per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE...

14
Commento alla seconda prova scritta dell’esame di stato 2004 per geometri e per periti edili prima parte ( 1 ) Paolo Aminti (*), Giuseppe Manzino (**), Claudio Pigato (***) (*) Istituto Tecnico Statale per Geometri “Calamandrei” – Sesto Fiorentino (FI) E-mail: [email protected] (**) Istituto Tecnico Statale "Luigi Casale" di Vigevano (PV) E-mail: [email protected] (***) Istituto Tecnico Statale per Geometri “Bernini” – Rovigo E-mail: [email protected] ( 1 ) La seconda parte contiene il commento alla prova suppletiva e alla prova per periti edili RIASSUNTO Si espone lo svolgimento dei temi assegnati e un breve commento della seconda prova scritta di Topografia degli esami di stato per geometri e periti edili svolti nel mese di Giugno 2004. Si espongono inoltre alcune varianti risolutive ai problemi, evidenziandone le caratteristiche didattiche. ABSTRACT The authors show an analysis and a comparison between solutions of the theme of Topography assigned in the final examinations of the Italian Technical High School in June 2004. 1. TEMA ASSEGNATO AGLI ITSG Corso Ordinario e Serale CORSO DI ORDINAMENTO Indirizzo: GEOMETRI Tema di: TOPOGRAFIA Ad un Geometra viene affidato l'incarico di frazionare un terreno ABCDEA, i cui vertici si susseguono in senso orario, in vista di due diversi futuri interventi di natura altimetrica. Da un precedente rilievo, della cui attendibilità il Tecnico è certo, viene a conoscenza della superficie reale del terreno, che è di 42.287,26 mq, e di alcuni elementi, misurati con un teodolite elettronico centesimale, raccolti nel seguente libretto: Stazione Punti collimati C.O. (gon) C.V. (gon) Distanze (m) Altezza prisma (m) B = 1,544 C 0,0000 - - - A 119,9315 - 141,328 - P 258,8637 92,5764 - 1,60 R 289,6573 90,6449 - 1,60 S 348,0114 95,1620 - 1,60 A B 0,0000 - 141,328 - E 121,3236 - 179,393 - E A 0,0000 - 179,393 - D 105,3125 - - - C D 0,0000 - - - B 102,8513 - - - ove i punti P,R,S sono elementi visibili dal vertice B e di coordinate note rispetto ad un sistema di riferimento locale (il punto B si trova alla destra di un osservatore che da P guarda il vertice R): Xp = 501,027 m; Yp = 398,198 m; Zp = 109,116 m; XR = 532,769 m; YR = 390,325 m; ZR = 108,100 m; XS = 587,964 m; YS = 397,768 m; ZS = 106,886 m.

Transcript of per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE...

Page 1: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

Commento alla seconda prova scritta dell’esame di stato 2004 per geometri e

per periti edili – prima parte (1)

Paolo Aminti (*), Giuseppe Manzino (**), Claudio Pigato (***)

(*) Istituto Tecnico Statale per Geometri “Calamandrei” – Sesto Fiorentino (FI) – E-mail: [email protected]

(**) Istituto Tecnico Statale "Luigi Casale" di Vigevano (PV) – E-mail: [email protected]

(***) Istituto Tecnico Statale per Geometri “Bernini” – Rovigo – E-mail: [email protected]

(1) La seconda parte contiene il commento alla prova suppletiva e alla prova per periti edili

RIASSUNTO Si espone lo svolgimento dei temi assegnati e un breve commento della seconda prova scritta di Topografia degli esami

di stato per geometri e periti edili svolti nel mese di Giugno 2004. Si espongono inoltre alcune varianti risolutive ai

problemi, evidenziandone le caratteristiche didattiche.

ABSTRACT The authors show an analysis and a comparison between solutions of the theme of Topography assigned in

the final examinations of the Italian Technical High School in June 2004.

