Bio Chi Mica

25
Biochimica La biochimica è lo studio della chimica della vita, un ponte fra la biologia e la chimica che studia le reazioni chimiche complesse che danno origine alla vita : oggetto di studio sono la struttura e le trasformazioni dei componenti delle cellule , come proteine , carboidrati , lipidi , acidi nucleici e altre biomolecole . Sebbene vi sia un grande numero di diverse biomolecole , sono tutte essenzialmente composte dagli stessi costituenti di base (genericamente chiamati monomeri ), posizionate in ordini diversi. Ogni classe di biomolecole ha un set di differenti subunità. Recentemente, la biochimica si è concentrata specificamente sulla catalisi di reazioni da parte degli enzimi e sulle proprietà delle proteine. La biochimica del metabolismo cellulare e del sistema endocrino è già stata ampiamente descritta. Altre aree della biochimica includono lo studio del codice genetico (DNA , RNA ), la sintesi proteica , il meccanismo di trasporto della membrana cellulare e la trasduzione del segnale . Glucidi I glucidi (dal greco glucos, cioè dolce), chiamati anche glicidi, zuccheri o carboidrati (da idrati dicarbonio ), saccaridi, o CHO, sono una delle principali classi di biomolecole . Hanno numerose funzioni biologiche tra cui quella di riserva energetica e trasporto dell'energia (esempio: amido , glicogeno ) e sono anche noti come componenti strutturali della cellulosa nelle piante e della cartilagine negli animali . Inoltre i carboidrati e i loro derivati giocano un ruolo fondamentale nel sistema immunitario , nella fertilità e nello sviluppo biologico. Dal punto di vista chimico, i carboidrati sono aldeidi o chetoni a cui sono stati aggiunti vari gruppi ossidrilici , solitamente uno per ogni atomo di carbonio che non fa parte del gruppo funzionale aldeidico o chetonico. Le singole unità di carboidrati sono chiamate "monosaccaridi ". Tra questi si annoverano il glucosio , il galattosio e il fruttosio . La formula generale di un monosaccaride , detta formula empirica (o minima ) è (C·H2O)n, dove nè un numero maggiore o uguale a tre; ad ogni modo non tutti i carboidrati si adattano a questa precisa definizione stechiometrica (per esempio gli acidi uronici , i deossizuccheri come il fucosio).I monosaccaridi possono legarsi tra di loro in moltissimi modi per formare i polisaccaridi o gli oligosaccaridi . Molti carboidrati contengono uno o più unità

Transcript of Bio Chi Mica

Page 1: Bio Chi Mica

BiochimicaLa biochimica è lo studio della chimica della vita, un ponte fra la biologia e la chimica che studia le reazioni chimiche complesse che danno origine alla vita: oggetto di studio sono la struttura e le trasformazioni dei componenti delle cellule, come proteine, carboidrati, lipidi, acidi nucleici e altre biomolecole. Sebbene vi sia un grande numero di diverse biomolecole, sono tutte essenzialmente composte dagli stessi costituenti di base (genericamente chiamati monomeri), posizionate in ordini diversi. Ogni classe di biomolecole ha un set di differenti subunità. Recentemente, la biochimica si è concentrata specificamente sulla catalisi di reazioni da parte degli enzimi e sulle proprietà delle proteine. La biochimica del metabolismo cellulare e del sistema endocrino è già stata ampiamente descritta. Altre aree della biochimica includono lo studio del codice genetico (DNA, RNA), la sintesi proteica, il meccanismo di trasporto della membrana cellulare e la trasduzione del segnale.

GlucidiI glucidi (dal greco glucos, cioè dolce), chiamati anche glicidi, zuccheri o carboidrati (da idrati dicarbonio), saccaridi, o CHO, sono una delle principali classi di biomolecole. Hanno numerose funzioni biologiche tra cui quella di riserva energetica e trasporto dell'energia (esempio: amido, glicogeno) e sono anche noti come componenti strutturali della cellulosa nelle piante e della cartilagine negli animali. Inoltre i carboidrati e i loro derivati giocano un ruolo fondamentale nel sistema immunitario, nella fertilità e nello sviluppo biologico.Dal punto di vista chimico, i carboidrati sono aldeidi o chetoni a cui sono stati aggiunti vari gruppi ossidrilici, solitamente uno per ogni atomo di carbonio che non fa parte del gruppo funzionale aldeidico o chetonico. Le singole unità di carboidrati sono chiamate "monosaccaridi". Tra questi si annoverano il glucosio, il galattosioe il fruttosio. La formula generale di un monosaccaride, detta formula empirica (o minima) è (C·H2O)n, dove nè un numero maggiore o uguale a tre; ad ogni modo non tutti i carboidrati si adattano a questa precisa definizione stechiometrica (per esempio gli acidi uronici, i deossizuccheri come il fucosio).I monosaccaridi possono legarsi tra di loro in moltissimi modi per formare i polisaccaridi o gli oligosaccaridi. Molti carboidrati contengono uno o più unità di monosaccaridi a cui sono stati tolti o aggiunti vari gruppi. Per esempio il deossiribosio, un componente del DNA, è una versione modificata del ribosio (un componente dell'RNA). Altri carboidrati presentano invece gruppi funzionali differenti, come nel caso degli amminozuccheri e delle glicoproteine.

Classificazione I carboidrati possono essere classificati come semplici (monosaccaridi e disaccaridi) o complessi (oligosaccaridi e polisaccaridi). Le linee guida per l'alimentazione generalmente consigliano i carboidrati complessi, e alcuni cibi ricchi di carboidrati semplici come la frutta (che contiene glucosio e fruttosio) o i prodotti caseari (che contengono lattosio) come sola fonte di carboidrati nella dieta. Ciò esclude alcune fonti di zuccheri semplici come i dolci o le bevande zuccherate.L'indice glicemico e il carico glicemico sono concetti sviluppati per analizzare il comportamento del cibo durante la digestione. Questi classificano i cibi ricchi di carboidrati in base alla velocità del loro effetto sul livello di glucosio nel sangue. L'indice insulinico è una classificazione simile, più recente, che classifica il cibo in base al suo effetto sui livelli diinsulina nel sangue, causato dai vari macronutrienti, soprattutto dai carboidrati e da alcuni amminoacidi presenti nel cibo. L'indice glicemico è una misura di quanto velocemente i carboidrati del cibo vengono assorbiti, mentre il carico glicemico è la misura che determina l'impatto di una data quantità di glucidi presenti in un pasto.I carboidrati complessi non assimilabili, come la cellulosa, l'emicellulosa e la pectina, sono un'importante componente della fibra alimentare.

Page 2: Bio Chi Mica

Classificazione dei monosaccaridi I monosaccaridi sono classificati in base a tre differenti caratteristiche: la posizione del loro gruppo carbonile, il numero di atomi dicarbonio che contengono e la loro chiralità. Se il gruppo carbonilico è aldeidico, il monosaccaride è un aldoso; se il gruppo carbonilico è chetonico, il monosaccaride è un chetoso. I monosaccaridi con tre atomi di carbonio sono chiamati triosi, con quattro sono chiamatitetrosi, con cinque pentosi, con sei esosi e con sette eptosi. Questi due sistemi di classificazione sono spesso combinati. Per esempio, il glucosio è un aldoesoso, il ribosio è un aldopentoso e il fruttosio è un chetoesoso.Ogni atomo di carbonio che porta un gruppo ossidrile (-OH), ad eccezione del primo e dell'ultimo carbonio, è asimmetrico, constereocentri con due possibili configurazioni (R o S). A causa di questa simmetria, esiste un certo numero di isomeri per ogni formula dimonosaccaride. Il D-glucosio, per esempio, ha formula (C·H2O)6 e quattro dei suoi sei atomi di carbonio sono stereogeni, rendendo il D-glucosio uno dei 16 possibili stereoisomeri. Nel caso della gliceraldeide, un aldotrioso, c'è una coppia di possibili stereoisomeri, che sono enantiomeri ed epimeri. L'1-3-diidrossiacetone, il chetoso che corrisponde alla gliceraldeide aldosa, è una molecola simmetrica senza stereocentri. La classificazione in D o L è fatta in base all'orientamento del carbonio asimmetrico più lontano dal gruppo aldeidico o chetonico: in una proiezione di Fischer standard se il gruppo ossidrile è a destra della molecola, lo zucchero ha configurazione D; se è a sinistra lo zucchero ha configurazione L. Gli zuccheri di serie D sono più comuni e pertanto la D spesso viene omessa.

