Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi...

104
Introduzion e ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura Salvatore Bellardita GASCROMATOGRAFIA

Transcript of Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi...

Page 1: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Catania, 21 Maggio 2009

Introduzione ai Metodi Analitici Strumentali

AutoriFabio SiracusanoAndrea CanduraSalvatore Bellardita

GASCROMATOGRAFIA

Page 2: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Che cosa è la cromatografia?

• La cromatografia é una tecnica di separazione di vari componenti di una miscela, al pari di una distillazione frazionata, di una cristallizzazione e una estrazione con solvente....

.... è però molto, molto, più efficace!

• Fu ideata nel 1906 dal russo Tswett... la sua tecnica sperimentale, su una soluzione di clorofille, evidenziò la separazione dei vari pigmenti utilizzando una colonna impaccata con carbonato di calcio, ed eluendo con etere di petrolio, dando luogo alla formazione di strati di diverso colore (da cui il nome: 'cromos'-colore).

Page 3: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• La tecnica cromatografica consiste nello sfruttare in modo

particolarmente efficiente la diversa attitudine che ogni molecola o ione possiede nel distribuirsi tra due differenti fasi (una stazionaria e una mobile).

• Nel caso della tecnica di estrazione con solvente, per ottenere un’efficiente separazione, può essere necessario un numero molto elevato di estrazioni separate, con relativi problemi di perdita di campione e impossibilità di operare con microcampioni.

• Se invece una fase viene immobilizzata (fase stazionaria) e l’altra viene fatta scorrere sopra di essa (fase mobile, o'eluente‘) é possibile condurre l’estrazione in modo continuo.

• In tali condizioni se una specie chimica viene depositata sulla fase stazionaria e successivamente immessa nella corrente di fase mobile, essa si distribuirà dinamicamente tra le due fasi, in misura proporzionale alla diversa affinità che possiede nei loro confronti.

Page 4: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• La fase stazionaria può essere costituita da: un solido ... o un liquido opportunamente supportato.

• La fase mobile é costituita da un fluido (che si muove sopra la fase stazionaria), cioè da:

un liquido ... o un gas.

• Le possibili combinazioni di fase mobile e stazionaria dettate soprattutto dalle proprietà chimico-fisiche dei componenti da separare

• la conseguente possibilità di adottare diverse soluzioni analitiche, ha fatto in modo che nel tempo si creassero i presupposti per lo sviluppo e la raffinazione di numerose tecniche cromatografiche in grado di soddisfare le più svariate esigenze.

Page 5: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

I meccanismi della separazione

• La separazione cromatografica si attua sfruttando, la diversa attitudine che ogni molecola o ione possiede nel distribuirsi fra due differenti fasi.

• Le interazioni che si instaurano tra sostanza e le due fasi (mobile e stazionaria) sono spesso legami chimici secondari, sebbene in certi casi si arriva a meccanismi più complessi come lo scambio ionico.

• I meccanismi di separazione cromatografici si basano su

• adsorbimento,• ripartizione,• scambio ionico,• esclusione,• affinità.• Le differenti tecniche cromatografiche vengono

classificate proprio in base a quale è il meccanismo principale della separazione.

Page 6: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• L'adsorbimento è quel fenomeno che determina il vincolarsi di una sostanza a un solido. Ciò perché sul solido ci sono i cosiddetti "centri attivi" ovvero raggruppamenti di atomi grazie ai quali esso si lega, con legami chimici secondari, ai componenti della miscela e ne ritarda il procedere.

Adsorbimento

Page 7: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Vari sono i fattori che influenzano il fenomeno dell'adsorbimento:

• Struttura reticolare del solido;Stato fisico del solido adsorbente: si intende praticamente la superficie di reazione che deve essere la massima possibile;

• Struttura molecolare dell'adsorbito: la polarità di una molecola influisce sulla sua attrazione con i “centri attivi" del solido. Le molecole con gruppi polari (–OH, –NH2, ecc...) saranno più trattenute dal solido che quelle apolari;

• Temperatura e pressione: sono fattori contrastanti a riguardo dell'adsorbimento. Mentre l'aumento di temperatura causa un aumento dell’agitazione molecolare con conseguente rottura dei legami adsorbente/adsorbito, un aumento della pressione favorisce l'addensarsi di un componente gassoso o liquido sulla superficie del solido.

Page 8: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Le interazioni che intercorrono tra le differenti sostanze e il solido con i suoi centri attivi sono paragonabili a ciò che succede quando due diverse palline scorrono su una tavola irta di chiodi. La diversa superficie delle palline, così come la diversa polarità delle molecole, assicurerà un maggior o minore trattenimento da parte delle punte dei chiodi, paragonabili ai centri attivi del solido.

Page 9: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Adsorbimento

L’influenza della temperatura e della pressione è, secondo Freundlich, esprimibile dalla seguente relazione empirica:

X = ap1/n

dove X = quantità in grammi di sostanza adsorbita per 1 grammo di adsorbente

a ed n sono dei coefficienti che dipendono dalla coppia di mezzi e p è la pressione ( n >1).

Page 10: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Meccanismi alla base della separazione cromatografia

Ripartizione

Il fenomeno della ripartizione è molto sfruttato in cromatografia perché è estremamente selettivo.

Infatti i valori di k per una data coppia di solventi (fase stazionaria e mobile) variano sensibilmente da sostanza a sostanza, nel particolare se un componente da analizzare si scioglie meglio degli altri nella fase stazionaria, (quindi avrà il valore di K più alto) sicuramente questo verrà trattenuto maggiormente rispetto e di conseguenza impiegherà più tempo per percorrere la colonna, risultandone separato

CS

Cm

Fase stazionaria

Fase mobile

K=Cs/Cm

Page 11: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

RipartizioneAlcuni esempi di isoterme di ripartizione

Page 12: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

La fase stazionaria é costituita da molecole contenenti gruppi attivi, dotati di cariche elettriche (positive o negative), i quali sono in grado di scambiare i propri controioni con la soluzione da cui vengono lambiti, attraverso un meccanismo di competizione, tra gli ioni della fase stazionaria e quelli con la stessa carica contenuti nella fase mobile.

