquakes

0,00

1,00

2,00

3,00

4,00

5,00

10,00 20,00 30,00 40,00 50,00 60,00 70,00

ω (sec-1)

S u (c

m)

Norm Bound Local BoundEnvelop of recorded spectra Shinozuka's boundDrenick's Bound

Present bounds and displacement spectra of recorded earthquakes

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

10,00 20,00 30,00 40,00 50,00 60,00 70,00

ω (sec-1)

S u (c

m)

Norm Bound Local Bound Torre del Greco BrienzaSturno Calitri Bagnoli Irpino

5) Worst scenario approach

Page 57: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

57

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.3) Accelerograms characterized by given energy and a "neighborhoodconstraint" with respect to the central spectrum

The ratio of the ordinates of the spectrum-compatible bound to the correspondingordinates of the envelope of spectra related to actual seismic records, normalized to the same norm as Torre del Greco vary in the range 2.5 ÷ 2.0. It is obvious that this ratio decreases with ρ2, a new freedom that is not allowed by previous approaches.

Present bounds and displacement spectra of recorded earthquakes

0,00

0,50

1,00

1,50

2,00

2,50

3,00

10,00 20,00 30,00 40,00 50,00 60,00 70,00

ω (sec-1)

S u (c

m)

Local Bound Envelop of recorded spectra

Sn

co

c1

c2

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

Assume now that the central spectrum at a given site has been identified [for instancein the form of eq. (5.15)÷(5.16)] and that the distribution of the accelerogram power over the frequency range is given by the coefficients coi (i = 1,...,n). Assume that the distance between any possible accelerogram at the site is differentiated as it is in eq. (5.36) but that it may be further specialized with respect to any value of frequency; in other words, the constraint on the accelerogram spectrum is specified in the form

(5.60)

( ) ( )( ) ( )

Find Rsubject to

t resp.

n

T

oT

oT

c

c c

c c c c

u c

=

− − =

=

::

max min

12ρ

( ) ( )c c W c c− − ≤oT

o θ2

where W is a suitable matrix of coefficientsand θ2 a suitable size factor. If W is symmetricand positive definite eq. (5.60) identifies anellipsoid Eθ in the n-dimensional space of Fourier coefficients. The problem is set in formanalogous to eq. (5.39)

5) Worst scenario approach

Page 58: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

58

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

( ) ( )( ) ( )

Find Rsubject to

t resp.

n

T

oT

oT

c

c c

c c c c

u c

=

− − =

=

::

max min

12ρ

( ) ( )( ) ( )

Find R n subject to

t respectively

T

oT

oT

c

c c

c c W c c

u c

=

− − =

=

,

max , min

12θ

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

However, this problem cannot be treated in way to get easy closed-formsolutions as in eq. (5.57). Therefore, two basic simplifications are introduced:

1) Accelerograms are compared on the basis of their PGA ratherthan on the basis of their energy, as in the previous sections;

5) Worst scenario approach

Page 59: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

59

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

2)The principal axes of the ellipsoid Eθ are oriented as the reference axes (i.e. W isa diagonal matrix), and the length li of the semi-axes is equal to the averagesquared difference between Fourier coefficients of N recorded accelerograms at the site and the central coefficients, i.e.

(5.62)

Considering that at any site one has only one recorded accelerograms, whose Fouriercoefficients are , the matrix W can be set as follows

(5.63)

where δij denotes the Kronecker's delta. In Fig. (5.9) the location of the admissibledomain is illustrated.

( )l i i

joi

j

N

Nc c2

2

1

1= −

=∑

( )W

c cij

i oiij=

12 δ

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

Fig.5.9: Ellipsoidal model for occurrence of earthquakes at the site

Sn

c o

c 1

c 2

E θ

5) Worst scenario approach

Page 60: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

60

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

According to point 1), the size of the ellipsoid is related to the PGA of the accelerogram.Since the accelerogram is expressed in the form (5.10), one can predict the maximum baseacceleration at time t by solving the following problem

( ) ( )( ) ( ) ( ) ( )( )

Find Rn subject to

a t t respectively a t to

To

T T

c

c c W c c

a c a c

− − =

= = = =

, :

max , minmax min

θ2 (5.64)

where a(t) denotes the n-dimensional vector whose components are ai(t).The relevant Lagrangian function is

( ) ( ) ( ) ( )[ ]L c a c c c W c c, r t rTo

To= + − − −θ2 (5.65)

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

Keeping into account eq. (5.63) can be explicitly re-written in the form

( ) ( ) ( )[ ] L c c r c a t r W c cn i i ii i oii

n

12 2

1,..., , = + − −

=∑ θ (5.66)

The stationarity conditions

( ) ( )∂∂L

ca t rW c c

kk kk k ok= + − =2 0 (5.67)

yield

( )c crW

a tk okkk

k− = −1

2 (5.68)

or in vector form

( )c c W a− = − −o r

t12

1 (5.69)

5) Worst scenario approach

Page 61: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

61

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

The proper value for "r" is obtained after substitution in the ellipsoid's equation

( ) ( ) ( )[ ] ( ) ( )[ ] ( )c c W c c a W WW a a W a− − = = =− − −o

To

T T T T

rt t

rt t

14

142

1 12

1 2θ

whence

( )[ ] ( )( )[ ] ( )1

21

21

1

r t tr t t

T TT T

= ± = ±−

−θθa W a

a W a;

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

After substitution in (5.69) one gets

( )( ) ( )

′′′

=−

cc

cW a

a W ao T

t

t tm θ

1

1

or, explicitly,

( )( )

′′′

=−

−=∑

cc c

a c c

a c c

k

kok

k k ok

i i oii

nm θ

2

2 2

1

5) Worst scenario approach

Page 62: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

62

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

Finally,

( ) ( ) ( )( )

( )( ) ( )

( ) ( ) ( )( )

( )( ) ( )

a t c a t c a ta c c

a c ca t a c c

a t c a t c a ta c c

a c ca t a c c

k kk

n

ok kk

n k k okk

n

i i oii

n o k k okk

n

k kk

n

ok kk

n k k okk

n

i i oii

n o k k okk

n

max

min

= ′ = −−

= − −

= ′′ = +−

= + −

= =

=

=

=

= =

=

=

=

∑ ∑∑

∑∑

∑ ∑∑

∑∑

1 1

2 2

1

2 2

1

2 2

1

1 1

2 2

1

2 2

1

2 2

1

(5.74)

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

In eq. (5.74) ao(t) is the central accelerogram at the site of Torre del Greco, i.e. the accelerogram that is generated by the central spectrum (Fig. 5.10).

