Elastic pp scattering at the LHC from an empirical...

23
Elastic pp scattering at the LHC from an empirical standpoint Daniel A. Fagundes * Universidade Estadual de Campinas - IFGW XXV RETINHA 05 de Fevereiro de 2014 * in collaboration with A. Grau, S. Pacetti, G. Pancheri and Y.N. Srivastava 1 / 23

Transcript of Elastic pp scattering at the LHC from an empirical...

  • Elastic pp scattering at the LHC from an empiricalstandpoint

    Daniel A. Fagundes∗

    Universidade Estadual de Campinas - IFGW

    XXV RETINHA

    05 de Fevereiro de 2014

    ∗ in collaboration with A. Grau, S. Pacetti, G. Pancheri and Y.N. Srivastava

    1 / 23

  • Outline

    Differential elastic cross section at LHC - data vs theory

    Barger-Phillips empirical amplitude

    Modified BP amplitudes - correcting the small t behaviour

    Model predictions for LHC8 and LHC14, asymptotic behaviourand geometric scaling

    2 / 23

  • Elastic pp scattering at LHCDifferential elastic cross section at

    √s = 7 TeV∗

    Diffractive events measured by TOTEM

    processes mediated by colorless exchange → quantum numbers preserved in the final state∗

    Left: G. Antchev, et al., Europhys.Lett. 101 (2013) 21002. Right: Jan Kaspar, Doctoral Thesis, CERN-Thesis-2011-214.3 / 23

  • Elastic pp scatteringfrom ISR to LHC

    Diffractive pattern at high-energies revealed with scanned t

    )2

    |t| (GeV

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    )-2

    /d|t|

    (mbG

    eVel

    σd

    -710

    -610

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    AMBROSIO, PL B 115 (1982) 495

    BREAKSTONE, NP B (1984) 248

    BREAKSTONE, PRL 54 (1985) 2180

    AMALDI, NP B 166 (1980) 301

    ANTCHEV, EPL 95 (2012) 41001

    ANTCHEV, CERN-PH-EP-2012-239

    AMBROSIO, PL B 115 (1982) 495

    BREAKSTONE, NP B (1984) 248

    BREAKSTONE, PRL 54 (1985) 2180

    AMALDI, NP B 166 (1980) 301

    ANTCHEV, EPL 95 (2012) 41001

    ANTCHEV, CERN-PH-EP-2012-239

    pp

    (s)totσ| ~ 1/dip|t

    )2

    |t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /d|t|

    (mbG

    eVel

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    CERN SPS - UA4

    TEVATRON - CDF

    TEVATRON - E710

    TEVATRON - D0

    pp

    one dip present in the pp channel and a shoulder in p̄p

    4 / 23

  • Elastic differential cross sectionat LHC7 and model predictions

    Failure of representative models†

    Transition from soft to (semi) hard domain unclear

    †Left: G. Antchev et al., Europhys.Lett. 95 (2011) 41001. Right: A.A. Godizov, PoS (IHEP-LHC-2011) 005.

    5 / 23

  • Physics of the ‘dip-shoulder’ regiondelicate cancelation between C = ±1 amplitudes

    The dip/shoulder occur through cancellations in elastic amplitude due to t−channel processes:

    App,p̄p(s, t) =A+(s, t)± A−(s, t)

    2

    A±(s, t) are even/odd amplitudes corresponding to C = ±1 exchanges in the t-channel. InRegge Phenomenology, they are called “Pomeron” and “Odderon” terms, which can betranslated into QCD (LO) language as 2g -exchange‡ and 3g -exchange§. Eventually, thenonleading contribution of secondary Reggeons and Pomeron cuts make their relative phaseφ 6= π.

