OPTCOM - Dipartimento di Elettronica e Telecomunicazioni ......OFC 2016 19 [1] A. Splett, C. Kurzke,...

228
OPTCOM - Dipartimento di Elettronica e Telecomunicazioni - Politecnico di Torino – Torino – Italy www.optcom.polito.it

Transcript of OPTCOM - Dipartimento di Elettronica e Telecomunicazioni ......OFC 2016 19 [1] A. Splett, C. Kurzke,...

  • OPTCOM - Dipartimento di Elettronica e Telecomunicazioni - Politecnico di Torino – Torino – Italy www.optcom.polito.it

    http://www.optcom.polito.it/

  • OFC 2016 www.optcom.polito.it 2

    http://www.ismb.it/

  • OFC 2016 www.optcom.polito.it 3

  • OFC 2016 www.optcom.polito.it 4

  • OFC 2016 www.optcom.polito.it 5

    credit: http://www.nfafranchiseconsultants.com/alternatives-financial-performance-representations/

  • OFC 2016 www.optcom.polito.it 6

  • OFC 2016 www.optcom.polito.it 7

    credit http://newsroom.unl.edu/announce/snr/2761/15222

    credit: http://greenpediatrics.com/

    homeopathy-what-how-and-why/

  • OFC 2016 www.optcom.polito.it 8

  • OFC 2016 www.optcom.polito.it 9

    credit: http://travel-

    representatives.com/

    credit:

    http://www.cisco.com/c/en/us/products/coll

    ateral/optical-networking/ons-15200-series-

    dwdm-systems/datasheet_c78-728877.html

  • OFC 2016 www.optcom.polito.it 10

    credit: http://www.hillsborococ.org/

    what-is-the-problem/

    credit: http://fios.verizon.com/beacon/fiber-optics-vs-coaxial-cables/

  • OFC 2016 www.optcom.polito.it 11

    ch

    ASE

    OSNRP

    P

  • OFC 2016 www.optcom.polito.it 12

    ch

    ASE NLI

    OSNRP

    P P

    ch

    ASE

    OSNRP

    P

    a model needs to allow to estimate PNLI efficiently and with acceptable accuracy

  • OFC 2016 www.optcom.polito.it 13

    ch

    ASE NLI

    OSNRP

    P P

    OSNR

    ASE ASE

    B

    P G df OSNR

    NLI NLI

    B

    P G f df

  • OFC 2016 www.optcom.polito.it 14

    Manakov

    222

    2

    2

    222

    2

    2

    ( , ) 8( , ) ( , ) ( , ) ( , ) ( , )

    2 9

    ( , ) 8( , ) ( , ) ( , ) ( , ) ( , )

    2 9

    x

    x x x y x

    y

    y y x y y

    E z tj E z t E z t j E z t E z t E z t

    z t

    E z tj E z t E z t j E z t E z t E z t

    z t

  • OFC 2016 www.optcom.polito.it 15

    32 GBaud

    400 km SMF

    first-order Gaussian

    (but not so higher order pdf’s)

  • OFC 2016 www.optcom.polito.it 16

    Manakov

    222

    2

    2

    222

    2

    2

    ( , ) 8( , ) ( , ) ( , ) ( , ) ( , )

    2 9

    ( , ) 8( , ) ( , ) ( , ) ( , ) ( , )

    2 9

    x

    x x x y x

    y

    y y x y y

    E z tj E z t E z t j E z t E z t E z t

    z t

    E z tj E z t E z t j E z t E z t E z t

    z t

  • OFC 2016 www.optcom.polito.it 17

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

  • OFC 2016 18

    - A. Splett, C. Kurtzke, K. Petermann,

    ECOC ’93, vol. 2, p. 41,1993.

    - H. Louchet et al., PTL, vol.15,

    p. 1219, 2003.

    - Jau Tang, JLT, vol.20, no.7,

    p. 1095, 2002.

    M. Nazarathy et al, Opt. Exp.,

    vol.16, p. 15777, 2008

    Xi Chen, W. Shieh, Opt. Exp.,

    vol. 18, p. 19039, 2010

    - P. Poggiolini et al., PTL, vol.

    23, p. 742 2011

    - A. Carena et al., JLT, v. 30,

    p. 1524, 2012

    P. Johannisson, M. Karlsson,

    JLT, v. 31, p. 1273, 2013

    P. Serena, A. Bononi, JLT,

    v. 31, p. 3489, 2013

    “GN model”

    name used

    here for the

    first time

    A. Bononi, O. Beucher, P. Serena, OE,

    vol. 21, p. 32254, 2013 P. Johannisson, M. Karlsson,

    JLT, v. 31, p. 1273, 2013

    S. J. Savory, PTL, vol. 25,

    p.961, 2013

    for OFDM

  • OFC 2016 19

    [1] A. Splett, C. Kurzke, and K. Petermann, “Ultimate Transmission Capacity of Amplified Optical Fiber Communication Systems Taking into Account Fiber Nonlinearities,” in Proc. ECOC 1993, vol. 2, pp. 41-44, 1993.

    [2] Jau Tang, “The Channel Capacity of a Multispan DWDM System Employing Dispersive Nonlinear Optical Fibers and an Ideal Coherent Optical Receiver,” J. Lightwave Technol., vol. 20, pp. 1095-1101, 2002.

    [3] H. Louchet et al., “Analytical Model for the Performance Evaluation of DWDM Transmission Systems,” IEEE Phot. Technol. Lett., vol. 15, pp. 1219-1221, Sept. 2003.

    [4] Jau Tang, “A Comparison Study of the Shannon Channel Capacity of Various Nonlinear Optical Fibers,” J. Lightwave Technol., vol. 24, pp. 2070-2075, 2006.

    [5] M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, Pak Cho, R. Noe, I. Shpantzer, V. Karagodsky “Phased-Array Cancellation of Nonlinear FWM in Coherent OFDM Dispersive Multi-Span Links,” Optics Express, vol. 16, pp. 15778-15810, 2008.

    [6] X. Chen and W. Shieh, “Closed-Form Expressions for Nonlinear Transmission Performance of Densely Spaced Coherent Optical OFDM Systems,” Optics Express, vol. 18, pp. 19039-19054, 2010.

    [7] W. Shieh and X. Chen, “Information Spectral Efficiency and Launch Power Density Limits Due to Fiber Nonlinearity for Coherent Optical OFDM Systems,” IEEE Photon. Journal, vol. 3, pp. 158-173, 2011.

    [8] P. Poggiolini, A. Carena, V. Curri, G. Bosco, F. Forghieri, “Analytical Modeling of Non-Linear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett., vol. 23, pp. 742-744, 2011.

    [9] Torrengo E, Cigliutti R, Bosco G, Carena A, Curri V, Poggiolini P, Nespola A, Zeolla D, Forghieri F. Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links. Opt Express 2011;19(26):B790–B798.

    [9] A. Carena, V. Curri, G. Bosco, P.Poggiolini, F. Forghieri, “Modeling of the Impact of Non-Linear Propagation Effects in Uncompensated Optical Coherent Transmission Links,” J. of Lightw. Technol., vol. 30, pp. 1524-1539, May 15th 2012.

    [10] P. Poggiolini “The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems,” J. of Lightwave Technol., vol. 30, no. 24, pp. 3857-3879, Dec. 15 2012.

    [11] Johannisson P, Karlsson M. “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system.” J Lightwave Technol 2013;31(8):1273–1282.

    [12] Nespola A, Straullu S, Carena A, Bosco G, Cigliutti R, Curri V, Poggiolini P, Hirano M, Yamamoto Y, Sasaki T, Bauwelinck J,Verheyen K, Forghieri F. GN-model validation over seven fiber types in uncompensated PM-16QAM Nyquist-WDM links. IEEE Photonics Technol Lett 2014;26(2):206–209.

    [13] Serena P, Bononi A. “An alternative approach to the Gaussian noise model and its system implications.” J Lightwave Technol 2013;31(22):3489–3499.

    [14] Poggiolini P, Bosco G, Carena A, Curri V, Jiang Y, Forghieri F. “The GN model of fiber non-linear propagation and its applications.” J Lightwave Technol 2014;32(4):694–721.