Torre del Greco: Central accelerogramamax=36 cm sec-2 ; aminx=-52 cm sec-2

-60,00

-40,00

-20,00

0,00

20,00

40,00

60,00

0,00 5,82 11,64 17,46 23,28 29,10 34,92 40,74 46,56 52,38

t (sec)

a(t)

(cm

sec-2

)

Fig. 5.10: Central accelerogram produced by average Kanai-type spectrum in Torre del Greco

5) Worst scenario approach

Page 63: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

63

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

The functions amax(t) and amin(t) are plotted in Fig. (5.11)

Fig. 5.11: Maximum and minimum possible accelerations in Torre del Greco; θ2 = 1

Torre del GrecoInstantaneous possible maximum and minimum accelerations

(ap)max=58 cm sec-2 ; (ap)minx=−63 cm sec-2 ; θ

2=1

-60,00

-40,00

-20,00

0,00

20,00

40,00

60,00

0,00 5,82 11,64 17,46 23,28 29,10 34,92 40,74 46,56 52,38

t (sec)

a(t) (cm sec-2)

Amax Amin

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

The maximum possible peak acceleration can be found as follows

(5.75)( )( )

( ) ( )[ ] a a t a tp t Tθ = −

∈max max ,

, max min0Torre del Greco

Maximum peak acceleration versus θ 2

0

25

50

75

0,00 0,20 0,40 0,60 0,80 1,00

Ellipsoidal model Spherical model

59 cm sec-2

a p

Recorded PGA

θ 2, ρ 2

Fig. 5.12: Peak acceleration as a function of the size of the sphere Sρand of ellipsoid Eθ

In Fig. 5.12 the proceedingof ap with θ2, as from eq. (5.75), is plotted, whence one can verify that the same PGA as the recorded accelerogramcan be realized by the ellipsoidal domain for θ2 = 1, while the same is obtainedthrough the spherical domainfor ρ2 = 0.65.

5) Worst scenario approach

Page 64: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

64

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.4) Accelerograms characterized by a "similarity constraint" of the power spectrum to the central spectrum

Finally, in Fig. 5.13 the displacement spectrum for the recorded quake in Torre del Greco is plotted in comparison of all possible bounds investigated in this section.

Fig. 5.13: Recorded response spectrumin Torre del Greco and investigatedupper bounds.All bounds are normalized to the samepeak acceleration (59cm⋅sec-2)

Present bounds and displacement spectra of recorded earthquakes

0,00

1,00

2,00

3,00

10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00

ω (sec-1)

S u (c

m)

Norm Bound Spherical local bound

Torre del Greco (rec.) Shinozuka's bound

Drenick's Bound Ellipsoidal bound (ap=59 cm/sec2)

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.5) Discussion

An approach to analyze the response of a linear structure acted on by seismic shaking, and to calculate upper bounds not dependent on the details of the excitation, has beenproposed, based on the solution of an optimal convex problem. Starting from a linearfunction space, with a given basis, the optimal combination can be found via simpleanalytical tools. The required data are: i) the assumed energy of the quake (sec. 5.3.1); ii) an estimate of the shape of the central power spectrum at the site (sec. 5.3.2); iii) anupper bound on the maximum "distance" of the power spectrum of realizable quakesat the site from the central one (sec. 5.3.3); iv) a set of upper bounds on the possibledifference in the power displayed by the forcing function at every frequency (sec.5.3.4). In all the investigated procedures the optimization problem has been set up in way toallow simple closed-form solutions.

5) Worst scenario approach

Page 65: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

65

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.3.5) Discussion

The results are not substantially different from most procedures available in the literature so far, unless the available information is so detailed as at level iv). In particular, a direct comparison has been attempted of the spherical model withShinozuka's approach, yielding very close results. It should be noted that in Shinozuka's approach, however, the admissible spectra are bounded from above by the "central" spectrum, while the present approach includes earthquakes whose spectra are allowed tocross and to overcome the same central spectrum; note, moreover, that in Shinozuka's approach the bound involves only the stationary part of the response, while in the present approach, like in Drenick's one, the bound involves also the transient responsestarting with homogeneous initial conditions.

A decisive improvement is attained by the ellipsoidal model (sec. 5.3.4), where it can be seen that the bound results quite sharp, despite the freedom that has been left to the power spectrum shape.

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.4) Conclusions

The idea that the most uncertainty involved by earthquake action can be contrasted by a worst-scenario philosophy and evaluated by suitably arranged optimization algorithms, has been pursued and illustrated. The basic idea was first set up and consistentlydeveloped by Drenick and Shinozuka, who suggested different techniques to bound the seismic response of a structure, irrespective of the shape of the overcomingaccelerogram, by working in the domain of time and of frequency respectively (seeSec.s 5.2.1 and 5.2.2).

The critical point of this approach is that the set of feasible accelerograms should notcontain spurious time-histories, which are not compatible with the earthquake featuresat a given site.

