Jan Nesset

download Jan Nesset

of 40

Transcript of Jan Nesset

  • 8/23/2019 Jan Nesset

    1/40

    A Benchmarking Tool for Assessing

    Flotation Cell Hydrodynamics

    W. Zhang, McGill University

    J.A. Finch, McGill University

  • 8/23/2019 Jan Nesset

    2/40

    A Benchmarking Tool forA Benchmarking Tool forAssessing Flotation CellAssessing Flotation Cell

    HydrodynamicsHydrodynamicsJ.E. Nesset

    Procemin Conference, Santiago , Chile

    December 2, 2011

    W. Zhang

    J.A. Finch

    I

    NDO

    MIN

    O

    CO

    NF

    ID

    O

  • 8/23/2019 Jan Nesset

    3/40

    The presentation covers

    The test cell and variables investigated The concepts of CCC and CCC95 The effect of key variables on D32

    e overa 32 equa on The notion of a Road map for processoptimization

    Implications for process improvement Case study: Lac des Iles3

  • 8/23/2019 Jan Nesset

    4/40

    Illustrating the importance of frother

    and small bubbles in flotation (video)

    View inside a Denver laboratory flotation machine:

    water-air system: no air, air added, air with frother 4Metso CBT Flotation Module 2002 (originally BPT 1996)

  • 8/23/2019 Jan Nesset

    5/40

    Frother functions are multiple:1. Stabilizing of small bubbles (0.5 2 mm)

    in pulp phase by preventing coalescence2. Bubble size and shape affect gas hold-

    u , interfacial surface area of as and

    5

    hence particle collection efficiency3. Froth formation and stability thus

    influencing water drainage, hence gangue

    rejection and concentrate grade

    This presentation looks at predicting

    bubble size in the pulp phase

  • 8/23/2019 Jan Nesset

    6/40

    Motivation for the work:

    No adequate model existedfor redictin bubble size in

    flotation

    Seen as a significantshortcoming

    6

  • 8/23/2019 Jan Nesset

    7/40

    Variables investigated

    Frother type (5) and concentration Gas rate Jg (volumetric air flow/cell area)

    ower npu

    mpe er spee Altitude (gas density) Viscosity (water temperature)

    Testing in 2-phase water- gas system

    no solids 7

  • 8/23/2019 Jan Nesset

    8/40

    Gas Dispersion Terminology

    Sauter Mean Bubble Size (mm)

    of the bubble size distribution

    Superficial Gas Velocity (cm/s)

    32 = 31 21

    =

    Bubble Surface Area Flux (1/s)

    = 60 32 8 =

    Flotation Rate Constant (1/s)

  • 8/23/2019 Jan Nesset

    9/40

    Test CellMetso RCS 0.8 m3

    9

  • 8/23/2019 Jan Nesset

    10/40

    Test CellMetso RCS 0.8 m3

    10

    QuiescentZone

    TurbulentZone

    Measurement

    Location

  • 8/23/2019 Jan Nesset

    11/40

    Frother

    11

  • 8/23/2019 Jan Nesset

    12/40

    Frother types tested (5)Frother Description Supplier Molecular Weight

    Pentanol Simple alcohol Fisher 88

    MIBC Methyl isobutyl carbinol Dow 102

    DowFroth 250 Polypropylene glycol alkyl ether Dow 235-265

    F140 Blend of aldehydes and ketones Flottec Mixture C8-C22: typical 200-250

    F150 Polypropylene glycol Flottec 410-440

    Covers broad range ofcommonly used frothers plus

    low MW Pentanol 12

  • 8/23/2019 Jan Nesset

    13/40

    The CCC and CCCXconcepts (X=% of A)

    3

    4

    )

    D32

    = Dlimiting

    + Aexp[-Bppm]

    Measured

    Exponential Model

    CCC50

    CCC85

    0

    1

    2

    0 10 20 30 40 50

    D32(m

    Frother Addition (ppm)

    CCC99A

    Dlimiting

    CCC95 values closely approximate Laskowskis CCC

    values but easier to establish mathematically 13

    CCC = Critical

    Coalescence

    Concentration

    = Dl

  • 8/23/2019 Jan Nesset

    14/40

    4

    D32 versus frother concentration Normalized by (PPM/CCC95)

    5 frother types 2 gas rates (Jg)1

    2

    3

    4

    D32(mm)

    Jg=0.5 cm/s

    Jg=1 cm/s

    Model All Data

    Model Jg=0.5 cm/s

    Model Jg=1 cm/s

    0

    1

    2

    3

    0 1 2 3 4 5 6 7 8 9 10

    D32(mm)