    [15] Serena P, Bononi A. “A time-domain extended Gaussian noise model.” J Lightwave Technol. 2015;33(7):1459–1472.

    [16] V. Curri et al., “Extension and validation of the GN model for non-linear interference to uncompensated links using Raman amplification,” Optics Express, v. 21., no. 3, pp. 3308-3317, Feb. 2013.

  • OFC 2016 www.optcom.polito.it 20

  • OFC 2016 www.optcom.polito.it 21

    2. C. R. Menyuk, ‘Pulse propagation in an elliptically birefringent Kerr medium,’ IEEE J. Quantum Electron., vol. 25, no. 12, pp. 2674-2682,

    Dec. 1989.

    5. S. G. Evangelides Jr., L. F.Mollenauer, J. P. Gordon, and N. S. Bergano, ‘Polarization multiplexing with solitons,’ J. Lightwave Technol.,

    vol. 10, no. 1, pp. 28-35, Jan. 1992.

    6. D. Marcuse, C. R. Menyuk, and P. K. A. Wai, ‘Application of the Manakov-PMD equation to studies of signal propagation in optical fibers

    with randomly varying birefringence,’ J. Lightwave Technol., vol. 15, no. 9, pp. 1735-1746, Sept. 1997.

    10. A. Vannucci, P. Serena, and A. Bononi, ‘The RP method: a new tool for the iterative solution of the nonlinear Schrodinger equation,’ J.

    Lightwave Technol., vol. 20, no. 7, pp. 1102-1112, July 2002.

    11. K.V. Peddanarappagari and M. Brandt-Pearce ‘Volterra series transfer function of single-mode fibers,’ J. of Lightwave. Technol., vol.

    15, no. 12, pp. 2232-2241, Dec. 1997.

    12. A. Mecozzi, C. Balslev Clausen, and M. Shtaif, ‘Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,’

    IEEE Photon. Technol. Lett., vol. 12, no. 4, pp. 392-394, Apr. 2000.

    13. E. E. Narimanov and P. P. Mitra, ‘The channel capacity of a fiber optics communication system: perturbation theory,’ J. Lightwave

    Technol., vol. 20, no. 3, pp. 530-537, Mar. 2002.

    16. M. Secondini, E. Forestieri, and C. R. Menyuk, ‘A combined regular logarithmic perturbation method for signal-noise interaction in

    amplified optical systems,’ J. Lightwave Technol., vol. 27, no. 16, pp. 3358-3369, Aug. 2009.

    20. J. P. Gordon and L. F. Mollenauer, ‘Phase noise in photonic communications systems using linear amplifiers,’ Opt. Lett., vol. 15, no.

    23, pp. 1351-1353, 1990.

    21. D. Marcuse, ‘Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,’ J. Lightwave Technol.,

    vol. 9, no. 3, pp. 356-361, Mar. 1991.

    24. A. Mecozzi, ‘Limits to long haul coherent transmission set by the Kerr nonlinearity and noise of the inline amplifiers,’ J. Lightwave.

    Technol., vol. 12, no. 11, pp. 1993-2000, Nov. 1994.

    25. G. Bellotti, M. Varani, C. Francia, and A. Bononi, ‘Intensity distortion induced by cross-phase modulation and chromatic dispersion in

    optical-fiber transmissions with dispersion compensation,’ IEEE Photon. Technol. Lett.,

    vol. 10, no. 12, pp. 1745-1747, Dec. 1998.

    26. A. Cartaxo, ‘Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and

    dispersion compensators,’ J. Lightw. Technol., vol. 17, no. 2, pp. 178-190, Feb. 1999.

    27. R. Hui, K. R. Demarest, and C. T. Allen, ‘Cross-phase modulation in multispan WDM optical fiber systems,’ J. Lightwave. Technol., vol.

    17, no. 6, pp. 1018-1026, Jun. 1999.

    28. A.Mecozzi, C. Balslev Clausen, andM. Shtaif, ‘System impact of intrachannel nonlinear effects in highly dispersed optical pulse

    transmission,’ IEEE Phot. Technol. Lett., vol. 12, no. 12, pp. 1633-1635, Dec. 2000.

  • OFC 2016 www.optcom.polito.it 22

    29. P. P. Mitra and J. B. Stark, ‘Nonlinear limits to the information capacity of optical fiber communications,’ Nature, vol. 411, no.

    6841, pp. 1027-1030, Jun. 2001.

    33. B. Xu and M. Brandt-Pearce, ‘Comparison of FWM- and XPM-induced crosstalk using the Volterra series transfer function method,’

    J. Lightwave. Technol., vol. 21, no. 1, pp. 40-53, Jan. 2003.

    35. K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, ‘Information capacity of optical fiber channels with zero

    average dispersion,’ Phys. Rev. Lett., vol. 91, pp. 203901-1 to 203901-4, Nov. 2003.

    36. A.Mecozzi, ‘Probability density functions of the nonlinear phase noise,’ Opt. Lett., vol. 29, no. 7, pp. 673-675, 2004.

    38. E. Ciaramella and E. Forestieri, ‘Analytical approximation of nonlinear distortions,’ IEEE Photon. Technol. Lett., vol. 17, no. 1,

    pp. 91-93, Jan. 2005.

    39. S. Kumar and D. Yang, ‘Second-order theory for self-phase modulation and cross-phase modulation in optical fibers,’ J.

    Lightwave Technol., vol. 23, no. 6, pp. 2073-2080, June 2005.

    40. K.-P. Ho and H.-C. Wang, ‘Comparison of nonlinear phase noise and intrachannel four-wave mixing for RZ-DPSK signals in

    dispersive transmission systems,’ IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1426-1428, July 2005.

    41. S. Kumar, ‘Effect of dispersion on nonlinear phase noise in optical transmission systems,’ Optics Lett., vol. 30, no. 24, pp. 3278-

    3280, Dec. 2005.

    42. K.-P. Ho and H.-C. Wang, ‘Effect of dispersion on nonlinear phase noise,’ Opt. Lett., vol. 31, no. 14, pp. 2109-2111, July 2006.

    44. A. T. Lau, S. Rabbani, and J. M. Kahn, ‘On the statistics of intrachannel four-wave mixing in phase-modulated optical

    communication systems,’ J. Lightwave Technol., vol. 26, no. 14, pp. 2128-2135, July 2008.

    46. A. D. Ellis, J. Zhao, and D. Cotter, ‘Approaching the non-linear Shannon limit,’ J. Lightwave Technol., vol. 28, no. 4, pp. 423-

    433, Feb. 2010.

    47. A.Mecozzi, ‘A unified theory of intra-channel nonlinearity in pseudolinear phase-modulated transmission,’ IEEE Photon. J., vol. 2,

    no. 5, pp. 728-735, Aug. 2010.

    50. A. Bononi, P. Serena, N. Rossi, and D. Sperti, ‘Which is the dominant nonlinearity in long-haul PDM-QPSK coherent transmissions?’

    in Proc. of ECOC 2010, paper Th.10.E.1, Torino (IT), Sept. 2010.

    51. J. Reis and A. Teixeira, ‘Unveiling nonlinear effects in dense coherent optical WDM systems with Volterra series,’ Optics Express,

    vol. 18, no. 8, pp. 8660-8670, Apr. 2010.

  • OFC 2016 www.optcom.polito.it 23

    55. L. Beygi, E. Agrell, M. Karlsson, and P. Johannisson, ‘Signal statistics in fiber-optical channels with polarization multiplexing and

    self-phase modulation,’ J. Lightwave Technol., vol. 29, no. 16, pp. 2379-2386, Aug. 2011.

    56. Chongjin Xie, ‘Fiber Nonlinearities in 16QAM Transmission Systems,’ in Proc. ECOC 2011, paper We.7.B.6, Geneva (CH), Sept.

    2011.

    57. Chongjin Xie, ‘Impact of nonlinear and polarization effects on coherent systems,’ in Proc. ECOC 2011, paper We.8.B.1, Geneva

    (CH), Sept. 2011.

    62. A. Bononi, P. Serena, N. Rossi, E. Grellier, and F. Vacondio, ‘Modeling nonlinearity in coherent transmissions with dominant

    intrachannel-four-wavemixing,’ Optics Express, vol. 20, pp. 7777-7791, 26 March 2012.