ConfigurazioneIl gruppo aldeidico o chetonico di una catena lineare di un monosaccaride reagirà reversibilmente con un gruppo ossidrile su un altro atomo di carbonio per formare un semiacetaleo un semichetale, formando un anello eterociclico con un ponte ossigeno tra i due atomi di carbonio. Gli anelli con cinque o sei atomi sono chiamati furanosi e piranosi ed esistono in equilibrio con la forma a catena aperta. Durante la conversione dalla forma a catena aperta alla forma ciclica, l'atomo di carbonio contenente l'ossigeno carbonilico, chiamatocarbonio anomerico, diventa un centro chirale con due possibili configurazioni: l'atomo di ossigeno può prendere posizione sopra o sotto il piano dell'anello. I due possibili stereoisomeri risultanti sono detti anomeri. Nell'anomero α, l'-OH che sostituisce il carbonio anomerico sta dal lato opposto (trans) dell'anello (secondo CH2OH). La forma alternativa dà l'anomero β. Dato che l'anello e la forma a catena aperta si interconvertono velocemente, entrambi gli anomeri esistono all'equilibrio. La mutarotazione è un fenomeno, legato proprio all'instaurarsi di un equilibrio tra anomeri, che consiste nella variazione del potere rotatorio dei carboidrati osservato in una loro soluzione.

Ruolo biologico I monosaccaridi sono la più grande risorsa per il metabolismo, dato che vengono usati come fonte di energia. Quando non c'è immediato bisogno di monosaccaridi spesso sono convertiti in forme più vantaggiose per lo spazio, spesso in polisaccaridi. In molti animali, compresi gli umani, questa forma di deposito è il glicogeno, sito nelle cellule del fegato e dei muscoli. Le piante invece utilizzano l'amido come riserva. Altri polisaccaridi come la chitina, che concorre alla formazione dell'esoscheletro degli artropodi, svolgono invece una funzione strutturale.

Oligosaccaridi e polisaccaridiGli oligosaccaridi e i polisaccaridi sono composti da lunghe catene di monosaccaridi (monomeri) legati da legami glicosidici. La distinzione tra i due è basata sul numero di monosaccaridi presenti nella catena. Gli oligosaccaridi tipicamente contengono da sette a nove monosaccaridi, mentre i polisaccaridi contengono più di dieci monosaccaridi. I polisaccaridi rappresentano un'importante classe di polimeri biologici. La loro funzione negli organismi viventi è di solito strutturale o di deposito. L'amido (un polimero del glucosio) è utilizzato come polisaccaride di deposito nelle piante, e si trova sia nella forma di amilosio sia in quella ramificata dell'amilopectina. Negli

Page 3: Bio Chi Mica

animali, il polimero di glucosio strutturalmente simile è il più densamente ramificato glicogeno, qualche volta chiamato "amido animale". Le proprietà del glicogeno gli permettono di essere metabolizzato più rapidamente, il che si adatta alle vite attive degli animali che si muovono. Le forme di glicogeno più diffuse sono il glicogeno epatico e glicogeno muscolare. Il glicogeno epatico si trova nel fegato, è la riserva di zucchero e di energia negli animali e dura 24 ore. Il glicogeno muscolare è la riserva di zucchero utilizzata direttamente dalle cellule muscolari senza passare per la circolazione sanguigna. Il glicogeno epatico, invece, prima di raggiungere le cellule e, in particolare, il tessuto muscolare deve essere immesso nella circolazione sanguigna.I polisaccaridi si suddividono in omopolisaccaridi (costituiti da tante unità di uno stesso monosaccaride ripetuto più volte) e eteropolisaccaridi (costituiti da tante unità monosaccaridiche diverse). La cellulosa e la chitina sono esempi di polisaccaridi strutturali. La cellulosa è situata nelle pareti cellulari e in altri organismi, e si ritiene che sia la più abbondante molecola organica sulla Terra. Ha molti utilizzi, come un ruolo significativo nell'industria tessile e della carta, ed è usata come materia prima per la produzione del rayon(attraverso il processo viscoso), acetato di cellulosa, celluloide, e nitrocellulosa. La struttura della chitina è simile, ha delle catene laterali che contengono azoto, aumentandone la forza. Si trova negli esoscheletri degli artropodi e nelle pareti cellulari di alcuni funghi. Ha molti usi, tra cui il filo di sutura chirurgico.Altri polisaccaridi includono il callosio, la laminarina, lo xilano, il mannano, il fucoidano, e il galactomannano.

Riduzione e ossidazione dei glucidi Pur esistendo prevalentemente in forma emiacetalica ciclica, i glucidi sono in equilibrio con la loro forma a catena aperta. Ciò rende il gruppo aldeidicosoggetto a reazioni di riduzione, solitamente utilizzando l'idrogenazione catalica o il tetraidroborato di sodio. La funzione aldeidica è anche soggetta a ossidazione, per esempio con bromo, formando i composti noti come acidi aldonici. Utilizzando condizioni ossidative più drastiche, per esempio impiegando acido nitrico, è possibile ossidare anche il gruppo -CH2OH terminale, producendo gli acidi aldarici. Acidi aldonici e aldarici tendono a esistere principalmente sotto forma di lattoni. Infine è possibile che si verifichi solamente l'ossidazione del gruppo -CH2OH terminale con il gruppo -CHO che resta inalterato, producendo gli acidi uronici. La formazione di questo genere di composti avviene prevalentemente per viabiochimica per azione di enzimi, dato che con i rettivi chimici risulta favorita l'ossidazione del gruppo aldeidico. Un esempio di acido uronico è rappresentato dall'acido glucuronico, ottenuto per ossidazione del D-glucosio e che ricopre un ruolo importante nell'escrezione delle sostanze tossiche per via urinaria.In generale, gli zuccheri suscettibili di ossidazione vengono definiti zuccheri riducenti. Sono riducenti tutti quegli zuccheri il cui carbonio anomerico non è impegnato in un legame stabile, come nel caso dei glicosidi e disaccaridi come il saccarosio. Oltre agli aldosi, anche i chetosi sono zuccheri riducenti, in quanto presentano anche loro una funzione aldeidica in seguito a un equilibrio con un intermedio enediolico (diolo con un doppio legame, R-C(OH)(CHOH)). I reattivi di Benedict e quello di Fehling sono di comune utilizzo nella pratica di laboratorio per la determinazione delle proprietà riducenti degli zuccheri.

CatabolismoLe principali vie metaboliche dei monosaccaridi sono:La glicolisi: processo attraverso il quale una molecola di glucosio viene trasformata in due molecole di piruvato con un rilascio di energia sotto forma di 2 molecole di ATP e con la riduzione di due molecole di NAD+ a NADH + H+.Il ciclo di Krebs: processo continuo atto a disorganicare i due carboni presenti nell'Acetil-CoA (risultato dell'azione della piruvato deidrogenasi sul piruvato) in due molecole di anidride carbonica con un rilascio di energia sotto forma di 3 NADH + 3 H+, 1 FADH2 e 1 GTP (facilmente convertibile in ATP tramite l'azione dell'enzima nucleoside difosfato chinasi).

Page 4: Bio Chi Mica

Via del fosfogluconato: processo parallelo alla glicolisi atto a rifornire l'organismo di ribosio-5-fosfato e NADPH.Gli oligosaccaridi e i polisaccaridi sono prima scissi in monosaccaridi da enzimi detti glicosidasi per poi essere catabolizzati singolarmente. In alcuni casi, come per la cellulosa, il legame glicosidico è particolarmente difficile da scindere e pertanto sono necessari enzimi specifici (in questo caso la cellulasi) senza i quali è impossibile catabolizzare tali zuccheri.