1. TEMA ASSEGNATO AGLI ITSG – Corso Ordinario e Serale

CORSO DI ORDINAMENTO

Indirizzo: GEOMETRI

Tema di: TOPOGRAFIA

Ad un Geometra viene affidato l'incarico di frazionare un terreno ABCDEA, i cui vertici si susseguono in senso orario, in vista di due

diversi futuri interventi di natura altimetrica.

Da un precedente rilievo, della cui attendibilità il Tecnico è certo, viene a conoscenza della superficie reale del terreno, che è di

42.287,26 mq, e di alcuni elementi, misurati con un teodolite elettronico centesimale, raccolti nel seguente libretto:

Stazione Punti collimati C.O. (gon) C.V. (gon) Distanze (m) Altezza prisma (m)

B

= 1,544

C 0,0000 - - -

A 119,9315 - 141,328 -

P 258,8637 92,5764 - 1,60

R 289,6573 90,6449 - 1,60

S 348,0114 95,1620 - 1,60

A B 0,0000 - 141,328 -

E 121,3236 - 179,393 -

E A 0,0000 - 179,393 -

D 105,3125 - - -

C D 0,0000 - - -

B 102,8513 - - -

ove i punti P,R,S sono elementi visibili dal vertice B e di coordinate note rispetto ad un sistema di riferimento locale (il punto B si trova

alla destra di un osservatore che da P guarda il vertice R):

Xp = 501,027 m; Yp = 398,198 m; Zp = 109,116 m;

XR = 532,769 m; YR = 390,325 m; ZR = 108,100 m;

XS = 587,964 m; YS = 397,768 m; ZS = 106,886 m.

Page 2: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

Il Tecnico incaricato, ritenendo sufficienti i dati a disposizione per la risoluzione del frazionamento, rimandando ad una fase successiva la

scelta di un idoneo schema di rilievo per l'atto di aggiornamento catastale, effettua una livellazione geometrica dal mezzo composta

lungo la linea chiusa ABCDEA, ottenendo i seguenti dislivelli:

Il Candidato determini:

1. Le misure dei lati incogniti del terreno (BC, CD, DE).

2. Relativamente al vertice B, le coordinate compensate (rispetto al sistema di riferimento locale assegnato) e la quota

compensata.

3. Le coordinate planimetriche e le quote compensate dei vertici della poligonale chiusa ABCDEA. A tal fine si utilizzi la seguente

tolleranza prefissata:

Tolleranza altimetrica in metri: TA = 0,004 , con P perimetro della poligonale espresso in metri.

4. Frazioni il terreno in tre parti proporzionali ai numeri 2, 3, 5 con dividenti uscenti dal vertice A, in maniera tale che

l'area minore contenga il vertice E e la maggiore il vertice B.

5. Rediga infine il relativo piano quotato, con l'esplicazione grafica del frazionamento, in scala opportuna.

Il candidato ha facoltà, inoltre, di elencare o descrivere quali elaborati tecnici sarebbero da predisporre per l'atto di aggiornamento

catastale, scegliendo un opportuno schema di rilievo.

Durata massima della prova: 8 ore.

È consentito soltanto l'uso di manuali tecnici, calcolatrici non programmabili ed attrezzatura da disegno.

Non è consentito lasciare l'Istituto prima che siano trascorse 3 ore dalla dettatura del tema.

Il tema assegnato al corso di ordinamento e al corso sperimentale Sirio degli Istituti tecnici per geometri era

identico e, come si vede, si articola in 5 quesiti finalizzati al rilievo e al frazionamento di un appezzamento

di terreno di forma pentagonale. Nella figura 1 riportiamo lo schema grafico che illustra il tema proposto.

1.1 Disegno della planimetria

Dalla conoscenza delle coordinate dei tre punti P, R e S e dalla lettura del libretto delle misure si può

disegnare la planimetria del rilievo, adottando la soluzione grafica per individuare la posizione del punto B,

determinabile con lo schema di Snellius-Pothenot (intersezione inversa).