    65. L. Beygi, E. Agrell, P. Johannisson, M. Karlsson, and H. Wymeersch, ‘A discrete-time model for uncompensated single-channel

    fiber-optical links,’ IEEE Trans. on Communic., vol. 60, no. 11, pp. 3440-3450, Nov. 2012.

    67. M. Secondini and E. Forestieri, ‘Analytical fiber-optic channel model in the presence of cross-phase modulations,’ IEEE Photon.

    Technol. Lett., vol. 24, no. 22, pp. 2016-2019, Nov. 15th 2012.

    68. Olivier Rival and Kinda Mheidly ‘Accumulation rate of inter and intrachannel nonlinear distortions in uncompensated 100G PDM-

    QPSK systems,’ in Proc. OFC 2013, Los Angeles (CA), paper JW2A.52, Mar. 2013.

    90. F. Vacondio, C. Simonneau, L. Lorcy, J.C.Antona, A. Bononi and S. Bigo, ‘Experimental characterization of Gaussian-distributed

    nonlinear distortions,’ in Proc. of ECOC 2011, Geneva, paper We.7.B.1, Sept. 2011.

    91. F. Vacondio, O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J.-C. Antona and S. Bigo, ‘On nonlinear distortions of highly

    dispersive optical coherent systems,’ Optics Express, Vol. 20, No. 2, pp. 1022-1032, Jan. 2012.

    92. O. V. Sinkin, J.-X. Cai, D. G. Foursa, H. Zhang, A. N. Pilipetskii, G. Mohs, and Neal S. Bergano, ‘Scaling of nonlinear impairments

    in dispersion uncompensated long-haul transmission,’ in Proc. of OFC 2012, Los Angeles

    (US), paper OTu1A.2, Mar. 2012.

    113. M. A. Sorokina, S. K. Turitsyn, ‘Regeneration limit of classical Shannon capacity,’ Nature Communications, 5:3861, DOI:

    10.1038/ncomms4861, www.nature.com/naturecommunications.

  • OFC 2016 www.optcom.polito.it 24

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 25

    transmission spectrum

    f

    WDM ( )G f

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 26

    the “link function”:

    it is the “FWM efficiency”

    of the whole link

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 27

    it contains

    the full description of the link

    span by span, amplifier by amplifier

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 28

    for identical spans with lumped amplification:

    2

    1 22

    22 4

    1 2

    2

    2

    2 2

    1 2

    2

    21

    2

    2

    22

    eff 1

    2sin 2

    sin

    1

    1 2 2

    s s f f f fL

    s s

    j L

    s

    N f f L

    f f f f

    f fe e

    j f f f LfL

  • OFC 2016 www.optcom.polito.it 29

    eff

    1 exp 2

    2

    sLL

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 30

    for identical spans with lumped amplification:

    2

    1 22

    22 4

    1 2

    2

    2

    2 2

    1 2

    2

    21

    2

    2

    22

    eff 1

    2sin 2

    sin

    1

    1 2 2

    s s f f f fL

    s s

    j L

    s

    N f f L

    f f f f

    f fe e

    j f f f LfL

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 31

    for identical spans with lumped amplification:

    2

    1 22

    22 4

    1 2

    2

    2

    2 2

    1 2

    2

    21

    2

    2

    22

    eff 1

    2sin 2

    sin

    1

    1 2 2

    s s f f f fL

    s s

    j L

    s

    N f f L

    f f f f

    f fe e

    j f f f LfL

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 32

    for identical spans with lumped amplification:

    2

    1 22

    22 4

    1 2

    2

    2

    2 2

    1 2

    2

    21

    2

    2

    22

    eff 1

    2sin 2

    sin

    1

    1 2 2

    s s f f f fL

    s s

    j L

    s

    N f f L

    f f f f

    f fe e

    j f f f LfL

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 33

    for identical spans with lumped amplification:

    2

    1 22

    22 4

    1 2

    2

    2

    2 2

    1 2

    2

    21

    2

    2

    22

    eff 1

    2sin 2

    sin

    1

    1 2 2

    s s f f f fL

    s s

    j L

    s

    N f f L

    f f f f

    f fe e

    j f f f LfL

  • OFC 2016 www.optcom.polito.it 34

    2 2

    2

    2 2

    1

    2

    2

    1 2

    sin 2

    sin 2

    s s

    s

    s

    f f

    f

    N f f L

    f f LfN

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 35

    for identical spans with lumped amplification:

    1

    2

    22

    22 4

    2

    2 1 2

    2

    ef

    2

    f 1

    1

    1 2

    s sL j L f f f fe e

    j ff f fL

    1 2

    1 2

    2 2

    2

    2 2

    2

    sin 2

    sin 2

    s s

    s

    N f f Lf f

    f ff f L

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 36

    for identical spans with lumped amplification:

    1

    2

    22

    22 4

    2

    2 1 2

    2

    ef

    2

    f 1

    1

    1 2

    s sL j L f f f fe e

    j ff f fL

    sN

  • OFC 2016

    2

    2 1 2

    22 4

    2

    2 1 2

    1 2 1NLI WDM WDM WDM

    2

    eff 1

    2

    2

    1 2

    1

    1 2

    ( )16

    ( ) ( ) ( )27

    d ds s f f fL j L f

    s

    e e

    j f f ff

    G f f

    L

    N G f G f G f f

    f f

    www.optcom.polito.it 37

    integral can be easily dealt with

    numerically in a matter of seconds

  • OFC 2016 www.optcom.polito.it 38

    credit: http://travel-

    representatives.com/

    credit:

    http://www.cisco.com/c/en/us/products/coll

    ateral/optical-networking/ons-15200-series-

    dwdm-systems/datasheet_c78-728877.html

    http://www.computerhowtoguide.com/2011/11/google-adsense-alternatives-that-work.html

  • OFC 2016 www.optcom.polito.it 39

    credit: http://www.dtvisiontech.com/2015_12_01_archive.html

  • OFC 2016 www.optcom.polito.it 40

    submarine

    terrestrial

    long-haul

    terrestrial

    medium-short

    haul

  • OFC 2016 www.optcom.polito.it 41

    3BER 4 10

    raised-cosine spectra

    roll-off 0.05

    EDFA NF 5 dB

    ASE added at the RX

  • OFC 2016 www.optcom.polito.it 42

    red: SMF

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

  • OFC 2016 www.optcom.polito.it 43

    PM-QPSK PM-8QAM

    PM-16QAM

    PM-64QAM

    PM-32QAM

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

    33.6 GHz 50 GHz red: SMF

  • OFC 2016 www.optcom.polito.it 44

    PM-QPSK PM-8QAM

    PM-16QAM

    PM-64QAM

    PM-32QAM

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

    33.6 GHz 50 GHz

    red: SMF

  • OFC 2016 www.optcom.polito.it 45

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

    red: SMF

    blue: PSCF

    red: SMF

  • OFC 2016 www.optcom.polito.it 46

    blue: PSCF

    red: SMF

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

  • OFC 2016 www.optcom.polito.it 47

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

  • OFC 2016 www.optcom.polito.it 48

    dispersion

    D

    ps/(nm km)

    loss

    dB/km

    non-linearity

    1/(W km)

    PSCF 20.1 0.17 0.8

    SMF 16.7 0.2 1.3

    NZDSF

    (E-LEAF)

    3.8 0.22 1.5

  • OFC 2016 www.optcom.polito.it 49

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

  • OFC 2016 www.optcom.polito.it 50

    blue: PSCF

    red: SMF

    green: NZDSF

    MARKERS: simulations

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

  • OFC 2016 www.optcom.polito.it 51

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF 33.6 GHz

    50 GHz 37.5 GHz

    MARKERS: simulations

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

  • OFC 2016 www.optcom.polito.it 52

    32 GBaud

    15 channels

    60 km spans

    LINES: incoherent GN model

    PM-16QAM

    PM-32QAM

    PM-64QAM

    blue: PSCF

    red: SMF

    green: NZDSF

  • OFC 2016 www.optcom.polito.it 53

    32 GBaud

    15 channels

    60 km spans

    LINES: incoherent GN model

    blue: PSCF

    red: SMF

    green: NZDSF

    MARKERS: simulations

  • OFC 2016 www.optcom.polito.it 54

    MARKERS: simulations blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    LINES: incoherent GN model

