1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica...

17
1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e sviluppo di componenti per questo campo di tensioni richiedono normalmente generatori con tensioni nominali di 2000-2400 kV in alternata 1500-2000 kV in continua 5000-7000 kV ad impulso Grossi investimenti in termini di apparecchiature ed opere civili

Transcript of 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica...

Page 1: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

1

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

Problematica delle prove

I laboratori che si occupano di ricerca e sviluppo di componenti per questo campo di tensioni richiedono normalmente generatori con tensioni nominali di

2000-2400 kV in alternata

1500-2000 kV in continua

5000-7000 kV ad impulso

Grossi investimenti in termini di apparecchiature ed opere civili

Page 2: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

2

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

.

Page 3: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

3

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

Sistemi 420 kV

1000 kV in alternata

Continua ????

2400 - 3000 kV ad impulso

Laboratori comunque di grosse dimensioni generatori + oggetto in prova

Page 4: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

4

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

Tensioni continue

• Prove su tutte quelle parti degli impianti che DC

• Misure di resistenza d'isolamento • Prove nelle quali si vuole sollecitare il

dielettrico senza che esso sia interessato da forti correnti

• Applicazioni industriali (raggi X, elettrostatica etc.)

Tensioni alternate a frequenze industriali

• Prove su tutte le macchine e componenti per AC.

Esse sono le più largamente utilizzate, anche per la loro più comune disponibilità.

Page 5: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

5

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

Tensioni alternate ad alta ( o bassa) frequenza

Sono usate solo in pochi casi particolari.Generatore di Tesla

Generatori tensioni alternate f< 1 Hz

Tensioni transitorie

Esse intendono rappresentare i fenomeni transitori esistenti nelle reti. Le più comuni

sono le tensioni ad impulso che riproducono le sovratensioni di origine atmosferica e quelle di

manovra.

Page 6: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

6

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

Normalmente, nell’ambito delle prove, la tipologia delle tensioni non è intercambiabile.

In DC la distribuzione di campo dipende dalla resistività del materiale

In AC dalla permittività dei materiali

Con tensioni impulsive problemi particolari soprattutto in presenza di avvolgimenti

Page 7: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

7

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

NORMATIVA PER LE PROVE DIELETTRICHE

• IEC 60060-1 – High-voltage test techniques - Part 1: General definitions and test requirements

• IEC 60060-2 - High voltage test techniques - Part 2: Measuring systems

• IEC 60060-3 - High-voltage test techniques - Part 3: Definitions and requirements for on-site testing

• IEC 62475 - High current test techniques - Definitions and requirements for test currents and measuring systems

Page 8: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

8

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

TENSIONI IMPULSIVE

Per simulare questo tipo di sollecitazioni, allo scopo sia di studiare il comportamento di isolamenti in queste condizioni sia di effettuare i vari tipi di prove di omologazione, vengono utilizzate in laboratorio le tensioni dette comunemente ad impulso,

ossia tensioni transitorie unidirezionali

che raggiungono il massimo in tempi molto brevi (µs o al massimo qualche centinaio di µs) e poi scendono più lentamente fino a zero.

Page 9: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

9

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

Hanno andamento nel tempo del tipo di quello rappresentato in figura e possono essere ottenute in laboratorio fino a valori massimi estremamente elevati.

Onda impulsiva doppio-esponeziale

Page 10: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

10

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

L'onda di tensione di questo tipo, che ha andamento doppio esponenziale, viene generalmente caratterizzata dal suo valore massimo VM, dalla durata T1 del fronte, tempo in cui la tensione sale da zero al valore massimo, e dalla durata T2 della coda sino all'emivalore, tempo in cui la tensione si riduce a metà del suo valore massimo. I tempi vengono espressi in microsecondi e l'onda viene normalmente designata "onda T1/T2".

Per le definizioni si fa riferimento alla IEC 60060-1.

Page 11: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

11

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

•Prove dielettriche hanno notevole impatto economico

•Rischio concreto di danneggiamento apparecchiatura

•Necessità di prove riproducibili

•Prove dovrebbero essere anche rappresentative

Normalizzazione in ambito internazionale sulla base di una serie di studi sulle tipologie di sovratensioni significative per quanto riguarda le fulminazioni e le sovratensioni di manovra

Page 12: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

12

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

IMPULSI DI FULMINAZIONE

•1,2/ 50 µs

IMPULSI DI MANOVRA

•250/2500 µs

I primi vengono usati anche per prove EMC (prova di surge)

Page 13: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

13

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

• Tempi che intervengono sono di almeno tre ordini di grandezza sotto quelli dell’alternata (µs invece di ms)

• In qualche caso necessità di considerare i componenti a costanti distribuite (in 1 µs una perturbazione elettromagnetica percorre circa 300 m)

• Importanza degli elementi “parassiti” (L e C) dei circuiti

• Problemi derivanti dal fatto che i circuiti per alte tensioni sono estesi ed i componenti hanno dimensioni notevoli.

Page 14: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

14

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

T1

T0

A

B

0

0.3

0.5

0.91.0

V

T2

Determinazione dei parametri convenzionali di un impulso di fulminazione

T1 = 1,67 T

Page 15: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

15

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

v(t) = · (e-t/2 - e-t/1)VMk

VM

τ1

t

τ2

e-t/τ 2

e-t/τ 1

Page 16: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

16

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

Per onde di fulminazione s70τ2 ns400τ1

Impulsi con queste caratteristiche non possono essere prodotti con trasformatori ma si richiedono circuiti particolari

Costanti di tempo così brevi si possono ottenere con la scarica di condensatori.

Schema utilizzato generatore di Marx (Erwin)

Page 17: 1 Università degli studi di Padova Dipartimento di ingegneria elettrica G.Pesavento Problematica delle prove I laboratori che si occupano di ricerca e.

17

Università degli studi di PadovaDipartimento di ingegneria elettrica

G.Pesavento

SCHEMA DI PRINCIPIO

C2

Rf

C1 R2 VV0

a) b)

V0 C1 R2

S1

C2 V

RfS1

Rf = resistenza di fronte

R2 = resistenza di coda

C2 = condensatore di fronte (comprende anche la capacità del carico)