Anche in questo caso la separazione avviene secondo un criterio di affinità per la fase stazionaria, criterio dettato dalla maggiore o minore competitività.

Scambio ionico

Page 13: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Utilizzando una fase solida porosa (o un gel) con pori di opportune dimensioni, è possibile rallentare maggiormente le particelle più piccole che, penetrando nei pori, vengono poi trattenute, mentre particelle di dimensioni maggiori non potendovi entrare verranno subito allontanate dal solvente.Principio puramente meccanico

Esclusione

Page 14: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Affinità• Il comportamento è molto simile a quello

dell’adsorbimento in quanto i componenti della miscela si legano a “siti attivi” della fase stazionaria (a e b). A differenza dell’adsorbimento, si hanno legami veri e propri (primari).

• Le reazioni che li hanno formati sono comunque reversibili e facendo eluire un solvente opportuno è possibile restituire in modo differenziato i componenti che erano stati trattenuti (C).

Page 15: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Classificazione secondo il meccanismo principale

• Adsorbimento: FS solida, FM gas (GSC) o liquido (LSC)

• Ripartizione: FS liquido, FM liquido (LLC) o gas (GLC)

• Scambio ionico: FS costituita da macromolecole con siti

attivi ionizzati

• Esclusione: FS costituito da un solido poroso

• Affinità: si usano reazioni di tipo biochimico reversibili

Page 16: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Classificazione delle principali tecniche cromatografiche

Page 17: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Gascromatografia

La Gascromatografia è, assieme all’HPLC, l’unica tecnica cromatografica che si avvale di veri e propri dispositivi strumentali ed è la tecnica cromatografica più diffusa, che ha permesso, in moltissimi settori analitici, la soluzione di problemi non risolvibili con altri metodi di analisi.

Page 18: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

A seconda della fase stazionaria si parla di:

• Gas solido cromatografia (GSC)

• Gas liquido cromatografia (GLC)

Page 19: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Gascromatografo

Page 20: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Il Cromatogramma

• Tutte le separazioni cromatografiche (ad esclusione della TLC) si concludono con la registrazione del “cromatogramma”

• Quando il rivelatore registra il passaggio di una sostanza eluita, elabora i dati su di un "cromatogramma”, che rappresenta la quantità di sostanza rilevata in funzione del tempo.

• Cromatogramma ideale

Page 21: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

I parametri del cromatogramma

• L’ interpretazione e lo studio di un analisi gascromatografica, che si conclude con produzione di un cromatogramma, avviene principalmente attraverso la valutazione di grandezze e parametri fondamentali:

SelettivitàEfficienza

Risoluzione

Page 22: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Picco cromatografico

L’area totale sottesa alla curvadel picco è proporzionale allaconcentrazione di sostanza

Tempo di ritenzione: tR tempoimpiegato da ciascuna sostanzaper scorrere attraverso la colonna

Volume di ritenzione: VR volume di FM impiegato da ciascuna sostanza per scorrere attraverso la colonna

h51,2h2A

Page 23: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Il tR di una sostanza che non viene trattenuta dalla FS è definito come tempo morto, tm• Qualunque sostanza per giungere al rilevatore deve trascorrere un tempo almeno uguale al tm

• Volume morto: Vm o volume della fase mobile, corrisponde al volume della colonna non occupato dalla FS

• Tempo di ritenzione corretto t’R tempo speso dalla sostanza eluita nelle interazioni chimico-fisiche con la fase stazionaria

t’R = tR – tm V’R = VR - Vm

• Se il flusso FC è costante allora VR = tRFC ed anche:

V’R = t’RFC

Page 24: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Fattore di ritenzione

nm: numero di moli di sostanza presenti nella fase mobile

ns: numero di moli di sostanza presenti nella fase stazionaria

K= ns/nm

K= CsVs/CmVm Poiché: Kc = Cs/Cm

K= Vs/Vm * Kc

K dipende dalla determinata coppia di fasi e dal tipo di colonna.È quindi una proprietà di una sostanza in una determinata colonna,Quindi non è una grandezza termodinamica!!

Page 25: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Selettività

• La selettività indica la capacità di un sistema cromatografico di eluire specie chimiche diverse con velocità tali che escano separate dalla colonna.

• La selettività verso due sostanze di un sistema cromatografico viene espressa dal cosiddetto fattore di separazione:

α = t’RB/t’RA

• La selettività dipende dal meccanismo della separazione cromatografica ma non dalle caratteristiche costruttive e deve essere maggiore di 1,2.

Page 26: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Efficienza

• La qualità di una separazione cromatografica non dipende solo da ma anche dalla capacità di un sistema di eluire tutte le particelle di una data specie chimica con la stessa velocità

• La capacità di formare picchi molto stretti è l’efficienza

• Il parametro più semplice con cui esprimere l’efficienza è la larghezza alla base del picco (wb), che in genere è diversa per ogni specie chimica in un dato sistema cromatografico.

• L’efficienza di una colonna verso una data sostanza viene espressa anche con N, detto numero dei piatti teorici.

UGUALE SELETTIVITA’DIVERSA EFFICIENZA

Page 27: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Teoria dei piatti• Il numero dei piatti teorici N, di una

colonna cromatografica è ricavabile daN = 16 (tR/wb)2

mentre facendo riferimento al tempo di ritenzione corretto, si definisce il numero dei piatti effettivi

Neff = 16 (t’R/wb)2

• E’ importante precisare che N non è un parametro caratteristico per una data colonna, poiché dipende anche dalla sostanza eluita.