  • OFC 2016 www.optcom.polito.it 55

    credit:

    https://www.koozai.com/blog/analytics/pre

    dictive-analytics-and-digital-campaigns/

  • OFC 2016 www.optcom.polito.it 56

    2

    2 1 2

    22 4

    2

    2 1 2

    1 2 1NLI WDM WDM WDM

    2

    eff 1

    2

    2

    1 2

    1

    1 2

    ( )16

    ( ) ( ) ( )27

    d ds s f f fL j L f

    s

    e e

    j f f ff

    G f f

    L

    N G f G f G f f

    f f

    if span loss is greater than 10-12 dB

    this term can be neglected

  • OFC 2016 www.optcom.polito.it 57

    2

    22

    2

    2

    eff

    1 2

    24 2

    NLI WDM WDM W M1 2

    1

    D2 1

    21 4

    16( ) ( ) ( )

    27(

    d d

    ) s

    f

    L

    f f f

    N G f G f G f f

    f f

    G f f

    it can be integrated analytically ! (with some approximations)

  • OFC 2016 www.optcom.polito.it 58

    2 3 22 2eff ch

    2 ch2

    2

    2

    NLI as16

    27inh

    2

    sR

    fs

    L PP N R N

    R

    Other versions address non-uniform spans and all-different channels: P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri, ‘The GN model of fiber non-linear

    propagation and its applications,’ J. of Lightw.Technol., vol. 32, no. 4, pp. 694-721, Feb. 2014.

    P. Johannisson and M. Karlsson, “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system,” J. Lightw. Technol., vol. 31, no. 8, pp. 1273–1282, Apr. 15, 2013.

    P. Poggiolini “The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems,”

    J. of Lightwave Technol., vol. 30, no. 24, pp. 3857-3879, Dec. 15 2012.

  • OFC 2016 www.optcom.polito.it 59

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

    with numerical integration

    MARKERS: simulations

  • OFC 2016 www.optcom.polito.it 60

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

    closed-form formula

    MARKERS: simulations

  • OFC 2016 www.optcom.polito.it 61

    MARKERS: simulations blue: PSCF red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    LINES: incoherent GN model

    with numerical integration

  • OFC 2016 www.optcom.polito.it 62

    blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    LINES: incoherent GN model

    closed-form formula

    MARKERS: simulations

  • OFC 2016 www.optcom.polito.it 63

    2 3 22 2eff ch

    2 ch2

    2

    2

    NLI as16

    27inh

    2

    sR

    fs

    L PP N R N

    R

  • OFC 2016 www.optcom.polito.it 64

    credit: http://travel-

    representatives.com/

    credit:

    http://www.cisco.com/c/en/us/products/coll

    ateral/optical-networking/ons-15200-series-

    dwdm-systems/datasheet_c78-728877.html

  • OFC 2016 www.optcom.polito.it 65

    lines: GN model; markers: experiment

  • OFC 2016 www.optcom.polito.it 66

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 67

    http://www.improfestuk.co.uk/2014/problem-solved.html https://www.flickr.com/photos/wingedwolf/5471047557

    credit: http://www.improfestuk.co.uk/2014/problem-

    solved.html

    http://www.improfestuk.co.uk/2014/problem-solved.htmlhttp://www.improfestuk.co.uk/2014/problem-solved.htmlhttp://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjRyfXMwqLLAhVDvRQKHV2DD8kQjRwIBw&url=http://www.improfestuk.co.uk/2014/problem-solved.html&bvm=bv.115339255,d.bGQ&psig=AFQjCNE6wMoGO6x_p9sw7gWhAeyR_H3jTA&ust=1457025754562557http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjRyfXMwqLLAhVDvRQKHV2DD8kQjRwIBw&url=http://www.improfestuk.co.uk/2014/problem-solved.html&bvm=bv.115339255,d.bGQ&psig=AFQjCNE6wMoGO6x_p9sw7gWhAeyR_H3jTA&ust=1457025754562557http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjRyfXMwqLLAhVDvRQKHV2DD8kQjRwIBw&url=http://www.improfestuk.co.uk/2014/problem-solved.html&bvm=bv.115339255,d.bGQ&psig=AFQjCNE6wMoGO6x_p9sw7gWhAeyR_H3jTA&ust=1457025754562557

  • OFC 2016 www.optcom.polito.it 68

    credit: http://www.improfestuk.co.uk/2014/problem-

    solved.html

    credit: https://www.flickr.com/

    photos/wingedwolf/5471047557

    http://www.improfestuk.co.uk/2014/problem-solved.htmlhttp://www.improfestuk.co.uk/2014/problem-solved.htmlhttp://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjRyfXMwqLLAhVDvRQKHV2DD8kQjRwIBw&url=http://www.improfestuk.co.uk/2014/problem-solved.html&bvm=bv.115339255,d.bGQ&psig=AFQjCNE6wMoGO6x_p9sw7gWhAeyR_H3jTA&ust=1457025754562557http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjRyfXMwqLLAhVDvRQKHV2DD8kQjRwIBw&url=http://www.improfestuk.co.uk/2014/problem-solved.html&bvm=bv.115339255,d.bGQ&psig=AFQjCNE6wMoGO6x_p9sw7gWhAeyR_H3jTA&ust=1457025754562557http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjRyfXMwqLLAhVDvRQKHV2DD8kQjRwIBw&url=http://www.improfestuk.co.uk/2014/problem-solved.html&bvm=bv.115339255,d.bGQ&psig=AFQjCNE6wMoGO6x_p9sw7gWhAeyR_H3jTA&ust=1457025754562557

  • OFC 2016 www.optcom.polito.it 69

  • OFC 2016

    NLI WDM W1 2 1 2

    2

    11 2

    DM WDM

    2

    16( ) (( ) ) ( )

    27

    d d, ,

    G f G f G f f

    f

    f

    f f f

    G f

    f

    www.optcom.polito.it 70

    for identical spans with lumped amplification:

    1

    2

    22

    22 4

    2

    2 1 2

    2

    ef

    2

    f 1

    1

    1 2

    s sL j L f f f fe e

    j ff f fL

    sN

    1 2

    1 2

    2 2

    2

    2 2

    2

    sin 2

    sin 2

    s s

    s

    N f f Lf f

    f ff f L

    1 2

    1 2

    2 2

    2

    2 2

    2

    sin 2

    sin 2

    s s

    s

    N f f Lf f

    f ff f L

  • OFC 2016 www.optcom.polito.it 71

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: incoherent GN model

    MARKERS: simulations

  • OFC 2016 www.optcom.polito.it 72

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: GN model

    MARKERS: simulations

  • OFC 2016 www.optcom.polito.it 73

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 74

    max,dB NLI,dB

    1

    3L P

  • OFC 2016 www.optcom.polito.it 75

    spanNLI nP

    3

    NLI NLI chP P P

  • OFC 2016 www.optcom.polito.it 76

    1 2 5 10 20 50 20

    25

    30

    35

    40

    45

    50

    number of spans

    Carena, G. Bosco, V. Curri, P. Poggiolini, and F. Forghieri, ‘Impact of the transmitted signal initial dispersion transient on the

    accuracy of the GN-model of non-linear propagation,’ Proc. of ECOC 2013, paper Th.1.D.4, London (UK), Sept. 2013.

    2

    NLI

    1/W , dB

    P

    PM-QPSK, 32 GBaud

    9 channels, 33.6 GHz

    SMF, 100km spans

    simulation

    GN model

    incoherent GN

  • OFC 2016 www.optcom.polito.it 77

    1 2 5 10 20 50 20

    25

    30

    35

    40

    45

    50

    number of spans

    Carena, G. Bosco, V. Curri, P. Poggiolini, and F. Forghieri, ‘Impact of the transmitted signal initial dispersion transient on the

    accuracy of the GN-model of non-linear propagation,’ Proc. of ECOC 2013, paper Th.1.D.4, London (UK), Sept. 2013.