Si determinano anzitutto gli angoli che le direzioni uscenti da B verso i tre punti di coordinate note formano

tra loro:

3 = 7936,308637,2586573,289ˆ RBP gon

4 = 3541,586573,2890114,348ˆ SBR gon

Verificato quindi che il punto B deve necessariamente stare sotto gli allineamento PR – RS, data la sequenza

degli angoli di direzione che aumenta andando verso destra da P ad R, si riportano gli angoli soprariportati

dalla parte opposta di tali allineamenti, si manda le perpendicolari rispettivamente dai vertici P e S che,

congiunte con gli assi dei segmenti PR e RS, permette di determinare i centri delle due circonferenze la cui

intersezione è il punto P.

Sfruttando quindi le letture dalla stazione B si possono determinare la direzione del vertice C, di cui è

incognita la distanza, e la posizione di A. Dalle collimazioni in A si deduce quindi la posizione di E. La

posizione dei vertici C e D deve essere rimandata, dato che la loro posizione dovrà risultare imponendo che

l’area dell’appezzamento ABCDE risulti pari a 42.287,26 m2.

Tale situazione ha comportato non poche difficoltà di esecuzione dei candidati, dato che tale imposizione

non può essere eseguita graficamente, e quella analitica è abbastanza laboriosa. Riteniamo inoltre non molto

probabile che possa capitare nella pratica un problema simile, dato che il tecnico rilevatore avrebbe potuto

determinare con semplicità le distanze richieste, verificando così il dato dell’area in suo possesso.

Si passa pertanto alla soluzione analitica del problema, rimandando il completamento della planimetria dopo

aver determinato analiticamente i lati richiesti dal primo quesito.

Page 3: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

Fig. 1: schema risolutivo del problema

1.2 Determinazione dei lati incogniti

Per imporre la condizione che l’area dell’appezzamento sia pari a quella assegnata conviene prima depurare

l’area del triangolo ABE, facilmente determinabile:

m 11.972,14 sen AE AB 2

1)( 2 ABEA

m 30.315,12 )()( 2 ABEAABCDEA T

Si osservi che i calcoli sono stati effettuati utilizzando lo stesso numero di cifre significative del dato

assegnato, anche se, ai fini pratici, nel caso in esame potevano essere omessi i decimali. Per determinare la

precisione dell’area si dovrebbe usare la formula di trasmissione degli errori di Gauss, comunque una

determinazione approssimativa delle cifre da usare può essere data dal conteggio delle cifre significative: nel

caso in esame le distanze sono con 6 cifre significative, cui corrisponde un decimale per l’area.

Inoltre, si è preferita l’uso delle indicazioni del sistema di misura S.I. (m2 e non mq, m e non m.), come

previsto dal DPR 12/08/1982, n. 802.

Prolungando ora i lati BC e ED fino ad intersecarli nel punto F, si ottiene il triangolo BEF del quale può

essere determinata l’area, con i seguenti passaggi.

m 262,343 cos AE AB2-AEAB 2

1BE

22

1 = 6960,44ˆ

BE

senAEarcsenABE

gon

(può essere usato il teorema dei seni in quanto, essendo ottuso, sicuramente 1 dovrà essere acuto)

Page 4: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

2 = - 1 = 75,2355 gon ; 1 = 200 – ( + 1) = 33,9804 gon

2 = – 1 = 71,3321 gon ; EFB = 200 – (2 + 2) = 53,4324 gon

m 38.520,97 EFBsen

sen sen EB

2

1)( 222

2

BEFA

Decurtando da tale area quella del quadrilatero BCDE resta quella del triangolo DCF, del quale sono noti i

tre angoli; quindi applicando la formula inversa dell’area può determinarsi la lunghezza del lato CF:

m 8.202,86 )()()( 2 BCDEABEFACDFA

m 124,365 EFCsen FCDsen

CDF sen A(CDF) 2 CF

Con il teorema dei seni possono calcolarsi ora gli altri lati dei triangoli CDF e BFE:

m 177,328 DF ; m 132,098 CD

m 326,186 EF ; m 317,381 BF

Siamo così ora in grado di determinare i lati incogniti per differenza:

m ,858148 DF - EF DE ; m 193,016 CF - BF BC

1.3 Determinazione delle coordinate e della quota compensata di B

Le coordinate del punto B possono essere ottenute applicando lo schema risolutivo di Snellius-Pothenot. Nel

caso in esame la determinazione delle coordinate planimetriche di B è isodeterminata, non è quindi possibile

effettuare alcuna compensazione, come richiesto dal tema.