ProteinaLe proteine, o protidi, sono tra i composti organici più complessi e sono i costituenti fondamentali di tutte le cellule animali e vegetali. Dal punto di vista chimico, una proteina è un polimero (e anche una macromolecola) di residui amminoacidici, uniti mediante un legame peptidico, spesso in associazione con altre molecole e/o ioni metallici (in questo caso si parla di proteina coniugata). Si parla di macromolecole quaternarie che svolgono diverse funzioni:Funzione strutturale nei muscoli;Funzione di trasporto dentro e fuori dalla cellula;Funzione di anticorpi, ovvero difesa dell'organismo da sostanze esterne ed estranee all'organismo;

Descrizione Le proteine hanno una struttura tridimensionale molto complessa a cui è associata sempre una funzione biologica. Da questa considerazione deriva uno dei dogmi fondamentali della biologia: "Struttura <--> Funzione", nel senso che ad ogni diversa organizzazione strutturale posseduta da una proteina (detta proteina nativa) è associata una specifica funzione biochimica.Da questo punto di vista le proteine possono essere classificate in due grandi famiglie: le proteine globulari e le proteine a struttura estesa o fibrosa. Queste due organizzazioni riflettono le due grosse separazioni funzionali che le contraddistinguono:Le proteine estese o fibrose svolgono funzioni generalmente biomeccaniche, esse rientrano nella costituzione delle unghie, dei peli, dello strato corneo dell'epidermide, dei muscoli (actina e miosina) opponendo una valida difesa contro il mondo esterno.Al contrario, le proteine globulari sono coinvolte in specifiche e molteplici funzioni biologiche, spesso di notevole importanza per l'economia cellulare, sono proteine gli enzimi, i pigmenti respiratori, molti ormoni, le tossine, e gli anticorpi, responsabili della difesa immunitaria. Cibi particolarmente ricchi di proteine sono: carne , pesce, uova, latte e derivati.Altri cibi meno ricchi di proteine sono: lievito di birra e cereali (quest'ultimo ha poco valore biologico. Il valore biologico indica la quantità di proteine umane estraibili da 100g di proteine alimentari. Può essere: -Ad alto valore biologico: ci sono tutti gli aminoacidi essenziali (8) nella giusta quantità e ben disposti come quelli nella carne, pesce, uova, latte e derivati. -A medio valore biologico: contengono tutti gli aminoacidi essenziali (8) in maniera squilibrata ad esempio nei legumi -A basso valore biologico: manca uno o più aminoacidi essenziali).

I protidiI protidi sono dei componenti fondamentali delle cellule. La loro composizione in amminoacidi è variabile e sotto il controllo genetico per cui il loro peso molecolare può essere molto variabile e dipende dal numero e dal tipo di amminoacidi (monomeri) di cui è costituita la molecola (eteropolimero in cui il peso molecolare medio di un amminoacido è circa 115). Se la molecola è costituita da poche unità di amminoacidi (in genere non più di 15 ÷ 20) viene definita un oligopeptide. In genere, un oligopeptide non ha una ben definita conformazione in soluzione ma, essendo piuttosto flessibile, la cambia continuamente. Un polimero più lungo si dice polipeptide. Uno o più polipeptidi costituiscono una proteina. È bene chiarire subito che una proteina nella sua organizzazione nativa, e quindi funzionalmente attiva, può esistere solo in soluzioni saline diluite (molto simili, per composizione, a quelle esistenti nei sistemi acquosi cellulari). La sua struttura dipende esclusivamente dalle caratteristiche chimico-fisiche della soluzione acquosa in cui si trova (pH, presenza di ioni salini, temperatura, pressione, presenza di composti organici

Page 5: Bio Chi Mica

come urea, alcoli, ecc.). Il variare di questi parametri può determinare delle modifiche strutturali che possono alterare le proprietà funzionali, fino ad annullarle (proteina denaturata).Proteine che contengono lo stesso tipo e numero di amminoacidi possono differire dall'ordine in cui questi sono situati nella struttura della molecola. Tale aspetto è molto importante perché una minima variazione nella sequenza degli amminoacidi di una proteina (cioè nell'ordine con cui i vari tipi di amminoacidi si susseguono) può portare a variazioni nella struttura tridimensionale della macromolecola che possono rendere la proteina non funzionale. Un esempio ben noto è il caso della catena beta dell'emoglobina umana che nella sua normale sequenza porta un tratto formato da: valina - istidina - leucina - treonina - prolina - acido glutammico - lisina.

Composizione elementareLa molecola proteica risulta costituita da atomi di carbonio, ossigeno, idrogeno e azoto; spesso contiene anche zolfo (presente negli amminoacidi metionina, cisteina e cistina) e, talvolta, fosforo e/o metalli come ferro, rame, zinco ed altri.Le proteine sono dei polipeptidi con più di 90-100 amminoacidi.

Gli amminoacidiLo scheletro delle proteine è costituito da una sequenza di 20 tipi di amminoacidi diversi, cui si aggiungono alcune tipologie speciali di amminoacidi modificati (come l'idrossilisina nel collagene). In una singola proteina non necessariamente sono presenti tutte le tipologie di amminoacidi che invece si trovano in quantità differenti.La struttura generica degli amminoacidi ordinari è la seguente: R |H2N-C-COOH | HRipiegamento Una proteina, essendo una macromolecola formata da decine di migliaia di atomi, potrebbe potenzialmente assumere un numero incredibilmente grande di possibili ripiegamenti. Tuttavia considerazioni fisiche limitano di molto i possibili ripiegamenti e dunque la conformazione finale di una proteina. Intanto gli atomi non si possono mai sovrapporre e si comportano a grandi linee come sfere con un raggio definito detto raggio di van der Waals, ciò limita non poco il numero di angoli ammessi in una catena polipeptidica. Ciascun amminoacido contribuisce alla formazione della catena polipeptidica con tre legami:Il legame peptidico (C-N) tra il carbonio di un gruppo chetonico di uno degli amminoacidi e l'azoto del gruppo amminico dell'adiacente.Il legame convenzionalmente chiamato Cα-C che è presente tra il carbonio centrale cui è attaccato il gruppo laterale R e il carbonio del gruppo carbossilico.Il legame Cα-N tra il carbonio centrale e l'azoto del gruppo amminico dello stesso amminoacido.Il legame peptidico è planare ed impedisce una vera e propria rotazione, mentre gli altri due legami la consentono.L'angolo di rotazione del legame Cα-C è detto ψ, quello del legame Cα-N è detto φ. La conformazione degli atomi della catena principale di una proteina è determinata dalla coppia di questi angoli di rotazione per ciascun amminoacido. Dal momento che non sono possibili collisione steriche tra gli amminoacidi gli angoli possibili sono limitati. Ramachandran in funzione delle possibili coppie di angoli di rotazioni compilò un grafico che oggi prende il suo nome dove è ben visibile come la maggior parte delle proteine assumano solo due grandi tipologie di conformazione: l'α-elica e il β-foglietto.Tra gli atomi di una proteina si stabiliscono interazioni dette legami, che possono essere covalenti o non covalenti. I legami non covalenti, presi singolarmente, sono sempre più deboli dei covalenti nell'ordine di decine o centinaia di volte, tuttavia il loro numero all'interno di una proteina li rende fondamentali per comprenderne il ripiegamento. I legami non covalenti che si riscontrano nelle proteine sono i legami a idrogeno, le attrazioni elettrostatiche e le attrazioni di van der Waals.