    2

    NLI

    1/W , dB

    P

    PM-QPSK, 32 GBaud

    9 channels, 33.6 GHz

    SMF, 100km spans

    simulation

    GN model

    incoherent GN

  • OFC 2016 www.optcom.polito.it 78

  • OFC 2016 www.optcom.polito.it 79

  • OFC 2016 www.optcom.polito.it 80

  • OFC 2016 81

    P. Poggiolini, G. Bosco, A. Carena,

    V. Curri, Y. Jiang, F. Forghieri, JLT,

    vol. 33, p. 459, 2015.

    A. Carena, G. Bosco, V. Curri, Y.

    Jiang, P. Poggiolini, F. Forghieri,

    OE, vol. 22, pp.16335, June 2014.

    P. Serena, A. Bononi, JLT, vol. 33,

    p. 1459, 2015

    P. Serena,

    JLT, vol. 34, p. 1476, 2016

    R. Dar, M. Feder, A. Mecozzi, M.

    Shtaif, JLT, vol. 34, p. 593, 2016

    R. Dar, M. Feder, A. Mecozzi, M.

    Shtaif, JLT, vol. 33, p. 1044, 2015

    R. Dar, M. Feder, A. Mecozzi, and

    M. Shtaif, OE, vol.21, pp.25685,

    Nov. 2013.

    R. Dar, M. Feder, A. Mecozzi, M.

    Shtaif, OE, vol. 22, p. 14199, 2014

  • OFC 2016 www.optcom.polito.it 82

    EGNNLIG f GN

    NLIG f corr

    NLIG f

  • OFC 2016 www.optcom.polito.it 83

    EGNNLIG f GN

    NLIG f corr

    NLIG f

  • OFC 2016 www.optcom.polito.it 84

    EGNNLIG f GN

    NLIG f corr

    NLIG f

  • OFC 2016 www.optcom.polito.it 85

    credit: http://www.dtvisiontech.com/2015_12_01_archive.html

  • OFC 2016 www.optcom.polito.it 86

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: EGN model

  • OFC 2016 www.optcom.polito.it 87

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: EGN model

    PM-QPSK

    PM-8QAM

    PM-16QAM

    PM-32QAM

    PM-64QAM

  • OFC 2016 www.optcom.polito.it 88

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    MARKERS: simulations

    32 GBaud

    15 channels

    100 km spans

    LINES: EGN model

  • OFC 2016 www.optcom.polito.it 89

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    5% error bar

    32 GBaud

    15 channels

    100 km spans

    LINES: EGN model

    MARKERS: simulations

  • OFC 2016 www.optcom.polito.it 90

    32 GBaud

    15 channels

    60 km spans

    LINES: EGN model

    PM-16QAM

    PM-32QAM

    PM-64QAM

    blue: PSCF

    red: SMF

    green: NZDSF

  • OFC 2016 www.optcom.polito.it 91

    MARKERS: simulations blue: PSCF red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    LINES: EGN model

  • OFC 2016 www.optcom.polito.it 92

    spanNLI nP

  • OFC 2016 www.optcom.polito.it 93

    1 2 5 10 20 50 20

    25

    30

    35

    40

    45

    50

    number of spans

    Carena A, Bosco G, Curri V, Jiang Y, Poggiolini P, Forghieri F. ‘EGN model of non-linear fiber propagation,’ Optics Express, vol. 22,

    no. 13, pp.16335–16362, June 2014.

    2

    NLI

    1/W , dB

    P

    PM-QPSK, 32 GBaud

    9 channels, 33.6 GHz

    SMF, 100km spans

    simulation

    GN model

    EGN model

  • OFC 2016 www.optcom.polito.it 94

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 95

    f

    f

    WDMB

    f

    Constraint: identical total throughput

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 96

    a constant value while dividing BWDM into more channels

    means same maximum reach

    3

    NLI NLI chP P P

    3

    NLI NLI chG G G

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 97

    f

    f

    WDMB

    f

    Constraint: identical total throughput

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 98

    1 10 100 1000 8

    10

    12

    14

    16

    18

    20

    GN

    simulations

    inc GN

    BWDM = 500 GHz, PM-QPSK, 100 km spans, spacing 1.05 x (symb. rate)

    number of channels in 500 GHz

    2

    (THz/W) dB

    NLIG

    201 channels

    2.4 GBaud

    15 channels

    32 GBaud

    5 channels

    96 GBaud

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 99

    1 10 100 1000 8

    10

    12

    14

    16

    18

    20

    GN

    SPM+XPM

    no FWM

    EGN

    2

    (THz/W) dB

    NLIG

    number of channels in 500 GHz

    201 channels

    2.4 GBaud

    15 channels

    32 GBaud

    5 channels

    96 GBaud simulations

    BWDM = 500 GHz, PM-QPSK, 100 km spans, spacing 1.05 x (symb. rate)

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 100

    1 10 100 1000 12

    14

    16

    18

    20

    22

    24

    6.8 GBaud

    32 GBaud

    96 GBaud

    GN

    SPM+XPM

    no FWM

    EGN

    simulations

    BWDM = 500 GHz, PM-QPSK, 100 km spans, spacing 1.05 x (symb. rate)

    number of channels in 500 GHz

    2

    (THz/W) dB

    NLIG

  • OFC 2016 www.optcom.polito.it - www.ismb.it - www.cisco.com 101

    1 10 100 1000 12

    14

    16

    18

    20

    22

    24

    6.8 GBaud

    32 GBaud

    96 GBaud

    GN

    SPM+XPM

    no FWM

    EGN

    simulations

    BWDM = 500 GHz, PM-QPSK, 100 km spans, spacing 1.05 x (symb. rate)

    number of channels in 500 GHz

    2

    (THz/W) dB

    NLIG

    P.Poggiolini, A.Nespola, Y.Jiang, G.Bosco, A.Carena, L.Bertignono,

    S.M. Bilal, S. Abrate, and F. Forghieri, “Analytical and Experimental

    Results on System Maximum Reach Increase Through Symbol Rate

    Optimization, JLT, v. 34, n. 8, pp. 1872-1885, Apr 2016.

    A. Nespola, Y. Jiang, L. Bertignono, G. Bosco, A. Carena, S.M. Bilal,

    F. Forghieri, P. Poggiolini “Effectiveness of Digital Back-Propagation

    and Symbol-Rate Optimization in Coherent WDM Optical Systems”,

    OFC 2016 Thursday, paper Th3D.2

  • OFC 2016 www.optcom.polito.it 102

    [1] W. Shieh andY. Tang, “Ultrahigh-speed signal transmission over nonlinear

    and dispersive fiber optic channel: The multicarrier advantage,” IEEE

    Photon. J., vol. 2, no. 3, pp. 276–283, Jun. 2010.

    [2] C. Behrens, R. I. Killey, S. J. Savory, Ming Chen, and P. Bayvel,

    “Nonlinear

    transmission performance of higher-order modulation formats,” IEEE

    Photon. Technol. Lett., vol. 23, no. 6, pp. 377–379, Mar. 2011.

    [3] L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of

    coherent optical communications systems,” Opt. Exp., vol. 19, no. 9,

    pp. 8079–8084, Apr. 2011.

    [4] Q. Zhuge, B. Chˆatelain, and D. V. Plant, “Comparison of intra-channel

    nonlinearity tolerance between reduced-guard-interval CO-OFDM systems

    and Nyquist single carrier systems,” presented at the Optical Fiber

    Communication Conf. , Los Angeles, CA, USA, Mar. 2012, paper

    OTh1B.3.

    [5] A. Bononi, N. Rossi, and P. Serena, “Performance dependence on channel

    baud-rate of coherent single-carrier WDM systems,” presented at the Eur.

    Conf. Optical Communication, London, U.K., Sep. 2013, paper Th.1.D.5.

    [6] N. Rossi, P. Serena, and A. Bononi, “Symbol-rate dependence of

    dominant

    nonlinearity and reach in coherent WDM links,” J. Lightw. Technol.,

    vol. 33, no. 14, pp. 3132–3143, Jul. 2015.

    [7] M. Qiu, Q. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, and D. V. Plant,

    ‘Subcarrier multiplexing using DACs for fiber nonlinearity mitigation

    in coherent optical communication systems,” presented at the Optical

    Fiber Communication Conf. , San Francisco, CA, USA, Mar. 2014, paper

    Tu3J.2.

    [8] F. Yaman et al., “First quasi-single-mode transmission over transoceanic

    distance using few-mode fibers,” presented at the Optical Fiber

    Communication Conf. , Los Angeles, CA, USA, Mar. 2015, paper Th5C.7.

