3 alberti-seconda parte - About Spatial Correlation

28
Correlazione spaziale http://www.est.ufpr.br/geoR/tutorials/sim2D.html Queste immagini rappresentano simulazioni di variabili con differenti gradi di correlazione spaziale, che aumenta da sinistra verso destra e dall’alto verso il basso. I valori della variabile sono proporzionali alla intensità del grigio. La variabile in alto a sinistra ha una continuità spaziale molto inferiore a quella rappresentata nell’immagine in basso a destra.

Transcript of 3 alberti-seconda parte - About Spatial Correlation

Correlazione spaziale

http://www.est.ufpr.br/geoR/tutorials/sim2D.html

Queste immagini rappresentano simulazioni di variabili con differenti gradi di correlazione spaziale, che aumenta da sinistra verso destra e dall’alto verso il basso. I valori della variabile sono proporzionali alla intensità del grigio.

La variabile in alto a sinistra ha una continuità spaziale molto inferiore a quella rappresentata nell’immagine in basso a destra.

Anisotropia spaziale

Il grado di anisotropia spaziale della variabile, in senso NE-SW (immagini in alto) e NW-SE (immagini in basso) aumenta da sinistra verso destra.

Il grado di anisotropia spaziale può essere utilizzata nell’interpolazione tramite kriging.

http://www.est.ufpr.br/geoR/tutorials/sims/aniso5.jpg

Come misurare la correlazione spaziale?

Una variabile che presenta correlazione spaziale avrà valori sempre meno simili all’aumentare della separazione tra la coppia di valori confrontata.

Calcolando la differenza dei valori in funzione della separazione spaziale tra le due osservazioni si può riconoscere l'influsso della correlazione spaziale.

separazione

Raspa – dispensa online

Da Isaaks & Srivastava, 1989, fig. 4.12.

h-scatterplots

Grafici che rappresentano valori di una stessa variabile continua in funzione della separazione spaziale (crescente da alto-sx verso basso-dx) tra le misure.

La correlazione può essere misurata attraverso il coefficiente di correlazione: questo diminuisce all’aumentare della separazione spaziale.

Applicabile quando i primi due momenti statistici (media e covarianza) di una variabile esistono ed hanno le seguenti proprietà:

Media = E(Z(x)) = E(Z(x+h)) = m (costante , indipendentemente dal punto in cui viene misurata)

E: expected, valore atteso (medio) di una variabile.

h: separazione spaziale tra le due osservazioni.

 

Covarianza = Cov(Z(x+h),Z(x)) = E((Z(x)-mx)(Z(x+h)-m

x+h)) = E(Z(x)Z(x+h)) – m2 = C(h)

La covarianza tra due osservazioni separate da una distanza h è finita e dipende solo dal valore di h, non dalla particolare posizione.

Come stimare i valori?

Ipotesi della stazionarietà di secondo grado (second-order stationarity o “debole”)

L’ipotesi stazionaria di secondo grado spesso non è

applicabile ai dati naturali di cui si dispone.

Esempio

Krige (1951) descrive un caso in cui la varianza sperimentale

in un giacimento aurifero dell’Africa del Sud cresceva

indefinitamente aumentando la dimensione del supporto

considerato sino a considerare l’intero giacimento.

Distribuzioni con varianza non definita

Ipotesi intrinseca

Per cercare di superare il problema delle misure non stazionarie e con varianza indefinita, Matheron (1963, 1965) introdusse un’ipotesi di lavoro, l’ipotesi intrinseca, che non prende direttamente in considerazione la variabile, ma i suoi incrementi:

gli incrementi della funzione stocastica considerata sono stazionari

E(Z(x+h)-Z(x)) = m(h) = 0

La differenza attesa tra i valori misurati in due siti separati da una distanza h è funzione solo di h, inoltre essa sarà uguale a zero.

 

Var(Z(x+h)-Z(x)) = 2γ(h)

La varianza delle differenze fra osservazioni separate da una distanza h è finita e dipende solo dal valore della distanza tra i siti, h, e non dalla posizione locale. La

funzione γ(h) è chiamata semi-variogramma.

Esempio funzione intrinseca

Come si vede in questi grafici, la media degli incrementi nella simulazione precedente è 0, e la varianza degli incrementi ha un valore finito.

Raspa – dispensa online

Il variogramma

Var(Z(x+h)-Z(x)) = 2γ(h)

Il variogramma è lo strumento di base per analizzare la correlazione spaziale dei dati continui.

Alcune proprietà dei variogrammi:

γ(0) = 0

γ(h) >= 0

γ(-h) = γ(h)

Caratteristiche del variogramma

Sill: limite superiore del variogramma (se esiste)

Range: distanza massima di correlazione delle variabili, in corrispondenza della quale si raggiunge il sill.

Da T5_GeostatisticAnalysis.ppt

Grado di continuita’ spaziale

In questi tre esempi la varianza totale dei dati è circa uguale (e quindi anche il sill nei risultanti variogrammi). Anche la media è circa uguale.