Proponiamo due metodi alternativi per la risoluzione di questo problema (nel testo indicheremo con gli

azimut e con parentesi tonda le direzioni osservate).

a) primo metodo

gon 4667,91arctan ; gon 4778,315400arctanRS

RSRS

RP

RPRP

yy

xx

yy

xx

m 55,695 RS ; m 32,704 RP2

RS

2

RS

2

RP

2

RP yyxxyyxx

gon 0111,224 - PRS RSRP

gon 0622,50arctan3

4

senRS

senPR

gon 4206,432

)PRS(400

2

43

gon 0506,0)-(50 tan 2

tanarctan2

Page 5: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

gon 43,4712 0,0506 4206,43

gon 43,3700 0,0506- 4206,43

m 64,609)( sen sen

PR PB ; gon 8478,158 3

3

PRPB

m 346,624 cos PB

m 539,943 sen PB

PBPB

PBPB

yy

xx

b) secondo metodo

Questo metodo, a differenza del precedente, permette il controllo di tutti gli elementi misurati, in quanto

tutti gli elementi calcolati sono geometricamente rappresentati e possono pertanto essere verificati.

Si considera una circonferenza passante per P, R e B, che può essere quella utilizzata per la soluzione

grafica, ma potrebbe anche essere una circonferenza provvisoria.

Detto K il punto di intersezione di tale circonferenza con l’allineamento BS, si osservi che nel triangolo PRS

gli angoli in K e in P sono pari rispettivamente a 3 e 4, essendo angoli alla circonferenza che insistono sul

medesimo arco. Applicando il teorema dei seni a tale triangolo si ottiene:

m 69,303 )( sen sen

PR PK 43

3

gon 8319,1734PRPK ;

m 334,668 cos PK

m 528,718 sen PK

PKPK

PKPK

yy

xx

Dalla conoscenza delle coordinate di K possiamo ora ricavare l’azimut KS, che coincide con l’azimut BS:

gon 8476,358400)(

; gon 9953,47arctan

43BSBP

KS

KSBSKS

yy

xx

gon 43,3698 115,4778 - 158,8476 - PRPB

m 64,609)( sen sen

PR PB 3

3

m 346,624 cos PB

m 539,943 sen PB

PBPB

PBPB

yy

xx

Per quanto riguarda la quota del punto B, dato che sono possibili tre determinazioni della quota si procede

alla compensazione empirica, effettuando la media ponderata delle tre misurazioni, utilizzando come peso

l’inverso del quadrato delle distanze.

Anzitutto calcoliamo le distanze tra il punto di stazione e i punti R e P:

m 70,155 BS ; m 44,286 BR2

BS

2

BS

2

RB

2

RB yyxxyyxx

Nel calcolare i dislivelli misurati tralasciamo il contributo di sfericità e rifrazione, date le piccole distanze.

Non è chiaro però il motivo per cui l’altezza del prisma sia presente solo in corrispondenza delle misure

angolari, prive di quella di distanza. Se un ipotetico canneggiatore ha posizionato il prisma nei punti P, R ed

S, ad una distanza così breve, perché non è stata presa la distanza, che avrebbe permesso di evitare lo

schema risolutivo di Snellius-Pothenot? Ancora meno chiara è la circostanza che in corrispondenza dei punti

in cui è stata determinata la distanza non compare l’altezza del prisma. Si segnala inoltre che l’altezza

strumentale è stata erroneamente indicata con HA anziché HB.