    Frother Addition (ppm/CCC95)

    Jg=0.5 cm/s

    Jg=1 cm/s

    Model All Data

    Model Jg=0.5 cm/s

    Model Jg=1 cm/s

    ]9509.3[exp26.2874.032 CCC

    ppm

    D+=

    Frother can be

    characterized by itsCCC95 (@ Jg=0.5 cm/s)

    00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    Frother Addition (ppm/CCC95)

    14

  • 8/23/2019 Jan Nesset

    15/40

    The link between CCC95 and HLB/MW(Jg=0.5 cm/s)

    SURFACTANT MW HLB HLB/MW CCC or CCC95

    Nesset (2006)

    DF250 (PG) 264.37 7.8 0.0295 10.06

    F150 (PG) 425 7.83 0.0184 4.23

    Pentanol (A) 88 6.52 0.0741 30.47

    MIBC (A) 102 6.1 0.05981 12.37

    Nesset et al (2010)

    HLB

    Hydrophile Li o hile

    . . . .

    F150 (PG) 425 7.83 0.0184 5.99Pentanol (A) 88 6.52 0.0741 23.72

    MIBC (A) 102 6.1 0.05981 10.54

    Grau & Laskowski (2006)

    PO1 (PG) 90.12 8.3 0.0921 46.8

    PO2 (PG) 148.12 8.15 0.0550 25.1

    DF200 (PG) 206.29 8 0.0388 17.3

    DF250 (PG) 264.37 7.8 0.0295 9.1

    DF1012 (PG) 397.95 7.5 0.0188 6.6

    MIBC (A) 102.18 6.1 0.0597 11.2

    HEX (A) 102.20 6.00 0.0587 8.07

    DEMPH (A) 248.4 6.6 0.0266 3.23

    DEH (A) 190.3 6.7 0.0352 5.90

    MPDEH (A) 248.4 6.6 0.0266 3.73

    PG = Polyglycols, A = Alcohol Measurements at Jg = 0.5 cm/s

    BalanceA measure of the

    solubility of ahydrocarbon in

    water. Calculatedempirically fromthe molecular

    structure

    15

  • 8/23/2019 Jan Nesset

    16/40

    CCC95 - HLB/MW relationshipy = 566.33x - 5.7599

    R = 0.9922

    20

    30

    40

    50

    CCC95atJg=0.

    5cm/s

    PG & Alcohol Ness et (2006)

    PG & Alcohol Ness et et a l (2010)

    PG Grau and Laskowski (2006)

    Alcohol Grau and Laskowski (2006)

    Polyglycols

    Nesset (2006)

    Pentanol (not

    used)

    Nesset et al

    Pentanol (2010)

    CCC95 values can be predicted frommolecular structure of the frother

    0

    10

    0 0.02 0.04 0.06 0.08 0.1

    CCC

    o

    HLB/MW

    Alcohols

    16

  • 8/23/2019 Jan Nesset

    17/40

    Gas Rate, Jg

    Impeller Speed(Power Input)

    17

  • 8/23/2019 Jan Nesset

    18/40

    5.0

    032 )100( gJaDD +=

    D32 versus Jg and impeller speedGas Rate, Jg

    No meaningful effect ofpower input on D32

    Impeller Speed (Power)

    10.00 PPM Model

    MIBC

    0

    1

    2

    3

    4

    5

    2 4 6 8 10

    D32

    (mm)

    Impeller Tip Speed (m/s)

    0 ppm Jg=1

    2.5 ppm Jg=1

    5 ppm Jg=1

    10 ppm Jg=1

    0 ppm Jg=0.5

    2.5 ppm Jg=0.5

    5 ppm Jg=0.5

    10 ppm Jg=0.5

    Typical O perating Range

    Cell Operating Limit

    18

    0.1

    1.0

    0 0.5 1 1.5

    D32(mm)

    Jg (cm/s)

    2.63 PPM Model

    5.6 PPM Model

    8.74 PPM Model

    17.6 PPM Model

    0 ppm

    2.63 ppm

    5.16 ppm

    8.74 ppm

    17.6 ppm

    0.1

    1.0

    10.0

    0 0.5 1 1.5

    D32(mm)

    Jg (cm/s)

    Model 0 PPM

    Model 2.41 PPM

    Model 4.82 PPM

    Model 8.01 PPM

    Model 16.02 PPM

    0 ppm

    2.41 ppm

    4.82 ppm

    8.01 ppm

    16.02 ppm

    DF250

  • 8/23/2019 Jan Nesset

    19/40

    Viscosity

    (water temperature)

    Gas Density

    (altitude)