    [9] H. Nakashima et al., “Experimental investigation of nonlinear tolerance

    of subcarrier multiplexed signals with spectrum optimization,” presented

    at the Eur. Conf. Optical Communication, Valencia, Spain, Sep. 2015,

    paper Mo.3.6.4.

    [10] J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, P. Emplit, and

    F. Horlinet, “Multicarrier offset-QAM for long-haul coherent optical

    communications,” J. Ligthw. Technol., vol. 32, no. 4, pp. 4671–4678,

    Dec. 2014.

    [11] P. Poggiolini, A. Carena, Y. Jiang, G. Bosco, and F. Forghieri, “On the

    ultimate potential of symbol-rate optimization for increasing system

    maximumreach,”

    presented at theEur.Conf.Optical Communication,Valencia,

    Spain, Sep. 2015, paper We.4.6.2.

    [12] A. Nespola, L. Bertignono, G. Bosco, A. Carena, Y. Jiang, S. M. Bilal,

    P. Poggiolini, S. Abrate, and F. Forghieri, “Experimental demonstration of

    fiber nonlinearity mitigation in a WDM multi-subcarrier coherent optical

    system,” presented at the Eur. Conf. Optical Communication, Valencia,

    Spain, Sep. 2015, paper Mo.3.6.3.

    [13] A. Carbo, J. Renaudier, R. Rios-Mller, P. Tran, and G. Charlet,

    “Experimental analysis of non linear tolerance dependency of multicarrier

    modulations versus bandwidth efficiency,” presented at the Eur. Conf.

    Optical Communication, Valencia, Spain, Sep. 2015, paper Th.2.6.6.

  • OFC 2016 www.optcom.polito.it 103

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 104

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 105

    credit: https://www.dreamhost.com/blog/2009/05/13/broken-browsers-part-one/

  • OFC 2016 www.optcom.polito.it 106

    EGN GN corrNLI NLI NLIG f G f G f

    4 3

    corr corr corr corr corr

    NLI SPM X1-XPM X M

    2 1

    i i

    i i

    G f G f G f G f G f

    2

    1 2 1

    GN

    NLI WD 2 1 2 1M WDM WD 2M

    16( ) ( ) ( ) ( ) d d( ) , ,

    27G fG f f fG f G f f f f f f

    FWM XPM SPM SPM

  • OFC 2016 www.optcom.polito.it 107

    SPM SPM

    SPM

    corr 3( ) ( ) ( )m m m m mG f P f f

    SPM

    /2 /2 /2

    2

    1 2 2

    /2 /2 /2

    2

    1 2 2 1 2 1 2

    1 2 1 2

    /2 /2 /2

    2

    1 2 2

    /2 /2 /2

    80( )

    81

    ( ) ( ) ( ) ( ) ( )

    , , , ,

    16

    81

    m m m m m m

    m m m m m m

    m m m m m m

    m m m m m m

    f B f B f B

    m m

    f B f B f B

    m m m m m

    f B f B f B

    m

    f B f B f B

    f R df df df

    s f s f s f s f f f s f f f

    f f f f f f

    R df df df

    2

    1 2 1 2 1 2 2 2

    1 2 1 2 2 2

    ( ) ( ) ( ) ( ) ( )

    , , , ,

    m m m m ms f f f s f s f s f f f s f

    f f f f f f f f

    SPM

    /2 /2 /2 /2

    1 2 1 2

    /2 /2 /2 /2

    1 2 1 2 1 2 1 2

    1 2 1 2

    16( )

    81

    ( ) ( ) ( ) ( ) ( ) ( )

    , , , ,

    m m m m m m m m

    m m m m m m m m

    f B f B f B f B

    m m

    f B f B f B f B

    m m m m m m

    f R df df df df

    s f s f s f f f s f s f s f f f

    f f f f f f

    is the Fourier transform

    of the pulse used by the n-th channel, and: ch

    2

    WDM

    1

    N

    n n n n

    n

    G f P R s f f

    ns f

  • OFC 2016 www.optcom.polito.it 108

    ch

    X1-XPM

    corr 2 X1-XPM

    1

    N

    m n n n

    nn m

    G f P P f

    X1-XPM

    /2 /2 /2

    '

    1 2 2

    /2 /2 /2

    2' '

    1 2 2 1 2 1 2

    '

    1 2 1 2

    80

    81

    , , , ,

    m m n n n n

    m m n n n n

    f B f B f B

    n

    m n

    f B f B f B

    m n n n n

    f R R df df df

    s f s f s f s f f f s f f f

    f f f f f f

  • OFC 2016 www.optcom.polito.it 109

    X2

    1corr 2

    X2

    1

    mn

    m m n

    n mn m

    G f P P f

    X2

    /2 /2 /2

    '

    1 2 2

    /2 /2 /2

    2' '

    1 2 2 1 2 1 2

    '

    1 2 1 2

    80

    81

    , , , ,

    n n m m m m

    n n m m m m

    f B f B f B

    n

    m n

    f B f B f B

    n m m m m

    f R R df df df

    s f s f s f s f f f s f f f

    f f f f f f

    corr

    X3 X3

    12

    1

    mn

    m m n

    n mn m

    G f P P f

    X3

    /2 /2 /2

    '

    1 2 2

    /2 /2 /2

    2' '

    1 2 1 2 2 1 2 2

    ' '

    1 2 1 2 2 2

    16

    81

    , , , ,

    m m m m m m

    m m m m m m

    f B f B f B

    n

    m n

    f B f B f B

    n m m m m

    f R R df df df

    s f f f s f s f s f s f f f

    f f f f f f f f

    corr

    X4 X4 X4

    13

    1

    mn n

    n n n

    n mn m

    G f P f f

    X4

    /2 /2 /2

    2 '

    1 2 2

    /2 /2 /2

    2' '

    1 2 2 1 2 1 2

    '

    1 2 1 2

    /2 /2 /2

    2 '

    1 2 2

    /2 /2 /2

    2

    1 2

    80

    81

    , , , ,

    16

    81

    n n n n n n

    n n n n n n

    n n n n n n

    n n n n n n

    f B f B f B

    n

    n

    f B f B f B

    n n n n n

    f B f B f B

    n

    f B f B f B

    n n

    f R df df df

    s f s f s f s f f f s f f f

    f f f f f f

    R df df df

    s f f f s f

    ' '

    1 2 1 2 2 2

    ' '

    1 2 1 2 2 2, , , ,

    n n ns f s f f f s f

    f f f f f f f f

    X4

    /2 /2 /2 /2

    ' '

    1 2 1 2

    /2 /2 /2 /2

    ' ' ' '

    1 2 1 2 1 2 1 2

    ' '

    1 2 1 2

    16

    81

    , , , ,

    n n n n n n n n

    n n n n n n n n

    f B f B f B f B

    n

    n

    f B f B f B f B

    n n n n n n

    f R df df df df

    s f s f s f f f s f s f s f f f

    f f f f f f

  • OFC 2016 www.optcom.polito.it 110

    max

    corr

    M1 M1

    min

    12

    1

    min max ch

    min max

    when 1, 2, ;

    when 1, 1, 2.

    lml

    n l l

    n m l ln m

    G f P P f

    n m l n l N

    n m l l n

    M1

    /2 /2 /2

    '

    1 2 2

    /2 /2 /2

    2' '

    1 2 2 1 2 1 2

    '

    1 2 1 2

    80

    81

    , , , ,

    n n l l l l

    n n l l l l

    f B f B f B

    l

    n l

    f B f B f B

    n l l l l

    f R R df df df

    s f s f s f s f f f s f f f

    f f f f f f

    max

    corr

    M2 M2

    min

    12

    1

    min max

    min max ch

    when 1, 1, 1;

    when 1, 1, .

    lml

    n l l

    n m l ln m

    G f P P f

    n m l l n

    n m l n l N

    M2

    /2 /2 /2

    '

    1 2 2

    /2 /2 /2

    2' '

    1 2 2 1 2 1 2

    '

    1 2 1 2

    80

    81

    , , , ,

    n n l l l l

    n n l l l l

    f B f B f B

    l

    n l

    f B f B f B

    n l l l l

    f R R df df df

    s f s f s f s f f f s f f f

    f f f f f f

    chcorr

    M3 M3

    2

    1, 1

    when is odd, 5 2;

    when is even, 2 2, 2 3.