5) Worst scenario approach

Page 66: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

66

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.4) Conclusions

Later on, it has been tried to develop a procedure to obtain the least favourableexcitation searching in the set that could be produced by a generator of artificialearthquake-like accelerograms. The model chosen for the generator followed the procedure set up by Ruiz and Penzien in 1969, and the whole class of admissibleseismograms so defined was constrained to a given value of the maximum peak groundacceleration (PGA). The generator's parameters were calibrated on the basis of 4 accelerograms recorded at Tolmezzo (Udine, Italy) on the seismic event of May, 1976 (quakes of 6th, 7th, 8th, 9th May, 1979), so that the class of admissible accelerograms wascompatible with these samples. The comparison of the least favourable responses of the undamped structure to the envelope of responses due to the 4 recorded accelerograms, also yielded values from about 2 in the range of own structure's period around 0.5sec to7 for more deformable structures (Fig. 5.14).

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.4) Conclusions

100

200

300

400

0.5 1.0 1.5 2.0 2.5

T (sec)o

S (cm/sec)v

0

Fig. 5.14: Comparison of envelope of response spectra from recorded accelerograms at Tolmezzo(Udine, Italy, May 1976) with the spectrum of maximum possible velocities (Baratta, 1980)

5) Worst scenario approach

Page 67: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

67

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.4) Conclusions

The result seems to confirm that at least the Drenick's critical response, if not the critical excitation, should be in the neighborhood of some realizable function during anearthquake, at least if structures resist in the elastic range. Analogous results were foundby Baratta and Zuccaro by working on the same seismic model and with the sameprocedure. In this case, carried on for 5% damping, the range around To = 0.5, where the ratio is around 2-2.5 is considerably enlarged, probably due to the influence of damping(see Sec 4.4.1).

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.4) Conclusions

Again, Drenick's results may be well confirmed: Earthquake-type functions at a givensite may give responses that are comparable to those yielded by critical excitation. It isalso considered that, by introducing the least favourable earthquake in a full probabilistic analysis of seismic hazard, the severity of this approach is rather mitigatedby the combination with uncertainties deriving from regional seismicity (see Sec.3 andSec.4.3). Consideration of anelastic excursions of the structure furtherly reduces the gap between worst excitation and recorded ones (see Sec. 4.4.2 and Sec. 4.4.3).

From the above considerations, one can conclude that the original idea of the criticalexcitation is worth to be pursued, and deserves some more attention and developments.

A new technique to deal with uncertainty by setting up models suitable for convex(namely, ellipsoidal) optimization was proposed in the early 90's by Elishakoff and Ben-Haim.

5) Worst scenario approach

Page 68: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

68

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.4) Conclusions

This approach lends itself very well to deal with the problem of high-reliability aseismicdesign, especially when structures are treated as linearly elastic systems. The linearityof the equations allows, in fact, to arrive at closed-form, simple solutions for optimalproblems, and, after a seismicity model has been properly formulated, the procedure becomes very straightforward and the bounds rather sharp. Moreover, different types of macro-seismic information can be adopted; the energy of the accelerogram as well as itsPGA can be adopted to predict the intensity of the earthquake (see Secs. 5.3.2 and 5.3.4), while its power spectrum can be expected to be in a spherical neighborhood of some central site-dependent spectrum or more specifically in a suitably oriented and sized ellipsoidic neighborhood of it (see Secs. 5.3.3 and 5.3.4). In all cases, the more specialized is the information, the sharper is the bound with respect to concretelyexperimented earthquakes.

5) Worst scenario approach

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

"L'uso degli accelerogrammi nell'analisi sismica non lineare delle strutture“, Napoli, 2 Febbraio 2006

1. Comportamento sismico di strutture affette da nonlinearitàgeometriche e di materiale o da imperfezioni

2. Procedure di generazione di accelerogrammi sintetici3. Analisi probabilistica e commenti sul criterio di sicurezza4. Aspetti critici della risposta sismica5. Scelta dell’ accelerogramma: procedimento del “peggior

scenario”

SOMMARIO

6. Metodo del “peggior scenario” per strutture a comportamento nonlineare

Page 69: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

69

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

From the results briefly presented, it is possible to understand that dynamicseismic analysis yields rather unreliable results, unless a very complete analysisof stability of results is performed.

In particular, it would not be safe to assess the adequateness of a aseismicstructure founding on its performance under a single, or even more, earthquake, unless more effective and complete checkings are met.

It should be definitely realized that structures exposed to seismic shakingcannot have the same reliability as buildings in non-seismic sites.

One possible way to approach the problem, is to base the safety assessment on a full probabilistic model. A difficult task, when nonlinear response is delat with.

An alternative approach is to build up a worst scenario approach, searching for ground shaking that makes any response component the largest in the set of admissible (or “credible”) accelerograms.

PROBLEM: To select accelerograms for nonlinear analysis

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

3.1 The procedure From the above summary exposition of earthquake simulation, it is clear that after the vector l of the local characters has been assigned, any particular accelerogram depends onthe set of numbers xi constituting the random vector x. Since the modalities of their generation, such numbers should verify the following relationships, the closer the larger nxis (remember that nx is of the order 1,000 or more)

x n

x n

ii

n

x

i xi

n

x

=

=

=

− =

1

2

1

2

µ

µ σ( ) (4.6)

n a b n P b P a a b X( , ) [ ( ) ( )] ( , )= − ∀ ∈ 2 (4.7) where n(a,b) is a number of components of x falling in the interval (a,b), X is the range of the values of x, and P(x) is the distribution function of ~x .