    ‡F.E. Low, Phys.Rev. D12 (1975) 163 and S. Nussinov, Phys.Rev.Lett. 34 (1975) 1286§

    A. Donnachie and P.V. Landshoff, Z.Phys. C2 (1979) 55

    6 / 23

  • Parametrizing the elastic differential cross-sectionBarger-Phillips amplitude and observables

    ABPel (s, t) = i[√

    A(s)eB(s)t/2︸ ︷︷ ︸leading : C=+1

    + eiφ(s)√

    C(s)eD(s)t/2︸ ︷︷ ︸non−leading : C=±1

    ]

    ↓ at t = 0

    σtot (s) = 4√π(√

    A(s) +√

    C(s) cosφ)

    σel (s) =A(s)B(s)

    + C(s)D(s)

    + 4

    √A(s)C(s)

    B(s)+D(s)cosφ

    dσeldt

    ∣∣∣t=0

    = A(s) + C(s) + 2√

    A(s)C(s) cosφ

    ↓ at t 6 0

    dσeldt

    = A(s)eB(s)t + C(s)eD(s)t + 2√

    A(s)C(s)e(B(s)+D(s))t/2 cosφ

    7 / 23

  • A simple Regge-model for the non-leading termfor constant average φ

    A standard C = +1 state contribution to the elastic amplitude follows

    A(+)R (s, t) = iC+(1

    s)[(

    se−iπ/2

    so)]α+(t),

    with α+(t) is the positive signature trajectory and for a C = −1 state,

    A(−)R (s, t) = C−(1

    s)[(

    se−iπ/2

    so)]α−(t),

    with α−(t) a negative signature trajectory. Having α+(t) = α−(t), degenerate trajectories,linear and assuming that α±(0) = 1 - the critical Pomeron - their total contribution follows

    AR (s, t) = iC+ − iC−

    soetα′

    (ln(s/so )−iπ/2).

    DefiningC+ = so Ccosφ; C− = −so Csinφ,

    one gets

    AR (s, t) = iCetα′

    (ln(s/so )−iπ/2)e iφ.

    Apart from the “extra” phase e−itα′π/2, this corresponds to the second term of the

    Barger-Phillips amplitude - the “C-term” - with D(s) = 2α′ln(s/so ). Notice that this phase is

    present in any Regge amplitude.8 / 23

  • Parametrizing the elastic differential cross-sectionthe original Barger-Phillips model¶

    We have applied the old Barger-Phillips parametrization to LHC7 data

    ABPel (s, t) = i [√

    A(s)e−B(s)|t|/2 +√

    C(s)e iφ(s)e−D(s)|t|/2]

    )2|t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /d|t

    | (m

    bG

    eV

    el

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    ANTCHEV, EPL 101 (2013) 21002

    ANTCHEV, EPL 101 (2013) 21002

    BP FIT - 5 parameters

    -2 15 mbGeV±A = 237

    -2 0.21 GeV±B = 15.19

    -2 0.084 mbGeV±C = 1.364

    -2 0.049 GeV±D = 4.687

    0.0084 rad± = 2.7599 φ

    /DOF = 106/73 = 1.42χ

    2 = 0.38 GeV

    min|t|

    1.5 1.6 1.7 1.8 1.9 2-4

    10

    -310

    BP fit-8

    /d|t| ~ |t|el

    σTOTEM fit: d

    excellent description for |t| > 0.4 GeV2 → need to correct small −t behaviour¶

    Phillips and Barger, Phys.Lett. B46 (1973) 412 ; Grau et al., Phys.Lett. B714 (2012) 70

    9 / 23

  • Parametrizing the elastic differential cross-sectionmodified BP model - mBP1

    Our first attempt - introduction of a square root threshold at small |t| (normalized)‖:

    AmBP1el (s, t) = i [√

    A(s)e−B(s)|t|/2e−γ(s)(√

    4m2π+|t|−2mπ) +√

    C(s)e iφ(s)e−D(s)|t|/2]

    )2|t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /dt (

    mb

    GeV

    el

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    ANTCHEV, EPL 101 (2013) 21002