    19

  • 8/23/2019 Jan Nesset

    20/40

    D32 correction factors for

    viscosity and gas densityfactor v (viscosity)

    o

    = 200.776

    = 0.132

    factor d (altitude)

    20

    20

    1.0

    1.5

    2.0

    2.5

    3.0

    0 10 20 30 40 50

    D32(mm)

    Temperature (Co)

    95% Confidence Limits

    D32-Viscos ity Model

    Test 1

    Test 2

    Test 3

    Test 5

    o

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    0 0.2 0.4 0.6 0.8 1

    D32(mm)

    Gas Density Relative to Standard Conditions, g/o

    Model

    Test 1 Jg=0.25

    Test 2 Jg=0.25

    Test 3 Jg=0.3

    Test 4 Jg=0.3

    95% Conf Limits

    D32 = 1.06(o/g)0.132

    R2Adj = 0.835

    Region of Interest

  • 8/23/2019 Jan Nesset

    21/40

    Interaction Effects on D32

    - g

    21

  • 8/23/2019 Jan Nesset

    22/40

    Increasing Jg increasesboth the CCC95, and the

    limiting Dl

    1

    2

    3

    4

    D32

    (mm)

    Jg=.05

    Jg=0.25

    Jg=0.5

    Jg=0.75

    Jg=1.0

    Increasing Jg and CCC95

    Interaction effects:

    Jg, CCC95 and limiting bubble size, Dl

    0

    0 5 10 15 20

    DowFroth 250 (ppm)

    y = -0.0176x + 1.0144

    RAdj = 0.9995

    y = -0.0171x + 1.1518

    RAdj = 0.9597

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 10 20 30 40 50

    Dlimiting

    (m

    m)

    CCC95 (ppm)

    Jg = 0.5 cm/s

    Jg = 1 cm/s Frothers with higher

    CCC95 have lowerlimiting D

    l

    22

  • 8/23/2019 Jan Nesset

    23/40

    Interaction effects:are normalized relative to CCC95

    at Jg = 0.5 cm/s

    Polyglycol frothers (DF250, F140, F150)

    6528.06736.09595 JCCCCCC +=

    Adjustment factor for the limiting bubble size ()

    Alcohol frothers (MIBC, Pentanol)

    .

    )2723.08639.0(9595 5.0 gJg JCCCCCC += =

    )9506.10(0176.0 5.0== Jgl CCCf

    23

  • 8/23/2019 Jan Nesset

    24/40

    Overall D32 Model

    24

  • 8/23/2019 Jan Nesset

    25/40

    Overall D32 model

    Overall equation for determining D

    32from the key flotation variables

    factors v(viscosity),

    d(altitude),

    l(limiting D

    l) as described earlier

    ,,32 ppmgdv =

    25

    Note that a model for D32 also becomes a model for predicting Sb since

    =6

    32

  • 8/23/2019 Jan Nesset

    26/40

    Overall D32 model The function is given by

    [ ]

    +++++=

    9509.3exp)100(0619.0)267.0(316.2)100(064.0267.0 5.05.0

    CCC

    ppmJfJf glgl

    g

    CCC0 curve(maximum limiting bubble size)

    -

    of frother concentration andtype on the CCC0 curve

    g

    type on the CCC 99 curve(minimum limiting bubble size)

    26

    0

    1

    2

    3

    4

    5

    0.0 0.5 1.0 1.5 2.0

    D32

    (mm)

    Jg (cm/s)

    0 PPM Frother

    4 PPM DF250

    8 PPM DF250

    16 PPM DF250

    32 PPM DF250

    CCC0 - Maximum D32

    CCC99 - Minimum D32

  • 8/23/2019 Jan Nesset

    27/40

    Model goodness-of-fitD32 and Sb measured versus modeled

    D32 Model - All Data

    95% C.L. 0.30 mm

    R2 = 0.96

    N = 1991

    2

    3

    4

    ModelD32(mm)

    DF250 PPM Tests

    MIBC PPM Tests

    F150 PPM Tests

    F140 PPM Tests

    DF250 Jg Tests

    MIBC Jg Tests

    0 PPM Jg Tests

    Viscosity/Temp

    Altitude/Density

    0

    0 1 2 3 4

    Measured D32 (mm)

    95% CL

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    ModelSb

    (s-1)

    Measured Sb (s-1)

    All Data

    95% CL

    Sb Model - All Data (Sb=6Jg/D32)

    95% C.L. 8.0 s-1 (avg)

    95% C.L. 22% (avg Relative)