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

Page 70: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

70

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

3.1 The procedure Assume now that one is interested, as it is the case here, in the worst situation that canoccur for a structure when it is acted on by earthquakes, apart from the decision concernedwith gross shaking parameters like PGA or total energy and so on. Having assumed the above scenario, for a given structure any component R of thestructural response will be a function of the sample vector x, conditioned on the assumedvalue of l

( )R R= x|l (4.8) The problem reduces then to maximize the function R (x | l ), with the components of xthat obey the above (4.6) - (4.7)

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

3.1 The procedure

( )Find R Max R | subjected to equalities

x n

x n

n a b n P b P a a b X

*

ii

n

x

i xi

n

x

=

=

− =

= − ∀ ∈

=

=

xx l

1

2

1

2

2

µ

µ σ( )

( , ) [ ( ) ( )] ( , )

(4.9)

Note that eqs. (4.6) - (4.7) are the conditions for which an admissible test accelerograma(t) can be associated to x by the generation process illustrated in the above.

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

Page 71: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

71

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Filter

Maximization on R

i=0 x i ; l

l : constantsrepresenting the localproperties of theaccelerograms

x : realization of aStandard Gaussianrandom vector x

synthetic accelerogramsgenerator:White Noise modulatedin a pure Shot Noise thenfiltered in order to complywith the site characters

ia R = Ri )l(x ;iModulator

new x

R* = R ( )l;x *

R < R*i

yes

no

x ; l*Modulator

Filter a*

i = i+1

R = R*i

k = 0

k = k+1

k > k f

END

R = Rmax i

yes

no

0 < < 1α

x i = i-1x x+ α21+ α

Accelerograms / Optimization process combined with sinthetic accelerograms

3.1 The procedure

The optimization can be executed by random-search procedures that verify the above constraints almost spontaneously (see Rao [22]); unlike the classical optimization methods which turn out to be inadequate for the constraints described. The procedure has been named by the author Driven Simulation (D.S.) and can be better understood observing the flow-chart on the right

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

3.1 The procedureNext, let α be a positive number not larger than unity, and generate a second random vector x from ~x and put

xx x

1 21=

+

+o α

α (4.11)

and calculate ( )R R1 1= x |l (4.12)

If the attempt made by the sample vector x is not successful, i.e. if R1 < Ro, a new perturbation vector x is generated and steps (4.11) -(4.12) are repeated until the attempt is successful, i.e. R1 > Ro. In this case xo can be subsituted by x1, Ro by R1, and the procedure is iterated in way to produce a sequence of vectors xo, x1,...xr,... yielding an increasing sequence of response values Ro, R1,...Rr,..., and the procedure ends when, after a reasonable number of trials,say kf, no vector x is randomly produced that yields a new successfull xi.

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

Page 72: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

72

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Worst scenario results by “optimizing simulation”

Accelerograms / Optimization process combined with sinthetic accelerograms

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Worst scenario results by “optimizing simulation”

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

Accelerograms / Optimization process combined with sinthetic accelerograms

Macroseismic parameters are calibrated by historical data and making useof regional seismicity models

V VI VII VIII IX X0

100

200

300

400

500

600

700

800

9001/λ (years)

Io(M.M.)

V VI VII VIII IX X0

200

400

600

800Richter corr.Margottini corr.

Io (M.M.)

PGA (cm/sec.2)

0 200 400 600 8000

200

400

600

800

Return Period (years)

Richter corr.Margottini corr.

PGA (cm/sec.2)

Page 73: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

73

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

Macroseismic parameters are calibrated by historical data and making useof regional seismicity models

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

Macroseismic parameters are calibrated by historical data and making useof regional seismicity models

Page 74: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

74

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

Macroseismic parameters are calibrated by historical data and making useof regional seismicity models

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Worst scenario results by “optimizing simulation”

Optimization process combined with stochastic generation of site-compatible synthetic accelerograms

Accelerograms / Optimization process combined with sinthetic accelerograms

3.4) Numerical results Elastic behaviour

0,0 0,5 1,0 1,50

200

400

600

800

1000Local Records.Max. Poss. Resp

o T (sec.)

Sa (cm/sec.2)

ζ= 5%a = 0.1gp

Fig.4.9: Comparison between acceleration spectrum response from data and maximum possible spectral ordinates.

ap =0.1gRecorded accelerograms are scaled to the samepeak acceleration

Page 75: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

75

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Worst scenario results by “optimizing simulation”

3.4) Numerical results – Elastic behaviour

0,0 0,5 1,0 1,5 2,00

100

200

R. P. = 25 ys.R. P. = 50 ys.R. P. = 100 ys.R. P. = 500 ys.

To (sec)

Sd max (cm)

ζ=5%

Fig. 4.10 Maximum displacement responses for some Return Periods design in Naples area

Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results –Perfectly plastic behaviour with ductility controlUnlike the elastic behaviour, the STF response in the plastic range cannot beexpressed by a factor of the expected peak acceleration ap at the site. Therefore, the maximum responses in term of displacement for several values of ap (150, 200, 250 cm/sec2) and of damping ratio ζ of the structure.(2%, 5%) have beencomputed.

The expected peak acceleration valuesconsidered correspond to the expectedvalues for a return period between 25 and 200 years roughly (see Fig. 4.8). A perfectly plastic model of the material behaviour has been assumed (Fig. 4.11) having a limit value of the accelerationrelevant to the plasticity thresholdao= 200 cm sec-2 ≅ 0.2 g.

u (cm)

a (cm/sec2)

ao

uo

Worst scenario results by “optimizing simulation”

Accelerograms / Worst scenario results by “optimizing simulation”

Page 76: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

76

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results –Perfectly plastic behaviour with ductility controlIn Fig. 4.12 one compares the maximum possible displacement spectrum in the linear elastic range, to the maximum possible displacement spectrum evaluatedconsidering a perfectly plastic behaviour, and for a value of the damping ratio ζ = 5%.