    ANTCHEV, EPL 101 (2013) 21002

    -2 2.0 mbGeV±A = 565.3

    -2 0.16 GeV±B = 13.69

    -2 0.036 mbGeV±C = 0.969

    -2 0.033 GeV±D = 4.425

    -1 0.060 GeV± = 2.005 γ

    0.0068 rad± = 2.7030 φ

    /DOF = 502/155 = 3.22χ

    0 0.05 0.1 0.15 0.2 0.25 0.31

    10

    210

    310

    2 = 0.0117 GeV

    min|t|

    = 101.2 mbtot

    σ

    -2 = 523.9 mbGeV

    t=0/dt|

    elσd

    )2|t| (GeV

    0 1 2 3 4 5 6 7 8 9 10

    )-2

    /d|t

    | (m

    bG

    eV

    el

    σd

    -1910

    -1710

    -1510

    -1310

    -1110

    -910

    -710

    -510

    -310

    -110

    10

    210

    AMALDI, NP B 166 (1980) 301

    AMBROSIO, PL B 115 (1982) 495

    AMOS, NP B 262 (1985) 689

    BREAKSTONE, NP B 248 (1984) 253

    BREAKSTONE, PRL 54 (1985) 2180

    FFBP fits

    24 GeV

    31 GeV

    -2x10

    45 GeV

    -4x1053 GeV

    -6x1063 GeV

    -8x10

    ‖the two − pion loop insertion in the Pomeron trajectory: A.A. Anselm and V.N. Gribov, Phys.Lett. B 40 (1972); Fiore et

    al. Int.J.Mod.Phys. A24 (2009) 2551

    10 / 23

  • Parametrizing the elastic differential cross-sectionmodified BP model - mBP2

    We correct the small −t behaviour with the proton’s FF at the BP amplitude ∗∗

    AmBP2el (s, t) = i [√

    A(s)e−B(s)|t|/21(

    1 + |t|t0

    )4 +√C(s)e iφ(s)e−D(s)|t|/2]††

    )2|t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /dt

    (mb

    Ge

    Vel

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    ANTCHEV, EPL 95 (2012) 41001

    ANTCHEV, CERN-PH-EP-2012-239

    -7.8/d|t| ~ |t|

    elσTOTEM FIT: d

    OBP fit

    FFBP fit

    -2 2.3 mbGeV±A = 565.3 -2 0.19 GeV±B = 8.24

    -2 0.072 mbGeV±C = 1.372 -2 0.042 GeV±D = 4.661

    0.0081 rad± = 2.7552 φ2 0.013 GeV± = 0.689

    0t

    /DOF = 383/155 = 2.52χ

    0 0.05 0.1 0.15 0.2 0.25 0.31

    10

    210

    310

    2 = 0.0117 GeV

    min|t|

    = 100.3 mbtot

    σ

    -2 = 515.1 mbGeV

    t=0/dt|

    elσd

    )2|t| (GeV

    0 1 2 3 4 5 6 7 8 9 10

    )-2

    /d|t

    | (m

    bG

    eV

    el

    σd

    -1910

    -1710

    -1510

    -1310

    -1110

    -910

    -710

    -510

    -310

    -110

    10

    210

    AMALDI, NP B 166 (1980) 301

    AMBROSIO, PL B 115 (1982) 495

    AMOS, NP B 262 (1985) 689

    BREAKSTONE, NP B 248 (1984) 253

    BREAKSTONE, PRL 54 (1985) 2180

    FFBP fits

    24 GeV

    31 GeV

    -2x10

    45 GeV

    -4x10

    53 GeV

    -6x1063 GeV

    -8x10

    Fp(t) to account for elastic rescatterings as |t| increases ↔ proton does not break up∗∗

    D.A. Fagundes et al., Phys.Rev. D88 (2013) 094019††

    for√

    s > 7TeV we make the ansatz t0 → 0.71 GeV2 (the EM FF scale) 11 / 23

  • Asymptotic sum rulesand impact parameter structure

    Asymptotic sum rules - total absorption of partial waves (η(s, b)→ 0)