Page 6: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

m 5,286 cot -

m 6,499 cot -

m 7,512 cot -

BSSBBS

BRRBBR

BPPBBP

dhh

dhh

dhh

La quota del punto B può così essere determinata in tre modi distinti:

QB1 = ZP - BP = 101,604 m

QB2 = ZR - BR = 101,601 m

QB3 = ZS - BS = 101,600 m

Viste le distanze molto simili e ridotte e considerati i valori praticamente uguali dei dislivelli, la media

ponderata precedentemente indicata non porterebbe a sensibili aumenti della precisione della

determinazione della quota. Si effettua quindi la media aritmetica dei tre valori determinati:

QB = 101,602 m

1.4 Determinazione delle coordinate e delle quote compensate dei vertici della poligonale

Anche qui non è possibile determinare le coordinate compensate dei vertici della poligonale poiché gli

elementi misurati sono strettamente sufficienti alla loro determinazione, come effettivamente non era

richiesto dal tema. Del pentagono BAEDC sono noti infatti soli tre elementi metrici (area, lati BA e AE) e

quattro angoli.

Si procede quindi al calcolo delle coordinate planimetriche, calcolando dapprima gli azimut:

gon 9156,219)()( BPBPBA BABPPBA

gon 2392,141200)()(200 BABAAE ABAEBAE

gon 5517,46200)()(200 AEAEED EAEDAED

gon 9841,99)()( BABABC BCBAABC

Si possono ora determinare le coordinate dei vertici della poligonale:

m 212,155 cos BA

m 496,449 sen BA

BABA

BABA

yy

xx

m 103,906 cos AE

m 639,501 sen AE

AEAE

AEAE

yy

xx

m 214,708 cos ED

m 738,906 sen ED

EDED

EDED

yy

xx

m 346,672 cos BC

m 732,959 sen BC

BCBC

BCBC

yy

xx

Per il calcolo delle quote compensate, calcoliamo dapprima l’errore di chiusura altimetrico,

h = AB + BC + CD + DE +EA = -0,025 m

che è inferiore alla tolleranza altimetrica prefissata :

th = 0,004 l = 0,110 m

Trattandosi di livellazione geometrica, ripartiamo l’errore di chiusura altimetrico tra i vari dislivelli in parti

proporzionali alle distanze tra i vari vertici, mediante il calcolo dell’errore unitario.

Page 7: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

m/m 10 459,31EADECDBCAB

6-

h

hu

Si possono ottenere ora i dislivelli e le quote compensate:

m 863,99Q Q ; m 1,739 AB cAB,BAABcAB, hu

m 680,100Q Q ; m 0,922- BC BC,cBCBCBC,c hu

m 809,99Q Q ; m 0,871- CD CD,cCDCDCD,c hu

m 388,100Q Q ; m 0,579 DE DE,cDEDEDE,c hu

Per verifica, ricalcoliamo la quota di A:

m 863,99Q Q ; m ,5310 EA EA,cEAEAEA,c hu

1.5 Frazionamento dell’appezzamento di terreno

Conoscendo i coefficienti di proporzionalità delle parti in cui sarà suddiviso il fondo, possiamo subito

calcolare le loro aree.

m 8.457,45 2 532

A A(AEG) A 2T

2

m 12.686,18 5 532

A A(AGDH) A 2T

3

m 21.139,13 5 532

A A(ABCH) A 2T

5

La prima dividente AG si determina subito dalla formula dell’area del triangolo AEG, verificando

analiticamente dopo che si tratta effettivamente di un triangolo, cioè che la dividente cade sul lato ED:

ED m 94,619 AED sen AE

A 2 EG 2

Per il calcolo della seconda dividente, conviene calcolare dapprima l’area del triangolo ABC, e quindi

considerare il triangolo ACH:

m 12.976,24 ABC sen BC AB 2

1 A(ABC) 2

A(ACH) = A5 – A(ABC) = 8.167,39 m2

m 272,088 ABC cos BC AB 2 - BC AB AC22

Page 8: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

9056,32

AB

senABCACarcsenACB gon

CD m 67,408 ACH sen AC

A(ACH) 2 CH

1.6 Conclusioni

Il tema assegnato, secondo la nostra opinione, era troppo lungo da svolgere considerando le normali capacità

degli allievi geometri, va anche considerato che gran parte degli elementi richiesti erano attinenti al

programma di quarta. Forse questo tema, almeno nella sua impostazione, si sarebbe prestato ad un esame di

abilitazione all’insegnamento, dove si devono sondare le abilità di calcolo e di riscontro grafico dei risultati

in un tempo predefinito e le conoscenze estese al programma dell’intero triennio.