0,0 0,5 1,0 1,5 2,0

20

40

60

80

Sue max Sup max

To (sec)

Su max(cm) ap= 150 cm sec-2

ζ=5%

100

200

Sue max

Sup max

To (sec)

Su max (cm)ap= 250 cm sec-2

0,0 0,5 1,0 1,5 2,0

ζ=5%

Fig.4.12: Comparison of the maximum possible displacement spectrum for the elastic STF Sue max to the maximum possibledisplacement spectrum for the perfectly plastic material Sup max

ao= 0.2 g

Worst scenario results by “optimizing simulation”

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results –Perfectly plastic behaviour with ductility controlOne observes that for ap < ao the values of the plastic response are not dissimilar from the elastic ones, while for ap > ao the values of the displacement in the case of the perfectly plastic material are, as it was predictable, generally higher than the elastic ones.

0,0 0,5 1,0 1,5 2,0

20

40

60

80

Sue max

Sup max

To (sec)

Su max(cm) ap= 150 cm sec-2

ζ=5%

100

200

Sue max

Sup max

To (sec)

Su max (cm)ap= 250 cm sec-2

0,0 0,5 1,0 1,5 2,0

ζ=5%

Fig.4.12: Comparison of the maximum possible displacement spectrum for the elastic STF Sue max to the maximum possibledisplacement spectrum for the perfectly plastic material Sup max

ao= 0.2 g

Worst scenario results by “optimizing simulation”

Accelerograms / Worst scenario results by “optimizing simulation”

Page 77: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

77

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results–Perfectly plastic behaviour with ductility controlMoreover one can observe, through looking at the behaviour of the elastic spectrum, that for values of the natural vibration period around 1.8 sec. the curves always show an inflection before reaching the absolute maximum values of the displacement.

0,0 0,5 1,0 1,5 2,0

20

40

60

80

Sue max Sup max

To (sec)

Su max(cm) ap= 150 cm sec-2

ζ=5%

100

200

Sue max

Sup max

To (sec)

Su max (cm)ap= 250 cm sec-2

0,0 0,5 1,0 1,5 2,0

ζ=5%

Fig.4.12: Comparison of the maximum possible displacement spectrum for the elastic STF Sue max to the maximum possibledisplacement spectrum for the perfectly plastic material Sup max

Worst scenario results by “optimizing simulation”

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results–Perfectly plastic behaviour with ductility controlIn order to study the influence of the ratio between the expected maximumpossible peak acceleration ap and the plastic threshold acceleration ao on the ductility factor δ, one observes in Fig.4.13 the response spectra of the ductilityfactor δ = up/uo for several ratios ap/ao (0.75, 1, 1.5) and for two differentdamping factors ζ = 2% and ζ= 5%.

Fig. 4.13: Response spectra of the ductility factor0,0 0,5 1,0 1,5 2,0

0

20

40

60

80 ζ=2%

To

ap/ao = 0.75

ap/ao = 1 ap/ao = 1.25

0,0 0,5 1,0 1,5 2,0

20

40

60

80

ap/ao = 0.75

ap/ao = 1 ap/ao = 1.25

To

Sδ ζ=5%

Worst scenario results by “optimizing simulation”

Accelerograms / Worst scenario results by “optimizing simulation”

Page 78: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

78

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results–Perfectly plastic behaviour with ductility control

In Fig. 4.13 one observes that no evident difference can be detected for the values of δ by varying the damping factor. Moreover, the worst values of the response arise for own periods in the range [0.2, 1.0] sec. and for a dampingfactor ζ = 2%.

Fig. 4.13: Response spectra of the ductility factor0,0 0,5 1,0 1,5 2,0

0

20

40

60

80 ζ=2%

To

ap/ao = 0.75

ap/ao = 1 ap/ao = 1.25

0,0 0,5 1,0 1,5 2,0

20

40

60

80

ap/ao = 0.75

ap/ao = 1 ap/ao = 1.25

To

Sδ ζ=5%

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results–Perfectly plastic behaviour with ductility control

In Fig. 4.14 the ductility factor δ is plotted versus the ratio ap/ao for the most criticalnatural vibration periods of oscillation and for ζ = 2%.

Fig. 4.14: Response of the ductility factor varying ap/ao, for ζ = 2 %.0,4 0,6 0,8 1,0 1,2 1,4

20

40

60

80To = 0.2

To = 0.4

To = 0.6

ζ = 2%

δ

0,0

To = 1.0

aTo = 0.8

ap/ao

ζ = 2%

δ

Accelerograms / Worst scenario results by “optimizing simulation”

Page 79: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

79

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results–Perfectly plastic behaviour with ductility control

Tab. 4.II lists the values of the ratio ap/ao for a ductility factor δ = 4, usually adopted in plastic analysis, for ζ = 2%.

TABLE 4.II : ap/ao values for a ductility factor δ = 4 and for ζ=2 %.

0.830.750.770.950.640.530.620.48--ap/ao

1.81.61.41.21.00.80.60.40.2T0

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results: Perfectly plastic behaviour with P-∆ effect and ductility control

After the assumption of a elastic-plastic behaviour of the system, the maximum response is found in terms of displacement, ratherthan a factor of the expected peak acceleration at the site ap, like in the previous section. Therefore the maximum possible values of the displacements for different values of ap (150, 200, 250 cm sec-2) and of the damping coefficient ζ (2%, 5%) are found. The values of the peak accelerations assumed in the analysis represent the maximumexpected ground motion for return periods of 25 ÷ 200 years at the site of Naples, such values are based on the available data in theregion (Baratta et Zuccaro, 1992) [6]. One assumes an elastic threshold ao = ± 200 cm sec-2 and a critical displacement uk=66.6 cm. for a value of ϑ = 3 cm2 sec-2.