• Ciò significa che una stessa colonna attraversata da due sostanze mostra due diversi valori di piatti teorici.

Page 28: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• L’efficienza di una colonna aumenta con il numero dei piatti: tanto maggiore è N, tanto più compatta è la banda in uscita e quindi tanto più è stretto il picco sul cromatogramma.

Aumentando i piatti

i picchi sono più stretti

si hanno migliori

separazioni

• Il modo più semplice per aumentare il numero dei piatti consiste nell’aumentare la lunghezza della colonna ma ciò comporta un notevole aumento dei tempi di ritenzione.

• In alternativa si deve trovare un modo per diminuire le dimensioni di un singolo piatto. A parità di lunghezza una colonna sarà più efficiente quando viene minimizzata l’altezza equivalente al piatto teorico

H = L/N dove L è la lunghezza della colonna. Ancora più adatta è la formula

Heff = L/Neff

Page 29: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Come si può osservare dall’equazione, il numero di piatti della colonna è diverso per ciascun componente del campione.

Esce prima: minor efficienza della colonna nei suoi confronti

Esce dopo: maggior efficienza della colonna nei suoi confronti

• Una colonna è tanto più efficiente (nei confronti di una determinata specie chimica), e fornisce quindi picchi tanto più stretti, quanto minore è il valore di H.

• Il parametro H è indipendente dalla lunghezza della colonna e quindi è più adatto di N per confrontare le prestazioni di colonne diverse verso una stessa sostanza.

• Il numero di piatti teorici, e quindi la loro altezza, può essere calcolato esaminando un picco cromatografico dopo l’eluizione.

Neff = 16 (t’R/wb)2

Page 30: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Risoluzione

• E’ l’entità della separazione tra due picchi che è definita:

• per due picchi ideali,

• per due picchi reali

)(2

)(

12

12

RRS

ttR

)ba(

)tt(2R 1R2RS

Page 31: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Risoluzione = 0.5 Risoluzione

= 0.75

Risoluzione = 1.00

Risoluzione = 1.50

Come si vede, se RS è superiore a 1,5, i due picchi sono completamente risolti

Page 32: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• R dipende in pratica dal numero di piatti teorici della colonna, dai fattori di selettività e di fattori di ritenzione dei due analiti. L’equazione che correla tutti questi parametri è:

B

B

k

kNR

1

1

4

numero piatti

FATTORE DI SELETTIVITA’

FATTORE DI RITENZIONE

Page 33: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Per ottenere un’alta risoluzione, occorre:

• aumentare il numero di piatti teorici, aumentando la lunghezza della colonna, o meglio, riducendo l’altezza del piatto teorico (riducendo la dimensione delle particelle della fase stazionaria).

• scegliere una coppia di fasi che assicurino k tra 1,5 e 5.

• abbassare la T• Si può anche lavorare a

temperatura programmata (in GC).

Page 34: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

FINE 1a PARTE

Page 35: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

La colonna in gascromatografia

In entrambe le tecniche gascromatografiche, le colonne utilizzate possono essere:

• colonne impaccate; le prime a essere utilizzate ancora attorno agli anni cinquanta.

• colonne capillari; le più recenti e anche

le più differenziate come struttura.

Page 36: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Colonne impaccate

• La più classica delle colonne impaccate ha una lunghezza di 1-2 m ed un diametro interno nell’ordine di qualche millimetro.

• Date le notevoli dimensioni, essa è sempre avvolta a spirale, con l’unico scopo di ridurre l’ingombro.

• Il materiale più comunemente usato per la costruzione di colonne impaccate è l’acciaio inossidabile ma per sostanze molto reattive si preferisce l’uso di colonne in vetro.

• Anche il rame trova ancora un certo impiego ma limitato solamente a sostanze poco reattive quali possono essere gli idrocarburi.

Page 37: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• La colonna viene riempita con la fase stazionaria, costituita da un supporto inerte di appropriata granulometria, eventualmente imbevuto della fase stazionaria liquida.

Page 38: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Colonne capillari• Le colonne capillari sono

sicuramente le più diffuse, la loro lunghezza è nell’ordine della decina di metri, (non mancano tuttavia colonne che arrivano anche ai 100 metri) il diametro si riduce a qualche decimo di millimetro.

• Ovviamente anche in questo caso si ritrovano avvolte in folte spirali su di un telaio di protezione. Il materiale più usato è il vetro o la silice fusa, se ne rintracciano però anche di rame e di acciaio inox.

• Grazie alla loro particolare struttura e lunghezza, esse consentono una più efficiente separazione dei componenti della miscela.

Page 39: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Esistono vari tipi di colonne capillari, in relazione al diametro ed al modo in cui viene eseguito il riempimento. Nelle colonne di diametro inferiore (da 0,25 a 0,30 mm) il liquido di ripartizione viene posto direttamente all’interno sotto forma di un sottilissimo microvelo aderente alle pareti della colonna.

• Questo tipo di colonna viene identificata dalla sigla WCOT (Wall coated open tubular).• In quelle a diametro maggiore (da 0,4

a 0,8 mm) oltre alla soluzione sopra citata si ritrovano in commercio colonne in cui la deposizione del liquido di ripartizione ha luogo su di uno strato di materiale poroso che riveste le pareti interne della colonna, sono chiamate SCOT (support coated open tubular). In relazione al diametro interno le colonne capillari si classificano in Narrow bore ( 0,25 mm), Wide bore ( 0,53 mm) e Mega bore ( 0,80 mm).

Page 40: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Poiché in gascromatografia la fase mobile è un gas, l’uso di colonne impaccate molto lunghe, per aumentarne l’efficienza, comporta una notevole caduta di pressione che va a incidere su tempi e fattori di ritenzione.