    SR1 =1

    2√π

    ∫ 0−∞

    dtAIel (s, t)→ 1 SR0 =1

    2√π

    ∫ 0−∞

    dtARel (s, t)→ 0

    b (fm)

    0 0.5 1 1.5 2 2.5 3

    (s,b

    )e

    lA

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    (LHC7)el

    Re A

    (ISR53)el

    Re A

    (LHC7)el

    Im A

    (ISR53)el

    Im A

    s(LHC7) = 0.953

    1SR

    (ISR53) = 0.7171

    SR

    (LHC7) = 0.0480

    SR(ISR53) = 0.049

    0SR

    12 / 23

  • Energy dependendence of fit parametersamplitudes and slopes with t0 → 0.71 GeV2

    (GeV)s

    210

    310

    410

    510

    (m

    b)

    4

    40

    60

    80

    100

    120

    140

    160

    180

    s [mb]2 = 47.8 -3.81lns+0.398lnA(s)π4

    pp: ISR and LHC7

    p: SPS and TEVATRONp

    (LHC7) = 105.2 mbAπ4

    (LHC8) = 108.0 mbAπ4

    (LHC14) = 120.2 mbAπ4

    (AUGER57) = 155.4 mbAπ4

    (GeV)s

    210

    310

    410

    510

    )-2

    B (

    Ge

    V

    0

    2

    4

    6

    8

    10

    12

    14 s2B(s) = -0.23+0.028ln

    in B(s) at lower energies0

    Effect of t

    pp: ISR and LHC7

    p: SPS and TEVATRONp

    -2B(LHC7) = 8.55 GeV

    -2B(LHC8) = 8.82 GeV

    -2B(LHC14) = 10.0 GeV

    -2B(AUGER57) = 13.2 GeV

    (GeV)s

    210

    310

    410

    510

    (m

    b)

    4

    -110

    1

    10

    [mb] s

    31.18 + 0.001ln

    s3

    9.56 - 1.81lns + 0.0103ln = C(s)π4

    pp: ISR and LHC7

    p: SPS and TEVATRONp

    (LHC7) = 5.18 mbCπ4

    (LHC8) = 5.30 mbCπ4

    (LHC14) = 5.76 mbCπ4

    (AUGER57) = 6.71 mbCπ4

    (GeV)s

    210

    310

    410

    )-2

    D (

    GeV

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    D(s) = -0.41 + 0.29lns

    pp: ISR and LHC7

    p: SPS and TEVATRONp

    -2D(LHC7) = 4.66 GeV

    -2D(LHC8) = 4.74 GeV

    -2D(LHC14) = 5.06 GeV

    -2D(AUGER57) = 5.85 GeV

    13 / 23

  • Energy evolution of the dip positionusing Geometric Scaling (GS)

    We assume GS is valid asymptotically, thus

    −tdipσtot ∼ constant −→ tdip ' −a

    1 + b ln2 s

    (GeV)s

    210

    310

    410

    510

    )2

    (G

    eV

    dip

    t

    -1.4

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    ; b = 0.00972 s] - a = 2.15 GeV2 = -a/[1+b*lndip

    t

    = 1.47α from PLB 718 (2013) 1571 - dip

    t

    = 1.52α from PLB 718 (2013) 1571 - dip

    t

    ISR31

    ISR45

    ISR53

    ISR63

    SPS546

    FNAL1960

    LHC7

    2(LHC8) = -0.51 GeVdip

    t

    2(LHC14) = -0.45 GeVdip

    t

    14 / 23

  • This model predictionsfor LHC8 and LHC14

    Asymptotic SR dictate the energy behaviour of fit parameters, allowing to make predictions