Page 6: Bio Chi Mica

Il legame a idrogeno si effettua, per esempio, tra un atomo di ossigeno e uno vicino di idrogeno.Le attrazioni elettrostatiche avvengono tra gruppi laterali con carica periferica opposta.Le attrazioni di van der Waals si verificano tra dipoli molecolari istantanei indotti (forza di London), tra dipoli permanenti (forza di Keesom) o tra un dipolo permanente ed uno corrispondente indotto (forza di Debye).A queste interazioni si deve aggiungere la tendenza dei gruppi di amminoacidi idrofobici (fenilalanina, leucina, isoleucina, triptofano, valina, cisteina, metionina, prolina, alanina e glicina) ad avvicinarsi e unirsi tra loro, formando delle tasche idrofobiche lontane dalla rete di legami idrogeno che deve essere immaginata sempre presente all'interno di un ambiente acquoso tra le molecole d'acqua. Generalmente i gruppi di amminoacidi idrofobici sono quasi sempre posti all'interno della proteina, dal momento che questa si trova tipicamente in un ambiente acquoso, mentre i suoi amminoacidi idrofilici, polari e con carica, saranno tendenzialmente all'esterno. La struttura tridimensionale di una proteina è determinata dalla sola disposizione sequenziale dei suoi amminoacidi e la conformazione che assume è tendenzialmente quella con energia libera più bassa.È stato possibile scoprire questa peculiarità delle proteine effettuando esperimenti di denaturazione (tramite solventi come l'urea) e rinaturazione di proteine in vitro. Si è notato che alcune proteine, una volta denaturate e rimosso il solvente si ripiegavano autonomamente. Tuttavia, non tutte le proteine una volta denaturate possono ripiegarsi spontaneamente nella loro conformazione originaria. La conformazione di una proteina, benché sia normalmente la più stabile possibile per la sequenza dei suoi amminoacidi, non è immutabile, e subisce piccole modificazioni dovute all'interazione con ligandi o altre proteine. Questa caratteristica è alla base della funzionalità della maggior parte delle proteine. La conformazione di una proteina può essere notevolmente aiutata ed affinata dagli chaperoni, delle proteine che si legano alle catene parzialmente ripiegate e le assistono sino a raggiungere la conformazione corretta. Spesso agiscono isolando tra loro le tasche idrofobiche di una proteina, che in caso contrario tenderebbero ad associarsi prematuramente.Una porzione di proteina che si ripiega indipendentemente dal resto della catena polipeptidica è detta dominio proteico ed una proteina può averne anche più di uno. Si suppone che esistano in natura circa 2.000 domini proteici dalla struttura differente, circa 800 sono stati identificati, tuttavia la stragrande maggioranza dei domini proteici assume poche decine di conformazioni diverse.

l'α-elica e il β-foglio pieghettato L'α-elica e il β-foglietto sono le conformazioni più comuni riscontrabili nelle catene polipeptidiche di una proteina. Una singola proteina può prevedere sia α-eliche che β-foglietti in numero variabile.L'α-elica è la conformazione più comune riscontrabile nelle proteine, particolarmente presente nei recettori cellulari, dov'è immersa nella membrana plasmatica della cellula, spesso con più α-eliche per singola proteina (unite da catene polipeptidiche ad U). In questo caso i gruppi idrofobici sono a contatto con la membrana plasmatica e i gruppi idrofilici sono all'interno, oppure si affacciano al citoplasma e allo spazio extracellulare. L'elica è una delle conformazioni più favorevoli perché naturalmente riduce al minimo l'energia libera, può essere sinistrorsa o destrorsa. Fu scoperta per la prima volta nell'α-cheratina negli anni Sessanta. L'α-elica si forma quando una catena polipeptidica si ripiega su se stessa con formazione di legami idrogeno tra un legame peptidico e il quarto successivo, in particolare tra il gruppo chetonico C=O dell'uno e il gruppo N-H dell'altro, e il legame è tra O e H. Tutti i gruppi amminici di un'elica sono rivolti verso l'N-terminale della proteina, tutti quelli chetonici verso il C-terminale, così l'elica assume parziale carica positiva all'N-terminale e parziale carica negativa al C-terminale. L'elica che si forma ha un giro completo ogni 3,6 amminoacidi e la distanza media tra questi è 0,54 nm. In alcune proteine due o tre α-eliche si avvolgono l'una intorno all'altra formando il coiled coil. Generalmente questa conformazione è assunta quando ciascuna elica ha la maggior parte delle catene laterali di amminoacidi idrofobici da un lato, in questo modo, sfruttando le attrazioni idrofobiche, le eliche possono avvolgersi una intorno all'altra. L'α-cheratina è un esempio di proteina che assume questa particolare conformazione, preferita dalle proteine con funzione strutturale.

Page 7: Bio Chi Mica

Il β-foglio pieghettato e la seconda conformazione più comune nelle proteine, molto presente in alcuni enzimi e nelle proteine coinvolte nella difesa immunitaria. Fu scoperto negli anni Sessanta studiando la fibroina, la proteina principale costituente della seta. Il β-fogliopieghettato consiste in numerose catene polipeptidiche che si dispongono l'una adiacente all'altra, collegate in una struttura continua da brevi sequenze a U. Tali catene possono puntare nella stessa direzione (catene parallele) o in direzioni alternate (catene antiparallele). Ancora una volta le catene polipeptidiche adiacenti sono unite in una struttura rigida da legami idrogeno che connettono i legami peptidici di una catena con quella adiacente.

Chiralità delle proteine Tutti gli amminoacidi, ad eccezione della glicina presentano un carbonio legato a quattro sostituenti diversi che è un centro chirale. Tutti gli amminoacidi possono dunque esistere in due conformazioni: L o D, sintetizzandoli artificialmente si ottiene una miscela racema.Tuttavia tutti gli amminoacidi dei composti biologici si trovano in natura soltanto conformazione L. Amminoacidi in conformazione D si rinvengono in alcune specie batteriche e vengono pure adoperati per la sintesi di farmaci. La gramicidina S, un peptide naturale con funzione antibatterica, nella sua struttura primaria contiene anche alcuni amminoacidi appartenenti alla conformazione D.

Legame Le proteine svolgono funzione strutturale, immunitaria, trasporto (di ossigeno, minerali, lipidi, di membrana), di identificazione dell'identità genetica, ormonale, enzimatica, contrattile, energetica. Quasi tutte le proteine conosciute interagiscono con altre proteine o con altri tipi di molecole, comunque detti ligandi, tramite i loro siti di legame, ciò sta alla base di gran parte delle interazioni presenti in una cellula. Una proteina di norma possiede un sito di legame che le permette di legarsi con uno o pochi ligandi, per cui la maggior parte delle proteine ha alta specificità. L'entità del legame può essere differente, vi sono proteine che si legano ai propri ligandi in modo molto tenace, altre invece che si legano debolmente e la tipologia di legame influenza la funzione della stessa proteina. Ad esempio, gli anticorpi legano strettamente i propri ligandi (detti antigeni), mentre certi enzimi per questioni di cinetica e per velocizzare le reazioni non legano così strettamente il proprio substrato. La capacità di legame dipende sempre dalla capacità della proteine di stabilire legami non covalenti (legame idrogeno, attrazioni elettrostatiche, attrazioni idrofobiche e forze di van der Waals) con il ligando. Più legami si formano, più il legame con il ligando sarà complessivamente intenso. Il sito di legame di una proteina possiede una forma che è generalmente quasi speculare a quella del ligando che vi deve aderire, ciò ne determina la specificità. Le caratteristiche di ciascun sito di legame sono date dalle catene laterali degli amminoacidi che si affacciano in esso; gli amminoacidi che vi prendono parte sono spesso distanti lungo la catena polipeptidica della proteina. Mutazioni nel sito di legame generalmente determinano malfunzionamento o cessazione dell'attività catalitica o di legame originaria. Non è sorprendente pensare che i siti di legame siano alcuni degli amminoacidi più conservati all'interno di una proteina. I siti di legame sono isolati dall'ambiente acquoso in cui sono immersi dal momento che alcune catene laterali poste in prossimità del sito di legame tendono a respingere le molecole d'acqua; è inoltre sfavorevole per una molecola d'acqua dissociarsi dalla rete di legami idrogeno con cui è interconnessa alle altre molecole d'acqua per reagire con una catena laterale di un amminoacido del sito di legame. Il ligando può essere attratto mediante alcuni espedienti, come il raggruppamento in siti specifici di amminoacidi provvisti di carica, che sono quindi in grado di attrarre più facilmente ligandi di carica opposta e nel contempo di respingere quelli con la stessa carica. Le possibili interfacce tra una proteina e il suo ligando sono molti, tra le più comuni le interazioni superficie (sito di legame)-stringa (ligando), oppure elica-elica (comune nelle proteine regolatrici di geni), o ancora, più comunemente delle altre due, superficie-superficie (quanto avviene in moltissimi enzimi). La forza di legame di una proteina verso il suo ligando all'equilibrio, cioè nello stato in cui le associazioni e le dissociazioni tra la proteina e il ligando sono in egual numero, è misurata tramite la costante di equilibrio.