Si sono riscontrate inoltre alcune imprecisioni sul testo, che hanno in certi casi contribuito a creare un certo

disorientamento negli allievi:

- richiesta di coordinate compensate del punto P, che non è possibile compensare dato che si tratta di

un problema a soluzione isodeterminata;

- altezza del prisma fornita per punti, solitamente inaccessibili, dei quali non è stata determinata la

distanza, mentre non è fornita per i punti di cui si è determinata la distanza;

- indicazione della tolleranza altimetrica non chiara (somma dei perimetri?);

- non è specificato se le distanze indicate sono orizzontali o reali;

Page 9: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

2. TEMA ASSEGNATO AGLI ITSG – Corso Sperimentale “progetto Cinque”

Page 10: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

Il tema assegnato al corso sperimentale si differenziava da quello di ordinamento per una diversa richiesta di

elaborazione: qui non era presente la parte riguardante il frazionamento, mentre la poligonale trattata era

effettivamente da compensare. Si differenziava inoltre per la richiesta di una relazione riguardante la

procedura fotogrammetrica e le operazioni di campagna.

2.1 Determinazione delle coordinate planimetriche del punto A

Anche qui si poteva procedere in modo del tutto analogo a quanto visto nel tema di ordinamento. Riportiamo

qui di seguito due metodi possibili di risoluzione.

Primo Metodo

Si riportano i risultati parziali e finali nella seguente tabella 1. I simboli grafici sono riferiti alla fig. 2

tab. 1 – soluzione della intersezione inversa per il calcolo delle coordinate di A

punto X Y X Y distanze

P 419.023 494.91 [gon]

67.788 -203.3 214.306 179.5109

R 486.811 291.61

-142.161 -216.6 259.101 236.9732

S 344.650 74.988

A 177.663 408.131 (distanze e coordinate in [m])

[gon]

44.9198

47.4725

142.5377

H 82.5350 = ½ (

45.4132 = (PR sen) / (RS sen)

K 15.9816 = ½ (

98.5166

66.5534

b) secondo metodo

Si considera una circonferenza passante per P, R e A, che può essere quella utilizzata per la soluzione

grafica, ma potrebbe anche essere una circonferenza provvisoria.

Detto K il punto di intersezione di tale circonferenza con l’allineamento AS, si osservi che nel triangolo

PKR gli angoli in K e in P sono pari rispettivamente ad e , essendo angoli alla circonferenza che

insistono sul medesimo arco. Applicando il teorema dei seni a tale triangolo si ottiene:

m 328,112 )( sen sen

PR PK

gon 9834,226PRPK ;

m 195,831 cos PK

m 284,078 sen PK

PKPK

PKPK

yy

xx

Dalla conoscenza delle coordinate di K possiamo ora ricavare l’azimut KS, che coincide con l’azimut AS:

gon 0276,78)(

; gon 4199,170arctan

ASAP

KS

KSASKS

yy

xx

Page 11: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

gon ,516798 - PRPA

m ,486256)( sen sen

PR PA

m 408,131 cos PA

m 177,663 sen PA

PAPA

PAPA

yy

xx

fig. 2 – schema grafico della intersezione

inversa per il calcolo della posizione

planimetrica del punto A

2.2 Determinazione della quota compensata del punto A

Note le coordinate del vertice A, è facile calcolarne la distanza dai punti noti e, applicando la formula del

dislivello trigonometrico da un estremo, i valori sotto riportati (K e R sono assegnati dal testo, per Qm si può

adottare un valore approssimato di 180m):

tab.2 – calcolo delle distanze e dei dislivelli tra il punto A e i punti noti P, R, S

distanze Q’A

dap 256,486 -3,442 178,719

dar 330,379 -3,000 178,726

das 372,651 9,321 178,735

La quota compensata, trattandosi di dislivelli trigonometrici, deve essere calcolata con una media pesata

utilizzando come peso per ciascuno dei 3 valori il reciproco del quadrato della distanza utilizzata nella

determinazione del dislivello relativo,

Risulta QA = 178,725 m

2.3 Determinazione delle coordinate e delle quote compensate dei vertici della poligonale chiusa

ABCDA.