    Nl

    n l l

    nn m m

    G f P P f

    n l n

    n l n n

    M3

    /2 /2 /2

    '

    1 2 2

    /2 /2 /2

    2' '

    1 2 1 2 2 1 2 2

    ' '

    1 2 1 2 2 2

    16

    81

    , , , ,

    l l l l l l

    l l l l l l

    f B f B f B

    l

    n l

    f B f B f B

    n l l l l

    f R R df df df

    s f f f s f s f s f s f f f

    f f f f f f f f

  • OFC 2016 www.optcom.polito.it 111

    4

    2

    E2

    E

    a

    a

    6 4

    2 2

    E E9 12

    E E

    a a

    a a

    corr

    NLI0 0G

    EGN GNNLI NLIG f G f

  • OFC 2016 www.optcom.polito.it 112

  • OFC 2016 www.optcom.polito.it 113

    EGN GN corrNLI NLI NLIG f G f G f

  • OFC 2016 www.optcom.polito.it 114

  • OFC 2016 www.optcom.polito.it 115

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 116

  • OFC 2016 www.optcom.polito.it 117

  • OFC 2016 www.optcom.polito.it 118

    NLIP

  • OFC 2016 www.optcom.polito.it 119

  • OFC 2016 www.optcom.polito.it 120

  • OFC 2016 www.optcom.polito.it 121

  • OFC 2016 www.optcom.polito.it 122

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    markers: simulations

    5% error bar

    MARKERS: simulations

    32 GBaud

    15 channels

    100 km spans

    LINES: EGN model

  • OFC 2016 123

    no ASE, at max-reach

  • OFC 2016 124

    no ASE, at max-reach

  • OFC 2016 www.optcom.polito.it 125

    MARKERS: simulations blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

    32 GBaud

    15 channels

    60 km spans

    LINES: EGN model

    case study

  • OFC 2016 www.optcom.polito.it 126

  • OFC 2016 www.optcom.polito.it 127

  • OFC 2016 www.optcom.polito.it 128

  • OFC 2016 www.optcom.polito.it 129

  • OFC 2016 www.optcom.polito.it 130

  • OFC 2016 www.optcom.polito.it 131

    Carsten Schmidt-Langhorst, Robert Elschner, Felix Frey, Robert

    Emmerich, Colja Schubert, “Experimental Analysis of Nonlinear

    Interference Noise in Heterogeneous Flex-Grid WDM Transmission”,

    ECOC 2015, paper Tu.1.4.3, Sept. 2015.

    ̂

    ̂

  • OFC 2016 www.optcom.polito.it 132

    ̂

  • OFC 2016 www.optcom.polito.it 133

    norm

    alized a

    uto

    covari

    ance

    time (symbols)

    ‘delta’

    correlated

    component

    ‘long’ correlated component

    ̂

    autocovariance

  • OFC 2016 www.optcom.polito.it 134

    ̂

  • OFC 2016 www.optcom.polito.it 135

    norm

    alized a

    uto

    covari

    ance

    time (symbols)

    autocovariance

    ‘delta’

    correlated

    component

    ‘delta’

    correlated

    component

    ̂

    ̂

  • OFC 2016 www.optcom.polito.it 136

  • OFC 2016 www.optcom.polito.it 137

  • OFC 2016 www.optcom.polito.it 138

    norm

    alized a

    uto

    covari

    ance

    time (symbols)

    ̂

    autocovariance

  • OFC 2016 www.optcom.polito.it 139

    norm

    alized a

    uto

    covari

    ance

    time (symbols)

    ‘delta’

    correlated

    component

    ̂

    autocovariance

    CPÊ

    ‘delta’

    correlated

    component

  • OFC 2016 www.optcom.polito.it 140

    norm

    alized a

    uto

    covari

    ance

    time (symbols)

    ‘delta’

    correlated

    component

    autocovariance

    ‘delta’

    correlated

    component

    ̂

    ̂

  • OFC 2016 www.optcom.polito.it 141

    ̂

    ̂

    with CPE

  • OFC 2016 www.optcom.polito.it 142

  • OFC 2016 www.optcom.polito.it 143

    MARKERS: simulations no CPE blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

    32 GBaud

    15 channels

    60 km spans

    LINES: EGN model

    case study

  • OFC 2016 www.optcom.polito.it 144

    MARKERS: simulations no CPE blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

    32 GBaud

    15 channels

    60 km spans

    LINES: EGN model

  • OFC 2016 www.optcom.polito.it 145

    blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    LINES: EGN model

    MARKERS: simulations with CPE

    + 8%

  • OFC 2016 www.optcom.polito.it 146

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    LINES: EGN model

    MARKERS: simulations no CPE

    5% error bar

  • OFC 2016 www.optcom.polito.it 147

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    MARKERS: simulations with CPE

    5% error bar

    32 GBaud

    15 channels

    100 km spans

    LINES: EGN model

  • OFC 2016 www.optcom.polito.it 148

  • OFC 2016 www.optcom.polito.it 149

    55 km spans

    10250 km

    150 2 PSCF

    Jin-Xing Cai, Yu Sun, Hongbin Zhang, Hussam G. Batshon, Matt

    Vincent Mazurczyk, Oleg V. Sinkin, Dmitri G. Foursa, and Alexei

    Pilipetskii, “49.3 Tb/s Transmission Over 9100 km Using C+L

    EDFA and 54 Tb/s Transmission Over 9150 km Using Hybrid-

    Raman EDFA,” v. 33, n. 13, pp. 2724-2734, July 2015

  • OFC 2016 www.optcom.polito.it 150

    Likely, many systems already do it with their CPEs.

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 151

    credit: http://www.nfafranchiseconsultants.com/alternatives-financial-performance-representations/

  • OFC 2016 www.optcom.polito.it 152

  • OFC 2016 www.optcom.polito.it 153

  • OFC 2016 www.optcom.polito.it 154

    markers: simulations no CPE blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

  • OFC 2016 www.optcom.polito.it 155

    blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

    markers: simulations with CPE

  • OFC 2016 www.optcom.polito.it 156

    blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model for PM-QPSK

    markers: simulations with CPE

  • OFC 2016 www.optcom.polito.it 157

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    markers: simulations no CPE

    5% error bar

  • OFC 2016 www.optcom.polito.it 158

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    markers: simulations with CPE

    5% error bar

  • OFC 2016 www.optcom.polito.it 159

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model for PM-QPSK

    markers: simulations WITH CPE

    5% error bar

  • OFC 2016 www.optcom.polito.it 160

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model for PM-QPSK

    markers: simulations WITH CPE

    5% error bar

  • OFC 2016 www.optcom.polito.it 161

    2

    NLI

    1/W

    dB

    P

    NO CPE CPE

    number of spans number of spans

    PSCF

    100 km

    Spans

    See circles

    prev. slide

  • OFC 2016 www.optcom.polito.it 162

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 163

    total WDM signal

    Stokes vector channel Stokes vector

    precession

  • OFC 2016 www.optcom.polito.it 164

  • OFC 2016 www.optcom.polito.it 165

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 166

  • OFC 2016 www.optcom.polito.it 167

  • OFC 2016 www.optcom.polito.it 168

    with Raman

    without Raman

  • OFC 2016 www.optcom.polito.it 169

    32 GBaud

    15 channels

    100 km spans

    noise figure 5 dB

    EGN model

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

  • OFC 2016 www.optcom.polito.it 170

    32 GBaud

    15 channels

    100 km spans

    noise figure 5 dB

    EGN model

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

  • OFC 2016 www.optcom.polito.it 171

  • OFC 2016 www.optcom.polito.it 172

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 173

  • OFC 2016 www.optcom.polito.it 174

  • OFC 2016 www.optcom.polito.it 175

  • OFC 2016 www.optcom.polito.it 176

    targetOSNR 9 dB

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 177

  • OFC 2016 www.optcom.polito.it 178

    ch

    ASE NLI

    OSNRP

    P P

    ch NLI

    ASE NLI

    OSNRP P

    P P

    this simple correction

    is quite effective (for

    the center channel)

    H. Louchet et al., “Analytical Model for the

    Performance Evaluation of DWDM Transmission

    Systems,” IEEE Phot. Technol. Lett., vol. 15, pp.