    )2

    |t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /d

    |t| (m

    bG

    eV

    el

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    -2 = 543.7 mbGeV

    t=0/d|t||

    elσd

    -2(t=0) = 20.8 GeVeffB = 103.1 mb

    totσ

    = 26.6 mbel

    σ

    2 = 0.511 GeVdip

    |t|

    -2 = 541.8 mbGeV

    t=0/d|t||

    elσd

    -2(t=0) = 20.8 GeVeffB

    = 103.0 mbtot

    σ

    = 26.4 mbel

    σ

    2 = 0.495 GeVdip

    |t|

    = 2.72 rad]φLHC8 - FFBP [

    = 2.81 rad]φLHC8 - FFBP [

    )2

    |t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /d

    |t| (m

    bG

    eV

    el

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    -2 = 674.5 mbGeV

    t=0/d|t||

    elσd

    -2(t=0) = 22.0 GeVeffB = 114.9 mb

    totσ

    = 31.0 mbel

    σ

    2 = 0.471 GeVdip

    |t|

    -2 = 671.1 mbGeV

    t=0/d|t||

    elσd

    -2(t=0) = 22.0 GeVeffB

    = 114.6 mbtot

    σ

    = 30.8 mbel

    σ

    2 = 0.452 GeVdip

    |t|

    = 2.76 rad]φLHC14 - FFBP [

    = 2.92 rad]φLHC14 - FFBP [

    Uncertainty in φ specifies the band of predictions

    15 / 23

  • This model predictionsfrom ISR to AUGER and asymptotia

    (GeV)s10

    210

    310

    410

    510

    to

    /

    el

    σ

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    ppAccelerator data:

    ppAccelerator data:

    AUGER57 - PRL 109 (2012) 062002

    = 2.92 rad] φ(s) - FFBP prediction [ tot

    σ/el

    σ

    Interpolating line from ISR to LHC7

    ISR

    TO

    TE

    M

    E710,C

    DF

    UA

    4,U

    A4/2

    Black Disk Limit

    (GeV)s

    1 102

    103

    104

    105

    106

    107

    108

    109

    1010

    10

    to

    /

    el

    σ

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    σel

    σtot−→ 1/2 at

    √s ' 1010GeV (Elab ∼ 1020GeV)

    16 / 23

  • Dip position, the Black Disk limit and Geometrical scalingtwo scales at non-asymptotic energy

    No scaling with σtot (s) and central opacity, Rel = σel/σtot , plays a role in GS at LHC energies

    (GeV)s

    210

    310

    410

    510

    )2

    (m

    bG

    eV

    to

    dip

    = -

    tto

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Black Disk Limit

    2 = 35.92 mbGeVBD

    τ → tot

    τ

    (GeV)s

    210

    310

    410

    510

    )2

    (m

    bG

    eV

    to

    el

    σd

    ip =

    -t

    new

    el

    τ

    0

    10

    20

    30

    40

    50

    60

    Black Disk Limit

    2/2 = 25.4 mbGeV2BD

    τ → newel

    τ

    2 5.0 mbGeV±(LHC8) = 26.6 newel

    τ

    2 5.0 mbGeV±(LHC14) = 26.7 newel

    τ

    Rel 6= 1/2 at present energies ⇒ influence of two scales with different energy behaviour, σel (s)and σtot (s), through the geometric average cross section σ̄ =

    √σel (s)σtot (s)

    17 / 23

  • Summary

    What have we learned from this simple model?

    1. the Barger-Phillips amplitude dissects the differential cross section in building blocks: diff.peak, dip region and tail

    2. when augmented by the proton FF, the BP amplitude reproduce data from ISR to LHC →giving σtot (s), σel (s),Bel (s)

    3. the dip structure arising from the interference of two terms with a relative phase (mixingof C = ±1 processes)

    4. the first term (leading) is well understood, A(s) giving σtot (s) and B(s)+t0(s) giving theforward slope;

    5. the second term (nonleading) carries an energy dependece through the slope D(s), whichrequires deeper understanding

    6. sum rules in impact parameter space and asymptotic theorems → hints towards energydependence of parameters → predictions for LHC8 and LHC14

    7. Geometric scaling with σtot achieved at asymptotic energies and at LHC two scales, σeland σtot still present

    18 / 23

  • Acknowledgements

    THANK YOU!!!