• Il primo vantaggio che presentano le colonne capillari è che, pur avendo un diametro interno minore, offrono appunto al gas un canale di passaggio molto più grande. unico “canalone” della capillare

“canalicoli” dell’impaccata

Page 41: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Questa caratteristica costruttiva incide sulla “permeabilità” di una colonna capillare ovvero sulla sua capacità di essere attraversata dal gas senza che esso subisca una sensibile caduta.

• Ciò consente una lunghezza molto più marcata per una capillare che ,unita ad altri fattori ne fa aumentare l’efficienza

Impaccata Capillare

Permeabiltà relativa 1 100

Lunghezza in m 1-2 100-150

Numero piatti medio 4000 100000

Numero piatti massimo 8000 700000

Page 42: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Una capillare è più efficiente e consente anche tempi di analisi più brevi

• I vantaggi principali di una capillare rispetto a una impaccata possono essere così riassunti:

• può essere molto lunga senza perdite di pressione

• presenta un valore di H più basso

• il minimo di H rispetto alle capillari è a portate maggiori

impaccata

Page 43: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Camera termostatica

• In gascromatografia la temperatura della colonna rappresenta un parametro fondamentale per ottenere una buona separazione dei picchi.

• Le colonne vanno quindi termostatate in apposite camere entro le quali la temperatura resti il più possibile costante. Nel caso contrario la riproducibilità dell’analisi viene sensibilmente alterata.

Page 44: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Il più diffuso tipo di camera termostatica è quello a circolazione d’aria calda, sistema che garantisce una stabilità della temperatura nell’ordine di 0,1°C. La temperatura massima raggiungibile è di 400°C.

• L’uniformità della temperatura in ogni punto della camera viene garantita da una ventola posta al di sotto di un fondo forato. Durante la termostatazione la camera non andrebbe mai aperta soprattutto se si usano colonne in vetro.

Page 45: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Dispositivo per la programmazione della

Temperatura

• Normalmente la temperatura della colonna è regolata sul valore corrispondente alla media dei punti di ebollizione dei componenti della miscela.

• Per miscele particolarmente complesse con punti di ebollizione troppo distanti tra di loro la scelta della temperatura è problematica.

Page 46: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Per tali miscele un temperatura troppo alta consentirebbe una buona separazione dei componenti altobollenti ma ammasserebbe quelli più bassobollenti.

• Al contrario, una temperatura troppo bassa, non consentirebbe di separare quelli altobollenti.

Page 47: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Sui più recenti gascromatografi trova spazio tra i componenti anche il dispositivo che permette di programmare la temperatura d’analisi. La temperatura viene mantenuta bassa per i primi picchi e poi innalzata per consentire la risoluzione delle sostanze altobollenti.

• Il tempo di riscaldamento e le diverse temperature vengono trovate per tentativi tenendo presente che è sconveniente usare velocità di riscaldamento maggiori di 40-50°C/min

Page 48: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• L’apparecchio non è altro che un timer che collegato al dispositivo riscaldante va a variare, a intervalli di tempo decisi da noi, la temperatura all’interno della camera termostatica.

• Nei moderni strumenti la programmazione è di tipo lineare, e prevede le seguenti tappe:

• Isoterma iniziale: indica quanto tempo si rimane a una determinata temperatura.

• Fase di rampa: si stabilisce la temperatura da raggiungere e con quale velocità.

• Isoterma finale: indica il tempo che si deve restare alla temperatura più alta.

• Raffreddamento: si attua dopo la fine della registrazione del cromatogramma,

Page 49: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Iniettore• L’iniettore è un dispositivo

posto immediatamente prima della colonna che ha la funzione di consentire l’introduzione del campione in essa. Dipende dal tipo di colonna.

Iniettori per impaccate• Sono formati da un corpo

cilindrico, di cui un estremità è posta all’esterno dello strumento, mentre l’altra è collegata mediante una boccola di fissaggio alla colonna.

• Nella parte frontale si trova il foro per introdurre l’ago nella cavità centrale, protetta dall’ambiente esterno da una guarnizione di uno speciale polimero resistente alle alte temperature.

• L’iniezione viene eseguita con apposite siringhe o, nel caso di campioni gassosi, con speciali valvole.

Page 50: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Le colonne capillari possono accettare solo una piccola quantità di sostanza prima di intasarsi. Per iniettarvi la quantità ottimale si ricorre a differenti soluzioni.

Iniettori per capillari a tecnica

split

Page 51: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• In questo iniettore il campione viene premiscelato con il gas di trasporto. Di questa miscela solo una parte passa realmente nella colonna, mentre buona parte viene indirizzata verso la valvola regolabile di spurgo. Gli iniettori a tecnica split sono indicati per colonne capillari di tipo SCOT e WCOT specie se queste ultime sono di piccolo diametro.

• Il sistema è utilizzabile per miscele di composti con p.e. non troppo diverso perché in caso contrario si avrebbe una vaporizzazione non omogenea e il bloccaggio della frazione altobollente nella camera di vaporizzazione.

• Il sistema difetta per la riproducibilità che viene migliorata con l’introduzione di setti in vetro che riducono anche drasticamente la discriminazione dei composti altobollenti.

Page 52: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Iniettori con la tecnica splitless

• In questa tecnica la miscela è contenuta in un solvente che possiede una temperatura di ebollizione di 20-25°C più bassa rispetto al componente più volatile. Il carrier fluisce sotto il setto, per tenere costantemente pulita la superficie.

• Subito prima dell’iniezione, lo spurgo viene chiuso e il flusso del carrier si dirige solo nella colonna. Fino a che lo split rimane chiuso si ha ingresso in colonna prevalentemente della miscela con solo una porzione del solvente che, più facilmente volatilizzabile, tende a disperdersi in tutto lo spazio disponibile.