Cambia nettamente il grado di continuità spaziale: ridotto in a, con una crescita immediata dei valori del variogramma.

In c la continuità spaziale è elevata, e questo si riflette in una lenta crescita iniziale nel variogramma.

Il caso b è intermedio.

a

b

c

Raspa – dispensa online

Variogram cloud sperimentale

Plot dei valori di ogni singola coppia di dati sperimentali, in funzione della distanza di separazione.

O’Sullivan & Unwin, 2003

A causa dell’uso del quadrato della differenza, i variogrammi sperimentali sono sensibili ai valori estremi.

La semivarianza degli incrementi può essere stimata utilizzando i dati osservati:

2)(

1

))()(()(2

1)( ∑

=

+−=hn

i

ii hxzxzhn

Il variogramma sperimentale

n(h) è il numero di osservazioni separate da una distanza h, con un valore di tolleranza su questa, per esempio +/- 50% rispetto all’incremento fisso, in maniera da coprire in maniera completa l’intervallo delle distanze.

Il variogramma sperimentale

Il plot della semivarianza degli incrementi versus gli incrementi è chiamato semi-variogramma sperimentale.

Raspa – dispensa online

Comportamento all’origine

Da Armstrong, 1998, fig. 3.3.

Da Armstrong, 1998

Anisotropie spaziali nei variogrammi

Da Armstrong, 1998, fig. 3.5a.

La correlazione spaziale può avere valori differenti lungo differenti direzioni: in generale si può individuare una direzione di massima correlazione ed una, ortogonale, di minima correlazione.

Anisotropie spaziali nei variogrammi

L’anisotropia spaziale può essere rappresentata in mappe in 2D, che sono particolarmente efficaci per rappresentare le direzioni di massima e di minima continuità spaziale.

110°20°

Parametri calcolo variogramma sperimentale

Passo di calcolo – Lag

Tolleranza nella distanza h - Lag tolerance

Tolleranza angolare nelle analisi direzionali - Angular tolerance

Da Pannatier, 1996, fig. 4.8

Aumentando il valore del passo di calcolo aumenta il numero di dati presi in considerazione per singolo intervallo ed il risultato tende a diventare più stabile e più “smooth”.

Arnaud & Emery, 2000.

Influenza valori passo di calcolo

Arnaud & Emery, 2000.

Tolleranza nella distanza h

Come per il

passo di calcolo,

l'aumento della

tolleranza rende

il risultato più

stabile e più

sfumato.

Arnaud & Emery, 2000.

Tolleranza angolare nelle analisi direzionali

Solito effetto di

aumento stabilità

e smoothing con

aumento

tolleranza

angolare.

Variogrammi con sill

Pepitico

Sferico

Raspa – dispensa online

Variogrammi con sill

Esponenziale

Gaussiano

Raspa – dispensa online

Variogrammi periodici

Raspa – dispensa online

Fit dati sperimentali-modello teorico

In base all’andamento dei dati sperimentali, si sceglie fra i modelli disponibili quello che appare più adeguato, e si sperimenta variando i parametri di nugget, range e sill del modello teorico, cercando di adeguare il risultato teorico all’andamento reale. I software forniscono anche dei valori di scarto fra modello e dati, così da potersi basare su parametri quantitativi per la scelta del modello più adatto ai dati in questione.

MODELLI TEORICI FIT DEL MODELLO AI DATI

http://www.gstat.org/gstat.pdf

Strutture annidate (nested structures)

In alcuni casi è necessario utilizzare più variogrammi annidati, con differenti range e sill, per modellizzare dati reali in cui sono presenti più “rotture di pendenza”.

Raspa – dispensa online

Metodi di kriging

Analisi multivariata

Cokriging: kriging basato su due o più variabili fra loro correlate e campionate nello stesso dominio, una delle quali, con molti più punti di osservazione, viene utilizzata per migliorare la stima dei valori dell’altra variabile.

Ordinary k.

Simple k.

Universal k.oppure rimozione del trend e applicazione di uno dei due casi sovrastanti

Variogramma con sill, variabile stazionaria o

quasi-stazionaria

Variogramma senza sill, variabile

con trend

Variabile binaria (vero/falso, 1/0)

Media non nota a priori

Media nota a priori

Stime puntuali

Stime per aree/volumi Block k.

Indicator k.

Bibliografia

G. Raspa. Capitolo 3 - Geostatistica di base

http://w3.uniroma1.it/geostatistica/Geostatistica/Dispense.pdf

Isaaks & Srivastava, 1989. An introduction to Applied Geostatistics. Oxford Univ. Press

Armstrong, 1998. Basic Linear Geostatistics. Springer Verlag.

Arnaud & Emery, 2000. Estimation et interpolation spatiale. Hermes Science, Paris.

Wackernagel, 1998. Multivariate Geostatistics. Springer Verlag.

Pannatier, 1996. Variowin. Software for Spatial Data Analysis in 2D.