    19 / 23

  • BackupDifferential elastic cross section at

    √s = 8 TeV‡‡

    ‡‡from Jan Kašpar talk “Total, elastic and diffractive cross sections with TOTEM”, CERN, December 4th, 2012

    20 / 23

  • Backupparameters of the modified BP model mBP1

    However, the new term does not behave as expected, with γ(s) ∼ ln s...

    (GeV)s

    210

    310

    410

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    B2π4m

    D2π4mγπ2m

    ...instead it ‘swings’ with increasing c.m. energy → interpretation fails21 / 23

  • Backupmodified BP model mBP2 applied to p̄p data

    As an empirical formula, it can be applied for the crossed channel just as well

    )2|t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /dt

    (mb

    GeV

    el

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    -2 0.84 mbGeV±A = 217.32 -2 0.058 GeV±B = 5.073

    -2 0.023 mbGeV±C = 0.134 -2 0.13 GeV±D = 3.42

    0.015 rad± = 2.650 φ

    (fixed)2 = 0.76 GeV0

    t

    /DOF = 524/181 = 2.92χ

    Bernard - PLB 198 (1987) 583

    Battiston - PLB 127 (1983) 472

    Bozzo - PLB 155 (1985) 197

    0 0.05 0.1 0.15 0.2 0.25 0.31

    10

    210

    2 = 0.01014 GeV

    min|t|

    0.11 mb± = 63.76 tot

    σ

    -2 0.69 mbGeV± = 207.92

    t=0/dt|

    elσd

    )2|t| (GeV

    0 0.5 1 1.5 2 2.5

    )-2

    /dt

    (mb

    GeV

    el

    σd

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    Abe - PRD 50 (1994) 5518

    Amos - PLB 247 (1990) 127

    Abazov - PRD 86 (2012) 012009

    -2 2.1 mbGeV±A = 319.4 -2 0.058 GeV±B = 5.684

    -2 0.10 mbGeV±C = 1.00 -2 0.065 GeV±D = 4.308

    0.019 rad± = 2.704 φ

    (fixed)2 = 0.73 GeV0

    t

    /DOF = 226/88 = 2.62χ

    0.05 0.1 0.15 0.2 0.25 0.31

    10

    210

    2 = 0.034 GeV

    min|t|

    0.55 mb± = 75.02 tot

    σ

    -2 4.2 mbGeV± = 288.0

    t=0/dt|

    elσd

    22 / 23

  • Backuplocal and forward slopess

    Beff (s) =d

    dtln

    (dσel

    dt

    )∣∣∣∣t=0

    )2|t| (GeV0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    Lo

    cal S

    lop

    es

    -5

    0

    5

    10

    15

    20

    25 (LHC7)FFBPeffB(LHC7)SQRTBPeffB

    (ISR53)FFBPeffB(ISR53)SQRTBPeffB

    Amaldi 1971Barbiellini 1972Baksay 1978Ambrosio 1982Antchev 2012

    (GeV)s

    210

    310

    410

    )-2

    (G

    eV

    eff

    B

    12

    14

    16

    18

    20

    22

    -2

    (LHC7) = 19.8 GeVeffB-2

    (LHC8) = 20.1 GeVeffB-2

    (LHC14) = 21.3 GeVeffB-2

    (AUGER57) = 24.5 GeVeffB

    s 2(s) = 11.04 + 0.028lneffB

    Forward slope data from ISR to LHC7

    pp: ISR and LHC7

    p: SPS and TEVATRONp

    interaction radius “speed up” at LHC - Beff (s) ∼ ln2 s

    23 / 23