Page 12: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

Si riportano i risultati e lo schema di elaborazione nella tabella 3

Tab. 3 – calcolo della poligonale chiusa ABCDA orientata su P

c d X Y Xc Yc c X Y Q

P 419.023 494.908 175.277

278.0275 278.0275 -241.36 -86.777 3.447794

A 145.3389 177.663 408.131 178.7248

223.3664 223.3664 84.350 -30.269 -78.732 0.171 -30.177228 -78.7317 0.161764

B 272.1343 147.4858 329.3993 178.8866

295.5007 295.5017 84.650 -84.439 -5.976 0.296 -84.346386 -5.97622 0.286724

C 300.1339 63.13939 323.423 179.1733

395.6346 395.6366 83.880 -5.745 83.683 -0.332 -5.6530378 83.6831 -0.34178

D 303.8189 57.48635 407.1061 178.8315

99.45354 99.45654 120.050 120.046 1.025 -0.093 120.176652 1.02486 -0.10671

A 323.9089 177.663 408.131 178.7248

223.3624 223.3664

B

e errore -0.004 372.930 -0.407 0.000 0.042 0.000 0.000 0.000

corr. unit. -0.001 -0.001 0.000 0.000

toll. 0.050 0.483 0.077

2.4 Relazioni descrittive

a) operazioni di campagna relative al rilievo dell’edificio

Una volta collocato l’ipotizzato “fabbricato storico a pianta rettangolare” all’interno della poligonale, si può

procedere scegliendo fra diverse opzioni, in funzione della strumentazione disponibile:

– Rilievo topografico per irradiamento diretto e/o intersezione in avanti con lo strumento

impiegato per il rilievo della poligonale e utilizzando i vertici di quest’ultima (o altri punti da

essi determinati) come punti di stazione noti per inquadrare tutti i punti di dettaglio (ed

eventuali punti di appoggio) nel sistema cartografico prescelto.

– Rilievo per allineamenti e squadri, utilizzando i lati della poligonale come riferimento e

ipotizzando un rilievo altimetrico con cordella metrica e filo a piombo….

– Soluzioni miste comprendenti anche un eventuale rilievo altimetrico del contorno dell’edificio e

dei suoi orizzontamenti.

b) operazioni di ripresa fotogrammetrica e dei mezzi necessari

Anche in questo caso sono possibili diverse opzioni:

– Rilievo monoscopico o stereoscopico (a seconda della presenza di aggetti significativi o di

elementi non giacenti su piani verticali)

– Rilievo analogico o digitale

– Impiego di camere metriche o semi-metriche ovvero di apparecchi (e quindi di metodi ) non

rigorosi

– Nel caso del rilievo stereoscopico si poteva parlare dei rapporti di sovrapposizione tra i

fotogrammi, del rapporto base/distanza, della convergenza e/o della inclinazione delle prese per

“coprire” le zone alte ovvero l’impiego di elevatori.

– A seconda delle scelte operate si dovranno materializzare e rilevare un congruo numero di punti

di appoggio, si dovrebbe quindi parlare della loro dislocazione

c) operazioni di restituzione del rilievo fotogrammetrico

Page 13: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

– Sulla base delle scelte operate al punto precedente si potevano ipotizzare strumenti di

restituzione e/o software adatti all’impiego del materiale di presa, fino ad arrivare a parlare delle

precisioni che si potevano/volevano ottenere e citando esempi e/o esperienze acquisite nel corso

degli studi.