Page 53: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Alla fine dell’iniezione lo splitter viene riaperto e il solvente viene eliminato.

Page 54: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Iniettori per capillari a tecnica split/splitless

• Esistono iniettori in grado di utilizzare, grazie alla chiusura di alcune valvole, alternativamente le due tecniche

Page 55: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Nella versione split, la valvola di spurgo è aperta durante l’iniezione e si ha solo una piccola parte della miscela che entra in colonna.

Page 56: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Nella versione splitless, la valvola di spurgo è chiusa durante l’iniezione, e la miscela entra in colonna assieme al solvente. Gran parte del solvente, più volatile, tende a rimanere nella camera di vaporizzazione e verrà eliminato quando viene aperta la valvola di spurgo.

Page 57: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Iniettori per capillari on column

• La recente costruzione di siringhe capaci di iniettare anche pochi nanolitri ha consentito la costruzione di iniettori che immettano il campione direttamente in colonna.

• Gli iniettori On-Column

non presentano la guarnizione di protezione (sarebbe troppo difficile bucarla con l’ago) ma bensì una valvola che si apre all’istante quando l’ago sta per toccarla, e si richiude subito dopo la sua uscita.

Page 58: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Iniettori per capillari PTV• L'iniettore PTV unisce i vantaggi degli

iniettori split, splitless e on-column.

• Il campione viene in genere inettato in un inserto freddo, in modo che non si verifichi discriminazione nell'ago. Quindi la temperatura viene aumentata per poter vaporizzare il campione. L'utente programma i tempi di scarico e la temperatura per ottenere l'equivalente del trasferimento split o splitless dei vapori di campione in colonna.

• L'iniezione PTV, grazie alla sua flessibilità, è considerata il sistema più universale per l'introduzione del campione.

Page 59: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Vantaggi • nessuna discriminazione nell'ago • discriminazione dell'iniettore minima • nessuna necessità di siringhe speciali • possibilità di volumi di iniezione elevati • eliminazione di solventi e altri componenti

a basso punto di ebollizione • intrappolamento di composti non volatili

nell'inserto • funzionamento split o splitless • tempo di iniezione e area riproducibili con

valori simili a quelli dell'iniezione on-column a freddo

Page 60: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Valvole di campionamento per gas

• Sono munite di un rotore interno che gli consente di assumere due posizioni differenti:

• Posizione A: iI campione spinto dal carrier esce dal loop di campionamento ed entra in colonna.

• Posizione B: il campione riempie il loop e si dirige allo scarico.

Contemporaneamente il carrier provvede al trasporto del campione all’interno della colonna

• Le valvole multivia permettono il campionamento di componenti gassosi con elevate riproducibilità.

POS. A

POS. B

Page 61: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Rivelatore

• Il rivelatore (o detector) è un dispositivo posto subito dopo il termine della colonna con la funzione di indicare la presenza del componente all’uscita della colonna, e di fornire la misura della concentrazione di esso nel gas di trasporto.

Page 62: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Segnale o risposta; ogni rivelatore traduce in un segnale elettrico, espresso in mV o

microV, la presenza di una sostanza.Il segnale elettrico, può essere proporzionale alla concentrazione del componente rivelato o alla sua massa, viene trasformato generalmente in un grafico.

• Sensibilità; rapporto tra segnale e analita (concentrazione o massa).

Page 63: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Rumore di fondo (noise); è la fluttuazione del segnale che si ha quando nel gas di trasporto non si ha alcuna sostanza (è di origine elettrica o dovuto a impurezze del gas di trasporto).

• Limite di rivelabilità; è la concentrazione di sostanza in grado di fornire un segnale pari ad almeno il doppio del rumore di fondo. N.B. L’amplificazione del segnale non può discriminare il rumore di fondo da ciò che proviene dal campione.

Page 64: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Limite di rivelabilità; è la concentrazione minima che dà una risposta doppia del rumore di fondo

• Intervallo di linearità; range di concentrazioni compresa tra il limite di rivelabilità e il limite di linearità.

• Limite di linearità; è la concentrazione massima al di là della quale il segnale non è più proporzionale alla concentrazione (con una tolleranza del 5%).

• Intervallo di risposta dinamico; intervallo di concentrazioni entro il quale il rivelatore risponde, anche se non in maniera lineare

• Limite intervallo di risposta dinamico; oltre questa concentrazione non si possono fare misure

Page 65: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

universali cioè in grado di individuare tutti i componenti di una miscela

selettivi cioè in grado di rilevare solo particolari categorie di composti.

Selettività, in base alla quale i rivelatori si dividono in:

Page 66: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Rivelatore a termoconducibilità HWD (hot wire detector)

dalla colonna

trasporto puro

• E’ il rivelatore a filo caldo: è fatto da due resistenze lambite, l’una, dal gas di trasporto in entrata e, l’altra, dal gas in uscita dalla colonna.

• Le resistenze sono attraversate da corrente e la loro conducibilità elettrica dipende dalla temperatura a cui si trovano.

• La forma delle due celle è diversa per compensare eventuali variazioni di flusso

Page 67: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

dalla colonna

trasporto puro

• Il gas che lambiscono le resistenze, le raffreddano in funzione della loro capacità termica e cioè di quanto calore sono in grado di sottrarre.

• Quando esse sono lambite dallo stesso gas (trasporto puro perché dalla colonna non esce nulla) sono raffreddate nello stesso modo e non si ha sbilanciamento elettrico.