Page 8: Bio Chi Mica

La velocità di dissociazione è calcolata tramite la formula: velocità associazione = koff[AB] dove [AB] è la concentrazione del complesso proteico in moli e koff è la costante di dissociazione.La velocità di associata è calcolata tramite la formula: velocità dissociazione = kon[A] [B], dove [A] e [B] sono le due molecole e kon è la costante di associazione.Eguagliando le due velocità si ricava la costante di equilibrio (detta anche di affinità) Ka = [AB] \ [A][B]Maggiore è la costante di equilibrio, maggiore sarà la forza di legame, inoltre essa è una misura diretta della differenza di energia libera tra lo stato legato e dissociato della proteina.

Proprietà Le proprietà delle proteine si ricollegano a quelle dei loro costituenti, gli amminoacidi: sono elettroliti anfoteri, possono essere sottoposte ad elettroforesi, sono otticamente attive(levogire) e presentano il fenomeno di Tyndall. Il punto isoelettrico o PI di una proteina è rappresentato da quella concentrazione di idrogenioni del mezzo, che si comporta in modo da far assumere al protide una forma di anfoione. Per ottenere il peso molecolare o PM delle proteine si deve far ricorso a tecniche e metodologie di non sempre facile attuazione. Tra le tante, quella che fornisce i risultati più precisi è senza dubbio la spettrometria di massa.

Sintesi Le proteine sono sintetizzate dagli organismi attraverso il processo della sintesi proteica.A livello industriale e di laboratorio, la sintesi dei polipeptidi può essere condotta per due vie distinte:Sintesi di Merrifield (o in fase solida): i polipeptidi vengono sintetizzati utilizzando un supporto solido polimerico a cui vengono legati in successione gli amminoacidi, partendo dal primo, che viene solitamente utilizzato opportunamente modificato affinché si leghi alla resina e resti protetto dall'azione dei reagenti utilizzati durante la sintesi del polipeptide.Sintesi enzimatica: vengono opportunamente utilizzati enzimi capaci di promuovere la formazione o la rimozione di un legame peptidico (chimotripsina, tripsina, elastasi,pepsina, etc.).

LipidiI lipidi (detti anche grassi, dal greco lypos, grasso) sono molecole organiche, largamente diffuse in natura, che costituiscono una delle quattro principali classi di molecole organiche di interesse biologico, insieme a carboidrati, proteine e acidi nucleici. I lipidi vengono identificati sulla base delle loro proprietà comuni di solubilità: sono insolubili in acqua (definiti per questo idrofobi), mentre sono solubili in solventi organici non polari, come etere dietilico o acetone, alcoli e idrocarburi. L'insolubilità in acqua è la proprietà analitica, che viene usata come base per la separazione dai carboidrati e dalle proteine.Dal punto di vista strutturale, i lipidi sono costituiti prevalentemente da atomi di carbonio, e di idrogeno uniti tra loro con legami covalenti scarsamente polari (caratteristica che conferisce il comportamento idrofobo) e disposti simmetricamente. Tuttavia, alcuni lipidi presentano, in una regione ristretta della loro molecola, gruppi polari (es. fosfolipidi). I lipidi polari presentano caratteristiche fisico-chimiche peculiari rispetto ai lipidi neutri (apolari). In particolare, i lipidi polari mostrano caratteristiche amfipatiche (solubilità sia in acqua che in solventi apolari) o addirittura risultano talora insolubili in solventi organici e solubili in acqua.

ClassificazioneNonostante la loro somiglianza in termini di solubilità, i lipidi sono molto diversi tra loro per quanto riguarda la struttura chimica, in quanto comprendono esteri e idrocarburi e possono essere aciclici, ciclici o policiclici. Il Lipid Bank database suddivide i lipidi, a seconda del grado di complessità, in 3 categorie: lipidi semplici, lipidi complessi e lipidi derivati. Nel 2005, l'International Lipid Classification and Nomenclature Committee ha proposto una classificazione dei lipidi, basata sulla presenza di 2 unità costitutive fondamentali: unità chetoaciliche (-CH2-CO-) e unità isopreniche (-

Page 9: Bio Chi Mica

C5H8-). In base a questa classificazione i lipidi sono distinti in 8 classi: acidi grassi, glicerolipidi, glicerofosfolipidi, sfingolipidi, saccarolipidi e polichetidi (tutte derivate dalla condensazione di unità chetoaciliche); steroli e prenoli (entrambe derivate dalla condensazione di unità isopreniche). I polichetidi sono un'importante classe di lipidi naturali, che comprende antibiotici (eritrimicina, tetracicline), ipocolesterolemizzanti (lovastatina), immunosoppressori (rapamicina) e pigmenti, prodotti ad opera delle poliuchetidi-sintetasi di piante e microrganismi.I lipidi possono anche essere distinti in saponificabili e non saponificabili, in base alla proprietà di formare saponi per idrolisi alcalina del legame estere. I saponi propriamente detti sono sali di acidi grassi con metalli alcalini. La saponificabilità è legata alla presenza di almeno un radicale di acido grasso nella molecola lipidica (gli steroidi non sono saponificabili) ed è dovuta all'idrolisi del legame estere tra acido grasso e alcol (glicerolo). In presenza di idrossido di sodio (NaOH) o di potassio (KOH), i lipidi saponificabili vanno incontro a idrolisi e liberano l'alcol corrispondente e il sale sodico o potassico dell'acido grasso, cioè il sapone. Industrialmente vengono utilizzati trigliceridi formati da acidi grassi con numero di atomi di carbonio compreso tra 12 e 18, poiché quelli con numero di carbonio inferiore sono troppo irritanti, mentre quelli con numero superiore sono poco solubili in acqua. I saponi al sodio sono detti "duri" e sono utilizzati in forma solida (saponette), mentre quelli al potassio sono detti "molli" e sono impiegati in forma liquida o pastosa. Le acque "dure" (ricche di ioni bi- o trivalenti di calcio, magnesio o ferro) causano la precipitazione dei saponi naturali, che è responsabile della formazione degli aloni (es. intorno ai rubinetti).

Caratteristiche fisico-chimicheI lipidi hanno una densità significativamente minore di quella dell'acqua (dunque galleggiano). Sulla base delle interazioni con l'acqua, i lipidi sono stati distinti in lipidi non polari e lipidi polari, raggruppati in 3 classi. Per la loro natura idrofobica, i lipidi hanno la proprietà di ridurre la tensione superficiale delle soluzioni (tensioattività). Infatti, nelle soluzioni, tendono a portarsi nell'interfase aria-liquido, disponendosi in uno strato mono- o paucimolecolare alla superficie della soluzione acquosa. Poiché le molecole lipidiche tendono a legarsi tra loro, piuttosto che con le molecole di acqua, i lipidi dispersi in acqua danno luogo alla formazione di gocce superficiali di varie dimensioni.I lipidi non polari (idrocarburi alifatici a lunga catena, idrocarburi aromatici voluminosi, esteri ed eteri, in cui entrambi i componenti sono lipidi idrofobi voluminosi) sono completamente insolubili in acqua e non si allineano in monostrati all'interfaccia aria/acqua. I lipidi polari di classe I (di- e trigliceridi, acidi grassi a catena lunga, colesterolo) sono molecole amfifile (amfipatiche), che presentano un'estremità debolmente polare, rispetto alla massa della molecola. Sono insolubili in acqua, ma formano monostrati all'interfaccia aria/acqua. Se sottoposte ad agitazione meccanica o termica, queste dispersioni formano emulsioni, nelle quali i lipidi sono dispersi in forma di piccolissime gocce all'interno della fase acquosa. L'emulsione (cioè la dispersione non omogenea di un liquido in un altro liquido) così formata assume un aspetto torbido ed è instabile, poiché, con il tempo, le goccioline di lipidi tendono a riunirsi tra di loro, tornando in superficie.I lipidi polari di II classe (fosfolipidi, glicolipidi e monogliceridi) sono molecole fortemente amfifile, che presentano un'estremità idrofobica e una idrofila. La prevalenza del carattere idrofobico è testimoniata dalla tendenza di tali lipidi a disporsi in uno strato monomolecolare all'interfaccia di un sistema aria/acqua, con le teste polari immerse nella soluzione acquosa e le code idrofobe immerse nalla fase gassosa soprastante. Grazie alla loro proprietà di interagire parzialmente con l'acqua, i lipidi polari di II classe presentano mesomorfismo liotropico, caratterizzato dalla comparsa, con il variare della concentrazione del lipide, di fasi intermedie tra lo stato solido cristallino e lo stato liquido (vedifosfolipidi).I lipidi polari di III classe hanno una molecola fortemente polare, rispetto alla regione idrofobica, e sono insolubili in olio.