– Nel caso delle riprese monoscopiche digitali si poteva ipotizzare l’impiego di software per il

raddrizzamento in blocco (deprospettivizzazione) delle prese

– Per prese stereoscopiche le scelte delle attrezzature potevano vertere su programmi di

fotogrammetria digitale o, nel caso di prese analogiche, su restitutori analitici

2.5 Commento al testo proposto

– Problemi redazionali e formulazione del testo: il testo, formulato nelle modalità consuete dei

temi di esame, appare abbastanza chiaramente leggibile e poteva essere interpretato

correttamente dal candidato “medio”. La articolazione in quesiti risulta in questo senso efficace.

Un rilievo negativo riguarda il problema tipografico delle formule per la tolleranza, dove la

radice quadrata è divenuta una “V” maiuscola, circostanza che poteva inizialmente disorientare i

candidati.

– La parte topografica vedeva la soluzione di 3 problemi tra loro concatenati: la intersezione

inversa, la livellazione trigonometrica e la poligonale chiusa. Non trattandosi di una serie di

quesiti “a scelta”, ma vincolati tra loro, si poteva correre il rischio di valutazioni pesantemente

negative causate da errori o difficoltà di impostazione iniziali, tanto più che i contenuti proposti

afferivano al programma della classe quarta.

– L’intersezione inversa è un problema che viene impiegato soprattutto per verificare le abilità di

calcolo e di controllo grafico dei risultati. Con l’uso consentito del manuale, dove sono riportate

le formule risolutive, non si può parlare di grande difficoltà, forse si potevano scegliere

problemi trattati nell’ultimo anno di corso che potevano testare le stesse abilità con maggiore

efficacia (per es. uno spianamento, o un profilo altimetrico..) e introducendo nella valutazione

elementi distintivi importanti (capacità grafiche, capacità di “visione” della tridimensionalità dei

problemi…)

– La compensazione di una livellazione trigonometrica multipla poteva trarre in inganno qualche

allievo più debole, ma i manuali tecnici contengono generalmente l’indicazione esatta. In questo

caso le abilità testate sono quella di saper usare correttamente il manuale e di quella saper fare

una media pesata (classe terza).

– La poligonazione è anch’essa un tema della quarta classe, ma permette di sondare abilità più

vicine a quelle della classe successiva: organizzazione di una tabella per il calcolo, chiarezza e

ordine nella redazione… la compensazione empirica non è un contenuto particolarmente

elevato, ma viene ricordata anche ricorrendo al buon senso… essendo quindi una domanda che

“stacca” il candidato dal manuale, ci pare più adatta a un esame finale del corso di studi.

– Il quarto quesito, forse il più specifico del progetto sperimentale “cinque”, risulta un po’ troppo

compresso, forse poteva essere meglio articolato fornendo varie opzioni in modo da orientare il

candidato (ad es. “il candidato formuli una scelta, motivandola, fra il rilievo monoscopio e

quello stereoscopico e, in conseguenza a questa scelta, rediga una ipotesi di lavoro articolata in

– piano di presa – attrezzatura delle prese mediante la materializzazione dei punti di appoggio –

ipotizzi la strumentazione di presa e di restituzione, ….)

In generale si può quindi dire che il tema proposto è certamente accettabile, anche se un po’ troppo

sbilanciato nella prima parte. Nonostante fossero assegnate 8 ore per il suo svolgimento, ci piacerebbe

sapere quanti allievi sono riusciti a cimentarsi in modo significativo con il quarto quesito. Crediamo di

interpretare il desiderio della stragrande maggioranza dei colleghi di Topografia e Fotogrammetria

Page 14: per periti edili prima parte (1 - itsgberninirovigo.it · 2012-04-14 · BC BF - CF 193,016 m ; DE EF - DF 148,858 m 1.3 Determinazione delle coordinate e della quota compensata di

auspicando che, la prossima volta che verrà scelta tale materia per la seconda prova (se ci sarà una prossima

volta!), si privilegino temi che mettano in risalto le buone capacità acquisite dagli allievi più meritevoli,

quali ad esempio i temi progettuali (vedi esami del 2001- pubblicato sul Bollettino n.3/01).