Page 68: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Quando le resistenze sono lambite da gas diversi, uno è quello di trasporto puro e l’altro contiene anche l’analita che esce dalla colonna, esse sono raffreddate in modo diverso, vanno a temperature diverse e comportano uno sbilanciamento elettrico.

dalla colonna con analita

trasporto puro

Page 69: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Tutte le sostanze provocano una variazione di conducibilità termica del carrier, per cui l’HWD non è selettivo ma universale

• Per ottenere buona sensibilità e quindi bassi limiti di rivelabilità si usa un gas di trasporto che abbia una conducibilità termica più diversa possibile da qualsiasi altra sostanza: l’idrogeno è il migliore o, eventualmente, l’elio.

• Il limite di rivelabilità è di 1ppm, mentre la linearità va da 104 a 106.

Page 70: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Rivelatore a ionizzazione di fiamma. FID (Flame ionization detector)

• Questo è un rivelatore di tipo distruttivo perché le sostanze eluite contenute nel gas di trasporto vengono bruciate in una microfiamma di idrogeno e aria che si estende fra due elettrodi tra i quali è applicata una differenza di potenziale di 300 V.

Page 71: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Per effetto della combustione si originano ioni e pertanto tra gli elettrodi si manifesta un passaggio di corrente elettrica di intensità proporzionale alla quantità delle sostanze bruciate.

• Tale corrente viene amplificata e trasformata in segnale di tensione di alcuni mV.

Page 72: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• In presenza del solo carrier la corrente è quasi nulla, dovuta a impurezze presenti nel gas di trasporto o, più spesso, a tracce di fase stazionaria che sono trascinate via.

• Quando nella fiamma bruciano, oltre ad idrogeno, anche altre sostanze, aumenta notevolmente la ionizzazione, e di conseguenza anche la corrente

• Questo rivelatore è poco selettivo perché sensibile a tutte le sostanze organiche, ha limite di rivelabilità da 10-9 a 10-12 g, ha linearità di risposta da 106 a 108 .

• E’ insensibile solo ai gas permanenti, ad H2S, NH3, SO2, CO2, CO, H2O. Può lavorare fino a temperature di 400°C e con qualsiasi gas di trasporto.

Page 73: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Rivelatore a cattura di elettroni ECD (Electron capture detector)

• E’ un tipo di rivelatore che si basa sulla rilevazione di segnali elettrici in seguito al passaggio di gas ionizzato tra i due elettrodi.

• Il rivelatore è costituito da un catodo e un anodo.

• Il catodo è rivestito da un materiale radioattivo a bassa energia. Un tempo si usava il TiT4 che però alle alte temperature poteva perdere trizio. Attualmente si usa il 63Ni attaccato a una lamina d’oro.

• L’anodo ha forma tubolare e funge da tubo di ingresso del gas.

Page 74: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Il gas di trasporto che esce dalla colonna gascromatografica e attraversa la camera viene ionizzato dai -emessi dal nichel.

• Si generano ioni che migrano verso i rispettivi elettrodi creando una corrente di fondo che andrà a rappresentare il valore della linea di fondo. -+ N2 N2

+ + e- + -

Page 75: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Se nel gas di trasporto è presente una sostanza elettronaffine avviene

X + e- X- ma anche N2

+ + X- N2X si formano pertanto molecole neutre che fanno calare la corrente di base.

Page 76: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Per questo motivo ci troviamo di fronte a un rivelatore a risposta contraria a quella degli altri due visti: quando rivela qualcosa il segnale cala.

• E’ molto selettivo, ha limite di rivelabilità notevole fino a 10-12 g, ha però linearità di risposta più contenuta da 103 a 104.

• Tutti i parametri sono influenzati dalla ddp usata per accelerare gli elettroni emessi: se sono troppo accelerati non possono essere catturati.

• I flussi ottimali di carrier sono regolati, se diversi da quelli usati in colonna, con una valvola ausiliaria (make up).

Page 77: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Accoppiamento GC-MS, rivelatore a quadrupolo iperbolico.

• Lo spettrometro di massa rappresenta il rivelatore ideale per la gascromatografia, perchè permette di analizzare in tempo reale i singoli picchi in uscita dalla colonna, effettuando sia un’analisi qualitativa che quantitativa, mediante il confronto dello spettro ottenuto con uno dei numerosi spettri memorizzati nella banca dati.

Page 78: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

analita

Camera di ionizzazione

fascio ionico

Campo elettrico acceleratore

Campo magnetico analizzatore

• In uno spettrometro di massa il campione viene portato in fase gassosa e le molecole vengono frammentate per bombardamento con elettroni.

• Gli ioni che si formano, accelerati da un campo elettrico posto in un campo magnetico, percorrrono traiettorie diverse secondo il rispettivo rapporto carica/massa e perciò si separano tra di loro.

p

Page 79: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

50 100 150 200 massa relativa

Abb

onda

nza

rela

tiva

• Lo spettro (così chiamato solo perché è a righe, non perché si tratti di una spettroscopia) ottenuto consente, dall’identificazione dei frammenti in base alla loro massa atomica, di ricostruire la formula della molecola presente.

• Molto più semplicemente, negli strumenti moderni lo spettro viene confrontato dal computer con i numerosi spettri memorizzati nella banca dati.

Page 80: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Gli spettrometri di massa più comunemente interfacciati con gascromatografi sono del tipo a quadrupolo iperbolico, molto compatti, la cui camera di ionizzazione viene collegata all’uscita della colonna con un apposito sistema che permette di eliminare il carrier.

Page 81: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Questi strumenti non funzionano propriamente come uno spettrometro di massa tradizionale.

• Qui i frammenti passano in un analizzatore costituito da un elettrodo ad anello a cui è applicata una tensione di radio frequenza variabile. Variando il campo di radio frequenze, si ottiene espulsione selettiva dei frammenti ionizzati secondo il loro rapporto carica-massa.