Page 10: Bio Chi Mica

Ruolo fisiologico I lipidi rappresentano un'importante riserva energetica per animali e piante (semi), in quanto sono in grado di liberare una grande quantità di calorie per unità di massa, il valore calorico di un grammo di lipidi è circa il doppio rispetto a zuccheri e proteine, circa 9,46 kcal/g verso 4,15 kcal/g. Proprio per questo sono il substrato energetico ideale per le cellule. In un uomo sano di 70 kg, vi sono circa 15 kg di trigliceridi. Durante l'attività fisica i lipidi vengono utilizzati insieme ai carboidrati, fornendo in ugual misura l'energia necessaria per attività di medio basso livello, se l'attività fisica si protrae per almeno un'ora si va incontro a un esaurimento delle scorte di carboidrati (glicogeno) e a un corrispondente aumento dell'utilizzo di lipidi. Inoltre i lipidi alimentari apportano gli acidi grassi essenziali (cioè non sintetizzati dall'organismo), come gli acidi linoleico e arachidonico.I grassi nell'organismo assumono anche altre funzioni che vanno oltre all'importante funzione energetica; il loro deposito vicino a organi importanti come cuore, fegato, milza, reni, cervello e midollo spinale rappresenta un importante protezione meccanica, e inoltre il suo deposito nel sottocute svolge un ruolo isolante contro le basse temperature, mentre nei vegetali e negli insetti la funzione protettiva dei lipidi è svolta dalle cere.I lipidi (principalmente i fosfolipidi) hanno una funzione strutturale insostituibile nella formazione delle membrane biologiche: grazie alla loro idrofobicità, consentono di tenere separati compartimenti acquosi di differente composizione, condizione essenziale per permettere la vita. Alcuni lipidi agiscono da messaggeri intracellulari (diacilglicerolo, sfingosina e ceramidi). Diversi ormoni e mediatori chimici (extracellulari) sono di natura lipidica. Alcune vitamine, gli ormoni corticosurrenali e gli ormoni sessuali (estrogeni,progesterone e androgeni) sono steroidi, alcune vitamine appartengono alla classe dei terpeni, mentre le prostaglandine e i leucotrieni derivano da acidi grassi poliinsaturi. Da ricordare che proprio i lipidi alimentari fungono da trasportatori di vitamine liposolubili (A, D, F, E, K) e pertanto eccessive riduzioni di lipidi nella dieta possono provocare una diminuzione dell'apporto vitaminico.

Lipidi semplici Sono costituiti da carbonio, idrogeno e ossigeno, e comprendono trigliceridi, cere e terpeni. I lipidi di origine animale sono contenuti abbondantemente nel burro, strutto e sego.Trigliceridi I trigliceridi o triacilgliceroli sono triesteri di acidi grassi a catena lunga con il glicerolo (chiamato anche glirerina); sono i lipidi più semplici, ma anche più abbondanti di origine naturale, e costituiscono i grassi animali (solidi) e gli oli vegetali (liquidi). Servono soprattutto come deposito per l'energia prodotta e immagazzinata negli animali a livello deltessuto adiposo (grasso sottocutaneo e viscerale).Un trigliceride è un lipide costituito da una molecola di glicerolo a cui sono legati 3 acidi grassi. Il glicerolo (1,2,3-propantriolo) è un alcol con tre atomi di carbonio, ciascuno con un gruppo ossidrilico, mentre l'acido grasso è formato da un gruppo carbossilico e da una catena idrocarburica. I 3 acidi grassi sono uniti a una molecola di glicerolo peresterificazione, ovvero per il legame tra il gruppo carbossilico degli acidi grassi e i gruppi ossidrilici del glicerolo. Spesso i 3 acidi grassi sono differenti.Gli acidi grassi sono i lipidi più semplici e comuni, e differiscono per la lunghezza della catena carboniosa e/o il tipo di legame tra gli atomi di carbonio, legami che possono essere tutti singoli, e allora si parla di acidi grassi saturi, oppure doppi, e in questo caso si parla di acidi grassi insaturi (monoinsaturi se c'è un solo doppio legame, polinsaturi altrimenti). Sono stati isolati, da varie cellule e tessuti, più di 500 tipi di acidi grassi, e si può notare che quasi sempre questi hanno un numero pari di atomi di carbonio, solitamente compreso tra 12 e 20. Gli acidi grassi essenziali sono acidi grassi polinsaturi, che non possono essere sintetizzati nell'organismo. Appartengono a due principali categorie, in base alla posizione del primo doppio legame: ω3 (αlinolenico 18:3) e ω6 (acido linoleico 18:2). L'acido arachidonico (20:4), sintetizzato a partire dall'acido linoleico, è il precursore di prostaglandine, trombossani e leucotrieni, importantissimi mediatori chimici coinvolti nell'infiammazione e nell'aggregazione piastrinica. Le diete ricche di grassi saturi portano

Page 11: Bio Chi Mica

allaaterosclerosi.Gli acidi grassi insaturi, quando in configurazione cis, creano un'angolatura della molecola (kinking). Lo stato solido o liquido dei grassi, a temperatura ambiente, dipende dal grado di insaturazione (numero dei doppi legami) degli acidi grassi, che compongono i trigliceridi. Le angolature dei grassi insaturi impediscono alle molecole di compattarsi saldamente e di solidificare a temperatura ambiente. Poiché gli oli presentano un maggior numero di acidi grassi insaturi, la loro temperatura di fusione è bassa e si presentano allo stato liquido.La maggior parte dei grassi vegetali è composta da oli insaturi, nei pesci prevalgono i grassi insaturi e negli animali terrestri quelli saturi. Negli animali a sangue freddo, come i pesci, la presenza di acidi grassi insaturi permette ai grassi di mantenere la propria fluidità anche in presenza di temperature basse. Poiché la temperatura del tessuto adiposo sottocutaneo risente maggiormente della temperatura esterna, anche i mammiferi esposti a climi particolarmente freddi, come le foche, hanno un grasso sottocutaneo ricco di acidi grassi polinsaturi, che consente di mantenere lo spesso mantello adiposo superficiale allo stato fluido, assicurando un'ampia libertà di movimento, che sarebbe invece negata, qualora il tessuto adiposo sottocutaneo fosse troppo rigido, per il prevalere di acidi grassi saturi.I doppi legami possono essere "attaccati" dall'ossigeno dell'aria e la rottura ossidativa di tali legami risulta nella formazione di aldeidi e acidi a basso peso molecolare, dotati di odore pungente, responsabile della rancidità dei grassi. La reazione dei doppi legami con l'ossigeno porta alla formazione di idroperossidi, nonché al legame laterale tra le catene di acidi grassi e alla loro polimerizzazione. La polimerizzazione, causata dall'aria, permette di utilizzare gli oli con alto grado di insaturazione (es. olio di lino) come oli essiccativi nell'industria delle vernici. I doppi legami presenti negli oli vegetali possono essere ridotti a legami singoli per idrogenazione catalitica, per produrre grassi vegetali solidi, come la margarina. Un vantaggio commerciale dell'idrogenazione è quello di ottenere una più lunga conservazione. Al contrario, uno svantaggio della idrogenazione parziale è rappresentato dalla isomerizzazione trans di alcuni doppi legami residui, in percentuale di circa il 10-15%. I lipidi con legami trans aumentano la colesterolemia e il rischio cardiovascolare.