Accelerograms / Worst scenario results by “optimizing simulation”

Page 80: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

80

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results: Perfectly plastic behaviour with P-∆ effect and ductility control

In Fig. 4.15 one reports the comparison between the maximum possible spectrum of the response of the system supporting vertical loads and the maximum responsespectrum presented in the previous section, where no destabilizing effect wasconsidered and a perfectly plastic model was assumed.

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 150 cm sec-2Sy max

a)

ζ=2 %

To (sec.)

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 250 cm sec -2Sy max

ζ=2 %

c)

To (sec.)

Sy Spectra:

y = u/uk

Fig. 4.15: Comparison between the maximum spectrum of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ= 2%

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results: Perfectly plastic behaviour with P-∆ effect and ductility control

Figs. 4.15 a), b), and c) show, respectively, the behaviour of the spectra for the valuesof ap=150, ap=200 and ap=250 cm sec-2 and for a damping factor equal to 2 %. Fig. 4.16 shows the same comparison for the damping factor equal to 5 %.

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 150 cm sec-2Sy max

a)

ζ=2 %

To (sec.)

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 250 cm sec -2Sy max

ζ=2 %

c)

To (sec.)

Spettri Sy:

y = u/uk

Fig. 4.15: Comparison between the maximum spectrum of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ= 2%

Accelerograms / Worst scenario results by “optimizing simulation”

Page 81: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

81

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results: Perfectly plastic behaviour with P-∆ effect and ductility control

Fig. 4.16 shows the same comparison for the damping factor equal to 5 %.

Spettri Sy:

y = u/uk

Fig. 4.16: Comparison between the maximum spectrum of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ= 5%

Sy max (V.L.)To (sec.)

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L)

ap = 150 cm sec -2Sy max

ζ=5 %

a)

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)Sy max (V.L.)

ap = 250 cm sec-2

To (sec.)

Sy maxζ= 5 %

c)

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results: Perfectly plastic behaviour with P-∆ effect and ductility control

The spectra are non-dimensional and normalized to the value of the criticaldisplacement uk (see Sec.2). Therefore, the values of the response equal to unityrepresent the collapse of the structure. The maximum values of the response when the phenomenon of destabilization is considered, are generally larger then the values of the system without vertical loads.

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 250 cm sec -2Sy max

ζ=2 %

c)

To (sec.)

Spettri Sy:

y = u/uk

Fig. 4.16: Comparison between the maximum spectrum of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ= 5%

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)Sy max (V.L.)

ap = 250 cm sec-2

To (sec.)

Sy maxζ= 5 %

c)

Accelerograms / Worst scenario results by “optimizing simulation”

Page 82: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

82

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results: Perfectly plastic behaviour with P-∆ effect and ductility control

A moderate influence of the damping factors on the maximum values of the response is remarked, while these show more sensitivity to variations in ap.

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 250 cm sec -2Sy max

ζ=2 %

c)

To (sec.)

Spettri Sy:

y = u/uk

Fig. 4.16: Comparison between the maximum spectrum of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ= 5%

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)Sy max (V.L.)

ap = 250 cm sec-2

To (sec.)

Sy maxζ= 5 %

c)

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.4) Numerical results: Perfectly plastic behaviour with P-∆ effect and ductility control

A moderate influence of the damping factors on the maximum values of the response is remarked, while these show more sensitivity to variations in ap.

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 250 cm sec -2Sy max

ζ=2 %

c)

To (sec.)

Spettri Sy:

y = u/uk

Fig. 4.16: Comparison between the maximum spectrum of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ= 5%

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)Sy max (V.L.)

ap = 250 cm sec-2

To (sec.)

Sy maxζ= 5 %

c)

Accelerograms / Worst scenario results by “optimizing simulation”

Page 83: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

83

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) Discussion

Considering the results obtained for the elastic behaviour, the maximum possible valuesof the structural response seem to be usable for operative purposes. In fact, if one considers the PGA and the maximum value of the spectral acceleration responseobtained by the 1980 earthquake set of data, the amplification factor Af = Sa/ap is 2.5 times smaller than the analogous factor obtained by the ratio between the maximumpossible values of the acceleration response of the structure and ap (Fig. 4.9).

0,0 0,5 1,0 1,5 2,00

200

400

600

800

1000Local Records.Max. Poss. Resp

To (sec.)

Sa (cm/sec.2)

ζ= 5%a = 0.1gp

Fig.4.9: Comparison between acceleration spectrum response from data and maximum possible spectral ordinates.

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) Discussion

This result can be considered acceptable if one takes into account that the response estimated is the maximum possible and the high degree of reliability that can be attained.One observes that beginning from the maximum possible values of the response reported above, any reduction philosophy can be adopted to define the acceleration to assume for High Reliability Aseismic Design (HRAD).

0,0 0,5 1,0 1,5 2,00

200

400

600

800

1000Local Records.Max. Poss. Resp

To (sec.)

Sa (cm/sec.2)

ζ= 5%a = 0.1gp

Fig.4.9: Comparison between acceleration spectrum response from data and maximum possible spectral ordinates.

Accelerograms / Worst scenario results by “optimizing simulation”

Page 84: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

84

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) Discussion

Of course, the choice to introduce any reduction factor depends on the expense percentage the community should be ready to invest to adopt HRAD to structures of particular interest. Analyses on this subject (Zuccaro 1991 [5]) showed that for structures with To > 1.5 sec (e.g. steel frame) the HRAD is not prohibitive, while for structures with To < 1.5 sec (e.g. reinforced concrete frame) the adoption of special aseismic structural type is needed.

0,0 0,5 1,0 1,5 2,00

200

400

600

800

1000Local Records.Max. Poss. Resp

To (sec.)

Sa (cm/sec.2)

ζ= 5%a = 0.1gp

Fig.4.9: Comparison between acceleration spectrum response from data and maximum possible spectral ordinates.