Page 82: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Il sistema GC-MS fornisce limiti di rivelabilità estremamente bassi, addirittura nell’ordine dei picogrammi e in alcuni casi anche dei femtogrammi.

Page 83: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Riassumendo…

Rivelatore Limite di rivelabilità

Intervallo di linearità

Applicazioni Osservazioni

HWD 10-5 g/mL 104 universale Non distruttivo; affidabile; economico

FID 10-11 g 107 quasi universale; esclusa l’acqua e alcuni gas permanenti

Distruttivo; molto affidabile;

ECD 10-12 g 5*102 Alogenoderivati e composti di elementi elettronegativi

Non distruttivo; costoso; si inquina facilmente

GC-MS 10-12 g 104 universale Costoso; grande versatilità

Page 84: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

FINE 2a PARTE

Page 85: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

ANALISI QUALITATIVA

• L’interpretazione dei cromatogrammi rappresenta spesso l’operazione più lunga. E’ necessario anzitutto avere informazioni sulla natura del composti da analizzare

• I metodi utilizzabili per l’individuazione delle sostanze sono molteplici:

• Effettuare un confronto dei tempi di ritenzione fra le sostanze pure ed i componenti da analizzare

• Metodo dell’arricchimento• Impiego di reattivi se si usa un rivelatore non

distruttivo, per esempio facendo gorgogliare il gas in uscita dall’analizzatore, dentro di una provetta con dei reattivi specifici

• Utilizzare uno spettrometro di massa

Page 86: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

ANALISI QUANTITATIVA

• L’analisi quantitativa cromatografica è basata sulla misura delle aree dei picchi, dalle quali, dopo opportuna elaborazione, si risale alle concentrazioni percentuali dei componenti.

• Il calcolo dell’area del picco viene fatto automaticamente dal computer che lo stampa direttamente sul grafico.

• E’ necessario comunque conoscere i rudimenti del calcolo delle aree.

Page 87: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Il sistema di calcolo più utilizzato per il calcolo delle aree dei picchi è il cosiddetto “metodo della triangolazione”

• E’ chiaro che un esatto calcolo è strettamente legato alla pulizia del picco (simmetria e mancanza di sovrapposizioni).

Page 88: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• E’ tuttavia molto frequente il caso di picchi non separati. In genere ci si comporta come di seguito.

• Picchi leggermente sovrappostiLi si considera separati. E’ agevole trovare l’ampiezza a metà altezza e l’altezza. Si applica poi il metodo della gaussiana.

Page 89: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Picchi molto sovrapposti ma ancora risoltiIn questo caso l’ampiezza a metà altezza è facilmente ricavabile dalla semiampiezza. L’altezza deve però essere stimata da un operatore con molta esperienza. L’integrazione elettronica ricostruisce la funzione matematica del picco più grande, ne calcola l’area e la sottrae all’area totale.

Page 90: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Picchi non risoltiNon è possibile a occhio ottenere dei valori sensati. Il computer dà in genere il valore totale e solo con programmi molto sofisticati riesce a operare la separazione.

Page 91: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Misura della concentrazione

• La scelta del metodo di calcolo e della procedura operativa sono diversi a seconda che si debbano determinare quantitativamente tutti i componenti della miscela oppure uno solo. Nel primo caso, infatti, è fondamentale essere certi che tutti i componenti della miscela siano separati e rivelati, mentre nel secondo caso è sufficiente che il componente che interessa fornisca un picco ben definito.

Page 92: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Metodo della taratura diretta

• E’ possibile determinare, con questo metodo, la concentrazione del solo componente che interessi, e quindi non è necessario che siano identificabili i picchi di tutti i componenti.

• Si inietta un volume noto e preciso

del campione e si registra il cromatogramma.

• Preparata, poi, una miscela a concentrazione nota del componente/i da determinare se ne inietta lo stesso volume precedente nel gascromatografo.

Page 93: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Partendo dalla considerazione generale che SiS / CiS = SiC / CiC

• la percentuale di campione si ottiene con:

• CiC = SiC • CiS / S

• dove

• CiC = concentrazione del componente nel campione,

• SiC = area del picco nel cromatogramma del campione,

• CiS = concentrazione. nota del componente nello standard,

• SiS = area del picco nel cromatogramma dello standard.

Page 94: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• E’ importante fare in modo che le concentrazioni nello standard non siano molto diverse da quelle del campione.

• Il metodo ha il vantaggio di non obbligare a “lavorare” su tutti i componenti della miscela, come invece accade per la normalizzazione interna

• Il principale inconveniente risiede nel fatto che occorre una grande accuratezza e, soprattutto, riproducibilità, nel misurare il volume da iniettare.

• Si consiglia quindi di effettuare una serie di iniezioni, sia della miscela che dello standard e di calcolare la medie delle aree.

Page 95: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Standardizzazione interna

• Il metodo consiste nel preparare una serie di soluzioni standard utilizzando due composti, dei quali uno deve essere il componente che interessa nella miscela da analizzare. L’altro invece è un composto il quale fa da standard interno e deve rispettare una serie di requisiti:

– non essere presente nella miscela da analizzare;

– essere ben risolto dagli altri componenti;– avere un tR simile a quello della sostanza che ci

interessa;– avere una concentrazione simile a quella della

sostanza ed essere strutturalmente simile ad essa, in modo da dare un picco di area analoga;

– non contenere impurezze;– non reagire col campione.

Page 96: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Area Amm2

Area ISmm2

PA

mg

P IS

mgAA/AIS PA/PIS

Soluzione 1 40 20 250 100 2,0 2,5

Soluzione 2 20 100 125 500 0,2 0, 25

Soluzione 3 16 40 100 200 0,4 0,5

• Si preparano più soluzioni, per esempio tre, contenenti tutte A (il composto da determinare)IS (lo standard interno), In ciascuna di esse sono noti i rapporti di peso PA/PIS con cui sono state preparate.Per esempio, nelle tre soluzioni si siano ottenuti i valori sottostanti di aree:

Page 97: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

0 0,5 1,0 1,5 2,0 2,5 PA/PIS

0

0,5

1,0

1,5

2,0

AA/AIS

• Si riportano in un grafico i valori trovati per i rapporti tra le aree in funzione dei rispettivi rapporti in peso.