    1219-1221, Sept. 2003.

    P. Poggiolini, A. Carena, Y. Jiang, G. Bosco, V.

    Curri, and F. Forghieri, ‘Impact of low-OSNR

    operation on the performance of advanced

    coherent optical transmission systems,’ in Proc. of

    ECOC 2014, Cannes (FR), Sept. 2014. Available with

    corrections on www.arXiv.org, paper

    arXiv:1407.2223.

  • OFC 2016 www.optcom.polito.it 179

    targetOSNR 9 dB

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 180

    credit: http://www.examiner.com/article/where-are-we-going-an-exercise-

    irresponsible-speculation

  • OFC 2016 www.optcom.polito.it 181

  • OFC 2016 www.optcom.polito.it 182

    terrestrial

    medium-short

    haul

  • OFC 2016 www.optcom.polito.it 183

    terrestrial

    short

    haul

  • OFC 2016 www.optcom.polito.it 184

  • OFC 2016 www.optcom.polito.it 185

  • OFC 2016 www.optcom.polito.it 186

    credit: http://www.messagehouse.org/increasing-the-

    takeaway-ability-of-your-presentations/

  • OFC 2016 www.optcom.polito.it 187

    credit: http://www.nfafranchiseconsultants.com/alternatives-financial-performance-representations/

  • OFC 2016 www.optcom.polito.it 188

    downloadable at www.optcom.polito.it

  • More slides on

    Asymptotic formulas

  • OFC 2016 www.optcom.polito.it 190

    EGN GN corrNLI NLI NLIG f G f G f

  • OFC 2016 www.optcom.polito.it 191

  • OFC 2016 www.optcom.polito.it 192

    1 2 5 10 20 50 20

    25

    30

    35

    40

    45

    50

    PM-QPSK, 15 channels, 32 Gbaud, 33.6 GHz spacing,

    roll-off 0.05, SMF, 100 km spans, (SPM removed)

    simulation

    EGN

    asympt. EGN

    correction

    GN

    number of spans

    2

    NLI

    1 / W , dB

    P

  • OFC 2016 www.optcom.polito.it 193

    NLI

    2 2

    ef

    3cor fr ch

    2

    ch

    2

    1HN

    2

    80

    81 ss

    L N fN

    R f R

    PG

    L

    22 s sR L N

    1

    1HN

    K

    k

    Kk

    note:

  • OFC 2016 www.optcom.polito.it 194

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    markers: simulations

    5% error bar

  • OFC 2016 www.optcom.polito.it 195

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model asymptotic app.

    markers: simulations

    5% error bar

  • OFC 2016 www.optcom.polito.it 196

    markers: simulations blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

  • OFC 2016 www.optcom.polito.it 197

    markers: simulations blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model asymptotic app.

  • OFC 2016 www.optcom.polito.it 198

    ch

    ch

    2opt2 2 3 eff

    ch ch

    ch

    1 /2

    2 2 221 1

    2

    ch

    2

    ch ch

    corrNLI

    1

    1

    801 / 2 1

    81

    21

    1

    2 21

    2

    sinint 2 1 sinint2 2

    p

    s s

    s s s

    NN

    s s

    n n ss

    s

    s ss

    n

    RL fR P N HN N

    L f R R

    n f

    nN Rf

    N n R

    L n f

    n R n RN

    n f n f

    G

    ch 2 opt 2 span span 2p s sN n L R f R L N

  • OFC 2016 199

    BWDM = 2.4 THz, PM-QPSK, 100 km spans, spacing 1.05 x (symb. rate)

    2.4 GBaud

    1000 channels

    16 GBaud

    150 channels

    32 GBaud

    75 channels

    number of channels in 2500 GHz

    2

    (THz/W) dB

    NLIG

  • OFC 2016 www.optcom.polito.it 200

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • More slides on

    phase noise:

    non-circularity test

    on the «case study»:

    PSCF 60 km span

    PM16QAM

  • OFC 2016 www.optcom.polito.it 202

    ̂

    ̂

    “non-circularity”:

    2

    ˆ

    2

    ˆdB

  • OFC 2016 www.optcom.polito.it 203

    ̂

    ̂

    2

    ˆ

    2

    ˆdB

    0

  • OFC 2016 www.optcom.polito.it 204

    distance (km)

    no CPE

    * with CPE

    non-c

    ircula

    rity

    2

    ˆ

    2

    ˆdB

  • OFC 2016 www.optcom.polito.it 205

    non-c

    ircula

    rity

    distance (km)

    2

    ˆ

    2

    ˆdB

    no CPE

    * with CPE

  • More details on non-

    linear polarization

    noise

  • OFC 2016 www.optcom.polito.it 207

    total WDM signal

    Stokes vector channel Stokes vector

    precession

  • OFC 2016 www.optcom.polito.it 208

  • OFC 2016 www.optcom.polito.it 209

    PolN

    cos sin

    sin cos

    j j

    j j

    e e

    e e

    U

    ˆ ˆ

    ˆ ˆ

    ˆ

    ˆ

    x x

    y y

    j

    y

    j

    x

    j

    j

    e

    e s

    s

    s

    es s

    s e

  • OFC 2016 www.optcom.polito.it 210

    2

    2

    1

    1

    ˆ

    ˆ

    ˆ ˆ

    ˆ ˆ

    j

    j

    x x

    y y

    j

    y

    j

    x

    s s

    s e e

    e s e

    ss

    PolN-induced

    phase noise

    crosstalk

    between the

    two constellations if the Rx CPE works independently

    on the two polarizations, it already

    removes long-correlated PolN, too.

    In our simulations this was the case.

    requires an “ad hoc” algorithm to

    estimate and remove its

    long-correlated (LC) part

  • OFC 2016 www.optcom.polito.it 211

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    markers: simulations no CPE

    5% error bar

  • OFC 2016 www.optcom.polito.it 212

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    markers: simulations with CPE

    5% error bar

  • OFC 2016 www.optcom.polito.it 213

    blue: PSCF

    red: SMF

    green: NZDSF

    32 GBaud

    15 channels

    100 km spans

    EGN model

    markers: simulations with CPE-XpolE

    5% error bar

  • OFC 2016 www.optcom.polito.it 214

    markers: simulations no CPE blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

  • OFC 2016 www.optcom.polito.it 215

    blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

    markers: simulations with CPE

  • OFC 2016 www.optcom.polito.it 216

    blue: PSCF

    red: SMF

    green: NZDSF

    5% error bar

    32 GBaud

    15 channels

    60 km spans

    EGN model

    markers: simulations with CPE and XPolE

  • OFC 2016 www.optcom.polito.it 217

  • OFC 2016 www.optcom.polito.it 218

    http://www.messagehouse.org/increasing-the-takeaway-ability-of-

    your-presentations/

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • More details on in-

    line ASE

  • OFC 2016 www.optcom.polito.it 220

  • OFC 2016 www.optcom.polito.it 221

  • OFC 2016 www.optcom.polito.it 222

    32 GBaud

    15 channels

    100 km spans

    noise figure 5 dB

    EGN model

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

  • OFC 2016 www.optcom.polito.it 223

    32 GBaud

    15 channels

    100 km spans

    noise figure 5 dB

    EGN model

    5% error bar

    blue: PSCF

    red: SMF

    green: NZDSF

  • OFC 2016 www.optcom.polito.it 224

  • OFC 2016 www.optcom.polito.it 225

    targetOSNR 9 dB

    credit: http://www.messagehouse.org/increasing-the-takeaway-ability-of-your-presentations/

  • On the meaning of

    the EGN model

    correction formula

    contributions

  • OFC 2016 227

    9 channels

    rectangular spectra

    quasi-Nyquist-WDM

    f = 0

    GNNLIG f

    f1

    f2

  • OFC 2016 228

    f1

    f2

    S

    (SCI)

    MCI M1

    MCI M2

    MCI M3

    MCI M0

    XCI X2

    XCI X3

    XCI X4

    XCI X1

    the correction

    exists in

    all colored islands

    corrNLIG f

    GNNLIG f