    N = 199

    Note: Sb increasingly sensitive asD

    32becomes smaller

    27

  • 8/23/2019 Jan Nesset

    28/40

    Model Comparison with

    Plant Data

    28

  • 8/23/2019 Jan Nesset

    29/40

    Model validation with plant data

    - notion of a Process Road Map

    Plant data (3-

    phase) fitcompletely

    within model

    5 Operating Plants

    CompanyNA

    PalladiumWMC* Xstrata Ni Escondida

    Impala

    Platinum

    Operating Plant Site Lac des Iles Leinster Raglan Los

    ColoradosUG2

    Cell Manufacturer Outotec TC Outotec 16U Outotec 28U Outotec TCBateman TC,

    Metso TC

    Cell Size (vol), m3 130 16 28 100 50, 30

    (2-phase)

    ,

    Site Location Ontario Australia Quebec Chile South Africa

    Metal/mineral floated Palladium Nickel Nickel Copper Platinum

    * Now BHP Billiton, R = rougher, S = scavenger, C=cleaner

    Model curves are for DowFroth 250 equivalent frother concentration

    0

    20

    40

    60

    80

    100

    0.0 0.5 1.0 1.5 2.0

    Sb

    (s-1)

    Jg (cm/s)

    Plant DataLimiting DF250 CCC

    16 PPM DF250

    8 PPM DF250

    4 PPM DF250

    0 PPM Frother

    Lac des Iles

    WMC-LNO

    Raglan

    Escondida Los Colorados

    Impala

    0.1

    1.0

    10.0

    0.0 0.5 1.0 1.5 2.0

    D32(mm)

    Jg (cm/s)

    Plant Data0 PPM Frother

    4 PPM DF250

    8 PPM DF250

    16 PPM DF250

    32 PPM DF250

    Lac des Iles

    WMC-LNO

    Raglan

    Escondida Los Colorados

    Impala

    max

    min

    max

    min

    29

  • 8/23/2019 Jan Nesset

    30/40

    Model Predictions

    30

  • 8/23/2019 Jan Nesset

    31/40

    Examples of model prediction

    0

    1

    2

    3

    4

    0 5 10 15 20 25 30 35 40 45

    D32(mm)

    Frother Concentration (ppm)

    DowFroth 250Jg=2 cm/s

    Jg=1.5 cm/s

    Jg=1 cm/s

    Jg=0.5 cm/s

    Jg=0.2 cm/s

    0

    20

    40

    60

    80

    100

    120

    0 5 10 15 20 25 30 35 40 45

    Sb(s-1)

    Frother Concentration (ppm)

    DowFroth 250Jg=2 cm/s

    Jg=1.5 cm/s

    Jg=1 cm/s

    Jg=0.5 cm/s

    Jg=0.2 cm/s

    The optimumfrother

    concentration

    increases withincreasing gasrate (Jg)

    0

    20

    40

    60

    80

    100

    120

    0 5 10 15 20 25 30 35 40 45

    Sb(s-1)

    Frother Concentration (ppm)

    Jg = 1cm/s

    Pentanol

    DowFroth 250

    F-150

    0

    1

    2

    3

    4

    0 5 10 15 20 25 30 35 40 45

    D32(mm)

    Frother Concentration (ppm)

    Jg = 1 cm/s

    Pentanol

    DowFroth 250

    F-150

    31

    As a result, thesefrothers provideopportunity for

    increasing Sb andhence flotation

    kinetics

    g er

    frothers yieldlower limitingbubble size

  • 8/23/2019 Jan Nesset

    32/40

    Case Study:

    Using Model to Benchmark

    Plant Performance

    (Ontario, Canada)

    10% Difference in Pd recoverybetween plant and pilot testing

    (testing in 2003 and 2005)32

  • 8/23/2019 Jan Nesset

    33/40

    Large difference in plant andpilot plant/lab bubble size

    Combined

    final tails

    Flotation

    Feed

    Scavenger cells

    Scavenger

    tails

    Cleaner

    tails

    Rougher cells

    Lab Tests Plant and Pilot Tests

    Combined

    final tails

    Flotation

    Feed

    Scavenger cells

    Scavenger

    tails

    Cleaner

    tails

    Rougher cells

    Lab TestsLab Tests Plant and Pilot TestsPlant and Pilot Tests

    0

    20

    40

    60

    80

    100

    1 2 3 4 5 6 7

    %

    minus

    1mm

    bubbles

    Cell No

    Plant Cells

    Pilot PlantCells

    Std LabFloat

    Final

    concentrate

    Final

    concentrate

    Plant cellsPlant cellsPlant cellsPlant cells

    Pilot /lab cellsPilot /lab cellsPilot /lab cellsPilot /lab cells

    - m nus mm u es

    33

  • 8/23/2019 Jan Nesset

    34/40

    LDI - Comparison of 2003 and 2005D32 and Sb with road map model

    6th

    Scavenger cell

    2005 test of blended frother to 6th scavenge cell

    2

    3

    4

    D32(mm)