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) Discussion

The introduction of the assumption that the structure, during the excitation, couldexceed the elastic limit has allowed to reduce the theoretical threshold of the maximumstrength a structure can undergo. Let us consider, to this end, the values of Tab.4.II, which vary between 0.48 and 0.95. Assuming a mean coefficient ap /ao = 0.72 one getsa design acceleration ao as 1.4 times the expected peak acceleration ap at the site.

Fig.4.9: Comparison between acceleration spectrum response from data and maximum possible spectral ordinates.

TABLE 4.II : ap/ao values for a ductility factor δ = 4 and for ζ=2 %.

0.830.750.770.950.640.530.620.48--ap/ao

1.81.61.41.21.00.80.60.40.2T0

0,4 0,6 0,8 1,0 1,2 1,4

20

40

60

80To = 0.2

To = 0.4

To = 0.6

ζ = 2%

δ

0,0

To = 1.0

aTo = 0.8

Accelerograms / Worst scenario results by “optimizing simulation”

Page 85: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

85

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) DiscussionIf one considers ap= 0.25 g (return period 200 roughly years), one obtains ao= 0.35 g; the values of a’o (the structure strength), obtained performing a limit state analysisaccording to the code and with a ductility coefficient δ =4 as in Tab. 4.II, is a’o = 0.1 g for a site of I° seismic category in Italy. Thus, considering a safety coefficient equal to2, a’o becomes equal to 0.2 g; in this case the amplification factor Af = ao/a’o = 1.7 results reduced with respect to the elastic case. By analysing the values of Tab. 4.II one can infer that varying the natural vibration period of the structure To, the value Af isalways within the range [1,2], demonstrating a considerable reduction of the theoreticalbound calculated in the case of elastic response.

Fig.4.9: Comparison between acceleration spectrum response from data and maximum possible spectral ordinates.

TABLE 4.II : ap/ao values for a ductility factor δ = 4 and for ζ=2 %.

0.830.750.770.950.640.530.620.48--ap/ao

1.81.61.41.21.00.80.60.40.2T0

0,4 0,6 0,8 1,0 1,2 1,4

20

40

60

80To = 0.2

To = 0.4

To = 0.6

ζ = 2%

δ

0,0

To = 1.0

aTo = 0.8

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) Discussion

From the analysis of the results obtained by investigation of the influence of the stability phenomenon on the maximum possible response of a sdof system one can make following conclusions:1) The maximum possible response of a SDOF system supporting vertical load seems tobe not significantly influenced by the damping factor ζ;

Comparison between the maximum spectra of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ = 5 %.

Sy max

ζ= 2 %

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)Sy max (V.L.)

ap = 200 cm sec -2b)

To (sec.)

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 200 cm sec-2Sy max

ζ=5 %

b)

To (sec.)

Accelerograms / Worst scenario results by “optimizing simulation”

Page 86: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

86

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) Discussion

2) The maximum values of the spectra obtained considering the stability phenomenonare larger than those produced without the vertical loads; moreover, the structurereaches the collapse for relatively small values of ap and any ζ, and for any naturalperiod above 0.8 sec. Hence the structures with longer natural period (e.g. steel structures) show to be more affected by P − ∆ problems;

Comparison between the maximum spectra of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ = 5 %.

Sy max

ζ= 2 %

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)Sy max (V.L.)

ap = 200 cm sec -2b)

To (sec.)

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)

Sy max (V.L.)

ap = 200 cm sec-2Sy max

ζ=5 %

b)

To (sec.)

ap/ao = 1

Accelerograms / Worst scenario results by “optimizing simulation”

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

3.5) Discussion

3) Since the maximum possible response turns out to be coinsiderably influenced by the maximum expected peak acceleration at the site ap, it is suggested to pay an attention in the calibration of this parameter through sophisticated hazard modelling beforeperforming high-reliability aseismic tests.

Comparison between the maximum spectra of displacement obtained without the Vertical Loads and with Vertical Loads, both in the elastic-plastic phase and for a damping factor ζ = 5 %.

ap/ao = 0.75

Sy max (V.L.)To (sec.)

0,0 0,5 1,0 1,5 2,00,0

0,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L)

ap = 150 cm sec -2Sy max

ζ=5 %

a)

0,0 0,5 1,0 1,5 2,00,2

0,4

0,6

0,8

1,0

1,2

Sy max (No V.L.)Sy max (V.L.)

ap = 250 cm sec-2

To (sec.)

Sy maxζ= 5 %

c)

ap/ao = 1.25

Accelerograms / Worst scenario results by “optimizing simulation”

Page 87: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

87

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Conclusions 1

The interaction of ground shaking with structure's dynamicsis strongly dependent on the mechanical pattern is set up.

For instance, explicit account of P-∆ effect in framestructures or turning from 2-D to 3-D analysis drasticallychange seismic performance

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Conclusions 2

Degrading mechanical models are very sensitive to the details of the excitation.

Negligible random changes in the ordinates of an accelerogram yield non-negligible changes in the response.

Page 88: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

88

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Conclusions 3

Uncontrolled variations of the mechanical parameters through the structure's body affect the response much more than a proportional relation.

Intentional or incidental or random asymmetry in strength is one factor of increasing damage.

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Conclusions 4

If a small number of sample accelerograms are tried, it is highly probable that two different operators arrive at very different conclusions.

Freedom in the selection of a few accelerograms leaves the possibility open that the operator decides by himself the result.

Page 89: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

89

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Conclusions 5

Worst scenario approaches yield results that are practical but may be very severe in the context of a generalized economy-compatible seismic protection.

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Conclusions 5

The destructive potential of ground-shaking depends on the details of the excitation as well as on macro-seismic characters.

The simulation pattern should be strictly modelled with specific reference to the site geo-properties.