Lipidi complessi I lipidi complessi, detti anche lipoidi, sono costituiti da carbonio, idrogeno, ossigeno e fosforo o azoto e sono frutto di esterificazione degli acidi grassi con alcoli di vario tipo. Comprendono fosfolipidi, fosfatidi, glicolipidi e solfolipidi. I lipidi complessi sono anche detti saponificabili perché se immersi in soluzione alcalina formano saponi. Questi lipidi sono costituiti da esteri del glicerolo. Tutti contengono acidi grassi a catena più o meno lunga (acido butirrico, acido propionico fino agli acidi stearico e palmitico a oltre 10 atomi di carbonio).FosfolipidiSono simili ai trigliceridi dal punto di vista strutturale, ma contengono un gruppo fosfato che conferisce una carica negativa, e quindi polarità, alla molecola. Il risultato finale è che ogni fosfolipide ha una testa idrofila e una coda idrofoba: si dice quindi anfipatico. Questa particolare struttura li rende idonei a formare le membrane biologiche che avvolgono lecellule e gli organuli cellulari. Infatti, in un ambiente liquido le molecole di fosfolipidi si dispongono con i gruppi idrofili rivolti sia verso la soluzione acquosa interna alle cellule, sia verso quella esterna, relativa all’ambiente circostante. Invece le code idrofobe si attraggono tra loro occupando una posizione mediana.I fosfolipidi coprono diversi ruoli:-ruolo strutturale nelle membrane cellulari-ruolo nel trasporto plasmatico dei lipidi-precuesori di regolatori metabolici In particolare un fosfolipide è composto da una molecola di glicerolo che si lega a due catene di acidi grassi e a un gruppo fosfato (PO43-). I fosfolipidi (lipidi di membrana) sono i principali componenti della frazione lipidica dellemembrane cellulari. Possiamo riconoscere due tipi di fosfolipidi:fosfogliceridi; sfingolipidi: particolarmente abbondanti nel tessuto nervoso.

Page 12: Bio Chi Mica

Glicolipidi Derivano dall'unione di lipidi e carboidrati, mono- o oligosaccaridi. La componente lipidica può essere rappresentata da glicerolo (gliceroglicolipidi) o sfingosina (sfingoglicolipidi), esterificati con acidi grassi. Nella membrana plasmatica, i glicosfingolipidi sono presenti soltanto nel foglietto esterno. I gangliosidi sono glicosfingolipidi che contengono, come componente glucidica, acido sialico. Il ganglioside GM1 si comporta da recettore per la tossina colerica.

Acido nucleicoGli acidi nucleici sono macromolecole aperiodiche, a debole reazione acida, deputate alla conservazione e al trasporto dell'informazione genetica delle entità biologiche, virus e cellule. Nella cellula eucariota, sono presenti in strutture a maggior densità nel nucleo, ma sono ugualmente presenti nel citoplasma . Sono deputati alla conservazione e trasmissione dell'informazione biologica negli esseri viventi.Gli acidi nucleici sono delle macromolecole polimeriche lineari, ovvero polimeri di nucleotidi i cui monomeri sono i nucleotidi stessi. Questi sono formati da uno zucchero, una base azotata e alcuni gruppi fosfato. Negli organismi viventi si trovano due tipi di acidi nucleici:DNA (acido desossiribonucleico o deossiribonucleico) RNA (acido ribonucleico)I legami tra i tre gruppi che formano un nucleotide sono un legame fosfoestereo tra il carbonio 3' e il gruppo fosfato, un legame tra il gruppo fosfato e il carbonio 5' del nucleotide seguente. La base azotata è esterna allo scheletro formato dagli altri due gruppi e si dice che "si affacci" all'interno della catena. La catena ha forma di elica per i legami disosfato che si formano nella sua struttura secondaria.Tutti gli organismi contengono acidi nucleici sotto forma di DNA e RNA.Il DNA è il depositario dell'informazione genetica che viene trascritta – ossia copiata – in molecole di RNA. L'RNA contiene il codice per sintetizzare specifiche proteine.Lo zucchero dell'RNA è il ribosio; quello del DNA è il deossiribosio. In entrambe le sostanze vi sono due tipi di basi azotate: le puriniche  (anello doppio);– adenina e guanina – e le pirimidiniche  (anello semplice);– timina, citosina e uracile –, derivanti rispettivamente dalla purina e dalla pirimidina. Le basi azotate che costituiscono il DNA sono adenina (A),guanina (G), citosina (C) e timina (T). Le basi azotate che costituiscono l'RNA sono adenina (A), guanina (G), citosina (C) e uracile (U). La doppia elica di DNA accoppia una pirimidina e una purina, l'adenina si accoppia con la timina e la citosina con la guanina. L'RNA (anche se singola catena) accoppia durante le trasmissioni e le traduzioni l'adenina all'uracile (la timina non è presente nell'RNA) e la citosina alla guanina. Nei batteri e nelle cellule di organismi superiori, sono presenti entrambi; alcuni virus possiedono solo l'RNA (ad esempio quello della poliomielite o quello dell'AIDS); altri solo il DNA. Negli eucarioti, il DNA si trova nel nucleo e nel mitocondrio, mentre l'RNA si trova nel nucleo, ma soprattutto nel citoplasma. Al DNA spetta il mantenimento dei caratteri ereditari, mentre all'RNA spettano altre mansioni, quale la trasmissione delle informazioni contenute nel DNA verso i siti di sintesi proteica.Un acido nucleico si ottiene con un processo di sintesi per disidratazione tra due o più nucleotidi.RNA e DNA sono molecole molto complesse: è quindi probabile che risultino dall'evoluzione di molecole esistenti precedentemente. Sebbene i loro antenati siano scomparsi dalle attuali forme viventi, sono stati creati in laboratorio diversi acidi nucleici sintetici che possiedono, ad esempio, altri zuccheri come scheletro della molecola. Un acido nucleico particolarmente interessante per queste ipotesi è il TNA (acido treofuranosilnucleico).[1]

DNAL'acido desossiribonucleico (DNA) è un acido nucleico che contiene le informazioni genetiche necessarie alla biosintesi di RNA eproteine, molecole indispensabili per lo sviluppo ed il corretto funzionamento della maggior parte degli organismi viventi.[1]Dal punto di vista chimico, il DNA è un polimero organico costituito da monomeri chiamati nucleotidi (deossiribonucleotidi). Tutti i nucleotidi sono costituiti da tre componenti fondamentali: un gruppo fosfato, il deossiribosio (zucchero pentoso) e una base azotatache si lega al deossiribosio con legame N-glicosidico. Le basi azotate che possono essere

Page 13: Bio Chi Mica

utilizzate nella formazione dei nucleotidi da incorporare nella molecola di DNA sono quattro: adenina, guanina, citosina e timina mentre nell'RNA, al posto della timina, è presente l'uracile. Il DNA può essere più correttamente definito come una doppia catena polinucleotidica (A,T,C,G), antiparallela, orientata, complementare, spiralizzata, informazionale.L'ordine nella disposizione sequenziale dei nucleotidi costituisce l'informazione genetica, la quale è tradotta con il codice geneticonegli amminoacidi corrispondenti. La sequenza amminoacidica prodotta, detta polipeptide, forma le proteine. Il processo di traduzione genetica (comunemente chiamata sintesi proteica) è possibile solo in presenza di una molecola intermedia di RNA, che è generata per complementarietà con le quattro basi dei nucleotidi del DNA in un processo noto come trascrizione. Tale processo non genera solo filamenti di RNA destinati alla traduzione, ma anche frammenti già in grado di svolgere svariate funzioni biologiche (ad esempio all'interno dei ribosomi, dove l'RNA ha una funzione strutturale). L'informazione genetica è duplicata prima delladivisione cellulare, attraverso un processo noto come replicazione del DNA, che evita la perdita di informazione nel passaggio tra diverse generazioni cellulariNegli eucarioti, il DNA si complessa all'interno del nucleo in strutture chiamate cromosomi. Negli altri organismi, privi di nucleo, esso può essere organizzato in cromosomi o meno (nei batteri è presente un'unica molecola di DNA circolare a doppia catena, mentre i virus possono avere genomi a DNA oppure ad RNA). All'interno dei cromosomi, le proteine della cromatina come gli istoni, le coesine e le condensine, organizzano il DNA e lo avvolgono in strutture ordinate. Queste strutture guidano l'interazione tra il codice genetico e le proteine responsabili della trascrizione, contribuendo al controllo della trascrizione genica.