    Lac des Iles Case Study0 PPM Frother

    5 PPM MIBC

    10 PPM MIBC

    Limiting MIBC CCC

    LDI 2003 Original Study

    LDI 2005 Re-Study

    Note repeatability of 2003 and2005 data @ 5 ppm MIBC

    additional frother moves D32to match2003 pilot plant values

    Additional frotheradded to 6th cell

    Hernandez-Aguilar et al (2006)

    0

    1

    0.0 0.5 1.0 1.5 2.0

    Jg (cm/s)

    LDI 2003 Pilot Plant

    LDI 2005 w/BlendedlFrother

    0

    20

    40

    60

    80

    100

    0.0 0.5 1.0 1.5 2.0

    Sb(s-1)

    Jg (cm/s)

    Lac des Iles Case StudyLimiting MIBC CCC

    10 PPM MIBC

    5 PPM MIBC

    0 PPM Frother

    LDI 2003 Original Study

    LDI 2005 Re-Study

    LDI 2003 Pilot Plant

    LDI 2005 w/Blendedl

    Frother

    34

  • 8/23/2019 Jan Nesset

    35/40

    LDI Pd recovery improvementresulting from decrease in bubble

    size with increased frotherParticle Size Pd Recovery for D32 in Specified Bubble

    rac on ze ange

    (microns) < 1.2 mm 1.2 mm to1.6 mm

    > 1.6 mm

    +45 21.3 10.2 7.9

    -45 +10 15.1 7.3 7.3

    -10 69.1 24.6 29.9

    Pd recovery across 6th cell with additional frother to increase %-1mm bubbles(Hernandez-Aguilar et al, 2006)

    35

  • 8/23/2019 Jan Nesset

    36/40

    Maneuvering on the D32-Sb-Jg Roadmap

    - A benchmarking tool

    40

    60

    80

    100

    Sb

    (1/s)

    CCC99

    CCC90

    CCC75

    BC

    Increasing Sb by Jgalone will achieve

    only a limitedincrease and loosesmall bubbles

    0

    20

    0 0.5 1 1.5 2

    Jg (cm/s)

    CCC50

    CCC0

    Frother Jg D32 Sb

    A CCC75 0.75 1.71 26.3

    B CCC75 1.5 2.08 43.3 - eliminated small bubblesC CCC99 0.75 0.82 54.9 - increased small bubbles

    b

    increasing frotherconcentration, CCCX,is far more effectivethan increasing Jg

    36

  • 8/23/2019 Jan Nesset

    37/40

    Do you know where your plant islocated on the D32-Sb-Jg road map?

    60

    80

    100

    (s-1)

    32 PPM DF250

    16 PPM DF250

    CCC99 - Maximum Sb

    3

    4

    5

    m)

    0 PPM Frother

    4 PPM DF250

    CCC0 - Maximum D32

    37

    0

    20

    40

    0.0 0.5 1.0 1.5 2.0

    Sb

    Jg (cm/s)

    4 PPM DF250

    0 PPM FrotherCCC0 -Minimum Sb

    0

    1

    2

    0.0 0.5 1.0 1.5 2.0

    D32(

    Jg (cm/s)

    16 PPM DF250

    32 PPM DF250CCC99 - Minimum D32

    Note: These curves are forDF250 equivalent concentrationsbased on the D32model equations. Curves for other frothers will

    be somewhat different

  • 8/23/2019 Jan Nesset

    38/40

    Conclusions1. A robust empirical bubble size, D32, model

    for flotation has been developed in the air-water system

    Frother concentration, viscosity and gas rate are the

    Gas density (altitude) effects are secondary Impeller speed (power) has minimal effect across4 - 9 m/s range

    2. The model has been validated with plantdata (i.e. for the air-water-solid system)

    3. A powerful benchmarking and optimizationtool

    38

  • 8/23/2019 Jan Nesset

    39/40

    Acknowledgements

    NSERC, Metso Minerals, AMIRA P9O Industrial Chair corporate sponsors

    , , , -

    Eagle, COREM, SGS Lakefield Research,Flottec, Barrick, Shell

    Many talented and enthusiastic students,colleagues and collaborators at McGill andat various plant sites

  • 8/23/2019 Jan Nesset

    40/40

    For a copy of the paper and

    presentation contact:

    [email protected]

    40

    Thank YouThank You