• Si procede poi aggiungendo una quantità nota dello standard interno (QIS) al campione. Dal cromatogramma della miscela così ottenuta si misura il rapporto AA/AIS e attraverso il grafico si risale al relativo rapporto in peso PA/PIS.

Page 98: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Conoscendo la quantità di IS introdotto nella miscela, la quantità di A sarà data dalla relazione:

in cuiPA/PIS = rapporto ottenuto

dalla retta di taraturaQIS = peso di IS aggiunto

• Se, per esempio, sono stati introdotti 200 mg di IS nella miscela, e il rapporto tra le aree che si ricava dal suo cromatogramma vale 1, dalla retta precedente si può vedere che il rapporto PA/PIS vale 1,25.La quantità di sostanza A sarà data da

200 · 1,25 = 250 mge quindi la concentrazione originaria nel campione sara’:

dove

VC = volume di campione al quale è stato aggiunto lo standard

AC

ISIS

A

CV

Q•P

P

Page 99: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Cromatografia dello spazio di testa HSGC

• Quando si devono analizzare tracce di composti volatili in campioni solidi o in una grande massa di solvente la tecnica più adatta a questo scopo è la gascromatografia dello spazio di testa.

• Essa consiste nell’iniettare in colonna il vapore che si trova in equilibrio termodinamico con il campione da analizzare, all’interno di un sistema chiuso costituito da un contenitore chiuso ermeticamente detto vials.

Page 100: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• Ciò permette di lavorare su una frazione arricchita delle specie chimiche ad elevate pressioni di vapore, senza gli inconvenienti che possono scaturire dalla iniezione di sostanze non volatili o di grandi masse di solvente.

• Si realizzano così analisi molto precise e riproducibili, a patto però di controllare rigorosamente le condizioni operative.

• Considerando il caso di una soluzione in equilibrio con il suo vapore, la concentrazione di un componente volatile nello spazio di testa è regolato, in condizioni ideali dalla legge di Raoult:

p = x p0 dove p rappresenta la pressione parziale del componente nella fase vapore e dunque la sua concentrazione, p0 è la pressione del vapore del componete puro alla temperatura a cui si trova il vials, mentre x è la sua frazione molare nella soluzione.

• Procedendo all’analisi gascromatografica dello spazio di testa si otterrà un cromatogramma il cui picco che ci interessa avrà una superficie S, proporzionale alla concentrazione della sostanza nel vapore e quindi nella fase liquida.

Page 101: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

• La tecnica dello spazio di testa consente di individuare tracce di composti volatili a livello di ppb o anche di ppt (parti per trilione,10-3 ppb), perché la fase di vapore è ovviamente più ricca, nel composto volatile del della soluzione originaria. In sostanza, lo spazio di testa può essere visto dunque come un metodo di preconcentrazione.

• Per esaltare la sensibilità del metodo si può agire in due modi che possono anche venire usati contemporaneamente:

– innalzare la temperatura: infatti la pressione di vapore p0 di una sostanza è proporzionale alla sua temperatura. Minimi incrementi di temperatura provocano un sensibile aumento della pressione di vapore.

– introduzione in soluzione di opportuni elettroliti: In pratica però non risulta conveniente innalzare la temperatura al di sopra degli 80 °C, valida alternativa è però l’introduzione in soluzione di elettroliti che agiscono sul coefficiente di attività aumentando la pressione del vapore all’equilibrio, anche fino a cinque volte.

Page 102: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Tecnica operativa della gascromatografia in spazio di testa

• Campionamento: E’ la fase più delicata perché è facile incorrere in errori anche grossolani, le soluzioni devono essere preparate e mantenute in contenitori ermetici completamente pieni, non è inoltre opportuno utilizzare tappi di gomma.

• Trasferimento delle soluzioni: Non deve mai essere eseguito con la pipetta ma bensì con una siringa di adatta capacità.

• Chiusura del vial: La chiusura va effettuata con appositi dispositivi che assicurino la perfetta tenuta, il tappo deve essere costituito da un adatto materiale inerte, quale può essere il teflon o l’alluminio, la semplice gomma non è indicata per questi scopi.

• Termostatazione del vial: Deve essere eseguita con la massima precisione, di solito la temperatura va dai 40°C agli 80°C.

• Prelievo e iniezione del campione: Agli inizi questa tecnica prevedeva l’impiego di siringhe o valvole per gas, questi sistemi offrivano però più svantaggi che vantaggi, (Condensazione sulle pareti della siringa ecc.) oggigiorno il campionamento è completamente automatico

Page 103: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Preconcentrazione per adsorbimento

• Il metodo di adsorbimento/desorbimento (purge and trap) è il più sensibile per l’analisi dei campioni gassosi estrememente diluiti (come per esempio la determinazione dei solventi nell’aria).

• In una prima fase il campione viene fatto passare per un certo tempo attraverso una trappola costituita da una fiala contenete carbone attivo venfono desorbite e sottoposte ad analisi gascromatografica.

• Il desorbimento può essere effettuato in due modi:• innalzando la temperatura: • per estrazione con solvente e analisi della soluzione.

I

Page 104: Introduzione ai Metodi Analitici Strumentali Catania, 21 Maggio 2009 Introduzione ai Metodi Analitici Strumentali Autori Fabio Siracusano Andrea Candura.

Introduzione

ai Metodi Analitici

Strumentali

Fine