Page 90: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

90

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.5) Bibliography1. Baratta A., Margiotta P. (1982): Some Remarks on Structural response under earthquakes, Proc. VII European Conference on Earthquake Engineering, Athens, Greece, pp. 134-142

2. Baratta A. (1979): Earthquake Simulation in Aseismic Engineering, Proc. Int. Symp. "Symulation of Systems", Sorrento, Italy, pp.517-536, North-Holland P.C.

3. Baratta A. (1980): Analisi dei Dati e Simulazione per la Sicurezza Antisismica delle Costruzioni, Proc. of the Nat. Conf. "L' Ingegneria Sismica in Italia", Udine (Italy), pp. 1-13. (in Italian)

4. Baratta A. (1981): Optimized Earthquake Simulation for High-Reliability Aseismic Design, Proc. 3rd Int. Seminar on "Reliability of Nuclear Power Plants", Paris (France), pp. 299-300..5. Zuccaro G. (1991): Accelerogramma di Progetto per Verifiche ad Alta Affidabilita': Analisi Costi-Benefici., Proc. 5th National Congress

L'ingegneria Sismica in Italia, Palermo, Italy, pp. 1504-1517

6. Baratta A. , Zuccaro G. (1992): High-Reliability Aseismic Design, Proc. Tenth World Conference on Earthquake Engineering, Madrid, Spain, pp. 3739-3744.

7. Baratta A. , Zuccaro G. (1993): Previsione di Risposta Nonlineare per Progettazione Antisismica ad Alta Affidabilita', Atti VI Convegno Nazionale: L' Ingegneria Sismica in Italia, Perugia, Italy, pp. 1193-1199. (in Italian)

8. Baratta A. , Zuccaro G. (1994): Worst Response of Structures under Not Sharply DefinedGround Motion, Proc. 10th European Conference on Earthuake Engineering, Vienna, pp. 1179-1183.

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.5) Bibliography9. Ruiz P., Penzien J. (1969): Probabilistic Study of the Behaviour of Structures During Earthquakes,

Internal Report, Earthquake Engineering Research Center, College of Engrg., University of California, Berkeley..

10. Ruiz P., Penzien J. (1971): Stochastic Seismic Response of Structures, Proc. ASCE, vol. 97, N. EM2, pp.441-456.

11. Drenick R.F. (1970): Model-Free Design of Aseismic Structures, Proc. ASCE, Journ. of Engineering Mechanics Division, Vol. 96,N. EM4, pp. 483-493,1970.

12. Drenick R.F. (1973): Aseismic Design by Way of Critical Excitation, Proc. ASCE, Journ of Engineering Mechanics Division, Vol. 99, N. EM4, pp. 649-667.

13. Drenick R.F. (1977): On the class of the Non-Robust Problems in Stochastic Dynamics, in "Stochastic Problems in Dynamics", B.L. Clarkson ed., Pitman, London, pp. 237-255.

14. Drenick R.F., Yun C.B: (1979): Reliability of Seismic Resistance Predictions, Journal of the Structural Division, Vol. 105, pp.1879-1891.

15.Shinozuka M. (1970): Maximum Structural Response to Seismic Excitations, Journal of EngineeringMechanics Division, Vol. 96, 729-738, 1970.

16.Elishakoff I., Pletner B. (1991): Analysis of Base Excitation as an Uncertain Function with Specified Bounds on It and Its Derivatives, in Structural Vibration and Acoustics (T.C.Huang et al, eds.) DE-Vol. 34, ASME, pp.177-184.

Page 91: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

91

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.5) Bibliography17.Zuccaro G., Elishakoff I., Baratta A. and Shinozuka M. (in print): Ellipsoidal Modeling of Earthquakes

18.Baratta A., Elishakoff I., Zuccaro G. and Shinozuka M. (in print): A Convex Model for Bounds on The Seismic Response of Linear Structures

19.Ben-Haim Y., Elishakoff I. (1990): Convex Modeling of Uncertainty in Applied Mechanics, ElsevierScience Publishers, Amsterdam.

20.Schweppe F.C. (1973): Uncertain Dynamical Systems, Prentice Hall, Englewood Cliff, NJ.

21.Elishakoff I., Ben-Haim Y. (1990): Dynamics of a Thin Cylindricxal Shell Under Impact withLimited Deterministic Information on Its Initial Imperfection, Structural Safety, Vol. 8, pp. 103-112.

22.Rao S.,S. (1978): Optimization: Theory and Applications, Wiley E.L., New Delhi

23. Coburn A.W., Spence R. and Zuccaro G., (1986): Seismic Risk to Population in Campania, a Model for Regional Planning, Final Report, Joint Research University of Cambridge, “The Martin Centre” and University of Naples "Research Centre LUPT”

24. Baratta A., Cacace F., (1986): Modello Probabilistico di Pericolosita’ Finalizzato all’Analisi di Rischio Sismico, Proc. 1st International Conference Towards the New Planning, vol. I°, pp.113-140, Naples, Italy.

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

Accelerograms / Optimization process combined with sinthetic accelerograms

5.5) Bibliography25. Cornell C., A., (1968): Engineering seismic risk analysis, Bulletin of the Seismological Society of

America, 58, 5, pp 1583-1606.

26. Gutenberg B., Richter C., F., (1954): Seismicity of the Earth and Associated Phenomena, Princetown University Press.

27. Coburn A.W., Sakay R.J.S., Spence R. and Pomonis A. (1990): A Parameterless Scale of SeismicIntensity for Use in Vulnerability Assessment, Final Report. Cambridge Architectural research Ltd.

Page 92: Risultati e problematiche emergenti nel comportamento di ... · PDF fileA. Baratta: Risultati e ... Risultati e problematiche emergenti nel comportamento di sistemi strutturali non

92

A. Baratta: Risultati e problematiche per la generazione di accelerogrammi sismici sintetici

The EndThank You for Your attention