Appaiamento delle basiOgni tipo di base presente su un filamento forma un legame con la base posta sul filamento opposto. Tale evento è noto come appaiamento complementare. Le basi puriniche formano legami idrogeno con le basi pirimidiniche: A può legare solo T e G può legare solo C. L'associazione di due basi viene comunemente chiamata paio di basi ed è l'unità di misura maggiormente utilizzata per definire la lunghezza di una molecola di DNA. Dal momento che i legami idrogeno non sonocovalenti, essi possono esser rotti e riuniti in modo relativamente semplice, poiché questi sono legami ad alta energia. I due filamenti possono essere allontanati tra loro, come avviene per una cerniera, sia dalle alte temperature che da un'azione meccanica (come avviene durante la replicazione del DNA).[31] Conseguenza di questa complementarità è che tutte le informazioni contenute nella doppia elica possono essere duplicate a partire da entrambi i filamenti, evento fondamentale per una corretta replicazione del DNA.[19]I due tipi di paia di basi formano un numero differente di legami idrogeno: A e T ne formano due, G e C tre. Per tale motivo, la stabilità del legame GC è decisamente maggiore di quello AT. Di conseguenza, la stabilità complessiva di una molecola di DNA è direttamente correlata alla frequenza di GC presenti nella molecola stessa, nonché alla lunghezza dell'elica: una molecola di DNA è dunque tanto più stabile quanto più contiene GC ed è lunga.[32] Un'altra conseguenza di tale evento è il fatto che le regioni di DNA che devono essere separate facilmente contengono un'elevata concentrazione di A e T, come avviene ad esempio per il Pribnow box dei promotori batterici, la cui sequenza è infatti TATAAT.[33]In laboratorio, la stabilità dell'interazione tra filamenti è misurata attraverso la temperatura necessaria a rompere tutti i legami idrogeno, chiamata temperatura di melting (o Tm). Quando tutti i legami idrogeno sono rotti, i singoli filamenti si separano e possono assumere strutture molto variegate.[34]La stabilizzazione della doppia elica, in ogni caso, non è dovuta ai soli legami idrogeno, ma anche ad interazioni idrofobiche e di pi stacking.[35]

Funzioni biologiche Nel genoma, l'informazione è conservata in sequenze di DNA chiamate geni. La trasmissione dell'informazione contenuta nei geni è garantita dalla presenza di sequenze di basi azotate complementari. Infatti, durante la trascrizione, l'informazione può essere facilmente copiata in un

Page 14: Bio Chi Mica

filamento complementare di RNA. Solitamente, tale copia di RNA è utilizzata per sintetizzare una proteina, attraverso un processo definito traduzione (o sintesi proteica). In alternativa, una cellula può semplicemente duplicare l'informazione genetica attraverso un processo definito replicazione del DNA.

Il codice genetico Il codice genetico consiste di parole di tre lettere chiamate codoni, costituite dalla sequenza di tre nucleotidi (ad esempio ACU, CAG, UUU), ognuna delle quali è associata ad un particolare amminoacido. Ad esempio la timina ripetuta in una serie di tre (UUU) codifica la fenilalanina.

Utilizzando gruppi di tre lettere si possono avere fino a 64 combinazioni diverse ( ), in grado di codificare i venti diversi amminoacidi esistenti. Poiché esistono 64 triplette possibili e solo 20 amminoacidi, il codice genetico è detto ridondante (odegenere): alcuni amminoacidi possono infatti essere codificati da più triplette diverse. Non è invece vero il contrario: ad ogni tripletta corrisponderà un solo amminoacido (senza possibilità di ambiguità). Esistono infine tre triplette che non codificano alcun amminoacido, ma rappresentano codoni di stop (o nonsense), ovvero indicano il punto in cui, all'interno del gene, termina la sequenza che codifica la proteina corrispondente: si tratta dei codoni UAA, UGA e UAG.

RNAL'acido ribonucleico (RNA o ARN) è un polimero organico, risultante dalla polimerizzazione di ribonucleotidi. Chimicamente l'RNA è molto simile al DNA. Anch'esso è una catena polinucleotidica contenente quattro nucleotidi diversi. Le molecole di RNA differiscono da quelle di DNA perché: contengono lo zucchero ribosio (con un gruppo OH legato al carbonio 2') anziché il deossiribosio (da qui il nome) una delle basi, la timina (T), è sostituita dall'uracile (U). In questo caso è l'uracile a legarsi all'adenina, mentre la guanina si lega sempre alla citosina;sono di solito a singolo filamento, anziché a filamento doppio (il DNA possiede una struttura più complessa, chiamata a doppia elica, che consiste nel piegamento della struttura a elica singola su se stessa, secondo i canoni dei livelli di organizzazione proteica, mentre l'RNA possiede una struttura semplice a elica singola). Le molecole di RNA vengono sintetizzate attraverso un processo, conosciuto come trascrizione del DNA, dove un filamento di DNA viene ricopiato nel corrispondente filamento di RNA. Vi sono tre tipi di RNA comuni a tutti gli organismi cellulari:mRNA (RNA messaggero) che contiene l'informazione per la sintesi delle proteine;rRNA (RNA ribosomiale), che entra nella struttura dei ribosomi;tRNA (RNA transfer) necessario per la traduzione nei ribosomi.Negli eucarioti abbiamo anche:hnRNA (RNA eterogeneo nucleare) tipo di molecole di cui fa parte il pre-mRNA; snRNA (piccolo RNA nucleare) necessario per la maturazione dell'HnRna.La sintesi dell'RNA è molto simile a quella del DNA. La RNA polimerasi non richiede però un innesco. La trascrizione può iniziare solo presso una sequenza detta promotore e termina in presenza di altre sequenze particolari. È stata avanzata l'ipotesi che l'RNA abbia assunto un ruolo chiave negli organismi primitivi prima del DNA. A favore di tale ipotesi c'è la capacità catalitica di alcune molecole di RNA (ribozimi). Sull'mRNA viene trascritta l'informazione genetica che poi verrà utilizzata per svariati usi.

Sintesi Questo processo è molto diverso tra gli eucarioti e i procarioti. Negli eucarioti la sintesi avviene nel nucleo attraverso tre diverse molecole dette RNA polimerasi (nei procarioti ce n'è solo una). Sono parzialmente diverse tra loro, infatti hanno alcune subunità in comune e altre uniche per la loro specie. Ciò è anche dovuto al fatto che esse producono tre tipi diversi di RNA.La RNA polimerasi I produce gli rRNA 5,8 S, 18 S, 28 S nel nucleoloLa RNA polimerasi II produce mRNA e piccoli RNA stabili che servono a formare gli snRNP nel nucleo

Page 15: Bio Chi Mica

La RNA polimerasi III produce piccoli RNA stabili, tRNA e l'RNA 5 S sempre nel nucleo.La RNA polimerasi più conosciuta è la RNA polimerasi II perché produce l'mRNA, che servirà poi ai ribosomi per sintetizzare le proteine.L'rRNA 18 S più 35 proteine compresse andrà a formare la subunità ribosomiale minore. Gli rRNA 5 S, 5,8 S e 28 S più 50 proteine andranno a formare la subunità ribosomiale maggiore.