1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è...

16
1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO

Transcript of 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è...

Page 1: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

1

ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO

Page 2: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

2

La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza descritta dalla seconda legge della

termodinamica.

Tale legge riassume in sé tutta la chimica: processi di vaporizzazione, dissoluzione di un soluto, precipitazione, proprietà degli acidi e delle basi, tendenza all’equilibrio delle reazione redox, …

Tramite tale legge si può prevedere se una reazione chimica ha tendenza a decorrere

spontaneamente oppure no

Page 3: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

3

Quando si verifica una trasformazione, l’universo (il sistema e l’ambiente circostante) si ritrovano in uno stato

più disordinato.

Una trasformazione spontanea può avvenire in modo molto rapido, come l’espansione di un gas, oppure molto lentamente, come il raffreddamento di un blocco molto

grande di metallo: la termodinamica ci parla di tendenza, non di velocità.

L’ENTROPIA (S) come misura del disordineE’ espressa in J/K

Entropia molare standard (S°): è l’entropia per mole della sostanza allo stato puro alla pressione di 1 atm. E’ espressa in J/(K mol).

Per una trasformazione infinitesima reversibile: dS = Qrev/T

Per una trasformazione isoterma finita reversibile, fra lo stato 1 e lo stato 2: ΔS = 1/T Qrev = Qrev/T

Page 4: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

4

Entropia dei solidi semplici: in un cristallo perfetto, allo zero assoluto, l’entropia è zero. Quando il cristallo viene riscaldato, le molecole iniziano a muoversi, il loro stato diventa sempre più disordinato e l’entropia aumenta.

Entropia molare del diamante: 2.4 J/(K mol)Entropia del piombo: 64.8 J/(K mol)

L’entropia aumenta all’aumentare della temperatura

Fase Temperatura, °C S°, J/(K mol)

Solido

Liquido

Vapore

0

0

20

50

100

100

200

43,2

65,2

69,6

75,3

86,8

196,9

204,1

S° dell’acqua a varie temperature

Page 5: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

5

Entropia standard di reazione:

in una reazione è la differenza tra l’entropia dei prodotti nei loro stati standard e quella dei

reagenti nei loro stati standard

ΔS° = S° (prodotti) – S°(reagenti)

con, S°(reagenti), entropia standard totale dei reagenti ed

S°(prodotti) è quella dei prodotti della reazione

Stato standard: gas ideale, solido o liquido puro, P 1atm, 25°C (298,15 K)

Page 6: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

6

La variazione di Entropia dell’ambiente: ΔSamb

La quantità di disordine generato nell’ambiente in seguito ad una trasformazione è proporzionale al calore trasferito

ΔS°amb - ΔH

• Se il processo è esotermico (ΔH negativo) l’entropia dell’ambiente aumenta• Se il processo è endotermico (ΔH positivo) l’entropia dell’ambiente diminuisce

La variazione di entropia causata da una determinata quantità di calore dipende dalla temperatura:

ΔS°amb = - ΔH / T

da cui si può dedurre che l’entropia dell’ambiente aumenta quando in esso viene trasferito del calore (processo esotermico) e che l’aumento è maggiore quando la temperatura è bassa

Page 7: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

7

Quando si vuole esprimere la direzione di una trasformazione spontanea in termini di entropia, occorre considerare l’entropia totale dell’universo, cioè la somma algebrica della variazione di entropia sia nel sistema che nell’ambiente. Questo trova la sua formulazione nella seconda legge della termodinamica:

Una trasformazione spontanea è sempre accompagnata da un aumento di entropia totale dell’universo

Reazioni esotermiche: il calore liberato va ad aumentare il disordine dell’ambiente. Purché il ΔH sia sufficientemente alto, una reazione con ΔS negativo oppure positivo può decorrere in modo spontaneo.

Reazioni endotermiche: la forza trainante è la variazione di entropia totale che accompagna la reazione, cioè il disordine del sistema deve necessariamente aumentare.

ΔStotale = ΔSsistema + ΔSamb > 0

Page 8: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

8

Per una trasformazione che avviene in un sistema che scambia calore con il suo ambiente, si può avere:

• se è irreversibile e spontanea

• se è irreversibile e forzata (non spontanea)

• se è reversibile e raggiunge l’equilibrio

ΔStotale = ΔSsistema + ΔSamb > 0

ΔStotale = ΔSsistema + ΔSamb < 0

ΔStotale = ΔSsistema + ΔSamb = 0

Page 9: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

9

Esempio: passaggio di calore (Q) dall’ambiente a temperatura T1 al sistema a temperatura T2

ΔS ambiente= - Q/T1 ΔS sistema = Q/T2

ΔS totale = ΔS sistema + ΔS ambiente = Q/T2 – Q/T1 = Q(T1-T2)/T1T2

1. Se T1 > T2, (T1-T2) > 0, ΔS totale > 0, e quindi il passaggio di calore da un corpo caldo ad uno freddo è spontaneo

2. Se T1 < T2, (T1-T2) < 0 ΔS totale < 0, e quindi il passaggio di calore da un corpo freddo ad uno caldo non è spontaneo

3. Se T1 = T2, (T1-T2) = 0 ΔS totale = 0, e si ha uno stato di equilibrio

Page 10: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

10

ENERGIA LIBERA (G)

ΔStotale = ΔSsistema + ΔSamb

ma ΔSamb è uguale a – ΔH/T

Quindi ΔStotale = ΔSsistema - ΔH/T

La variazione totale di entropia si calcola da informazioni solo sul sistema (la sua temperatura e le variazioni di entropia ed entalpia cui va incontro)

In pratica tale equazione viene scritta come

-T ΔStotale = ΔH – T ΔS

In cui viene introdotta una proprietà detta energia libera di Gibbs

G = H – TS e quindi ΔG = ΔH – TΔS

Page 11: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

11

reagenti puri

prodotti puri

equilibrio

Aumento della proporzione dei prodotti

GDirezione dellareazione spontanea

• La direzione di una trasformazione spontanea è quella in cui l’energia libera diminuisce.• all’equilibrio non avvengono spontaneamente né la reazione diretta né quella inversa, poiché entrambe porterebbero ad un aumento di energia libera G.• in un sistema all’equilibrio ΔG = 0. • il ΔG dipende fortemente dalla temperatura

Page 12: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

12

Variazione di entalpia Variazione di entropia

Reazione spontanea

Esotermica, ΔH<0 Aumento ΔS>0 Si, ΔG<0

Esotermica, ΔH<0 Diminuzione ΔS<0 Se │T ΔS│< │ΔH│*

Endotermica, ΔH>0 Aumento ΔS>0 Se T ΔS > ΔH **

Endotermica, ΔH>0 Diminuzione ΔS<0 No, ΔG>0

Condizioni che favoriscono la reazione

ΔG = ΔH – TΔS

* La reazione può avvenire spontaneamente solo a basse T** La reazione può avvenire spontaneamente solo ad alte T

Il ruolo dell’entropia nel sistema diventa tanto più importante quanto maggiore è la temperatura

Contributo energeticoContributo probabilistico

Page 13: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

13

Esempio: consideriamo il sistema solido-liquido

solido liquido

ΔG = G liquido – G solido = ΔH – TΔS, con

ΔH = H liquido – H solido e ΔS = S liquido – S solido

1. ΔG = 0 quando ΔH = TΔS, cioè alla temperatura di fusione (Tfus).

2. ΔG<0 quando ΔH < TΔS, cioè per T>Tfus e quindi il processo di fusione è spontaneo.

3. ΔG>0 quando ΔH > TΔS, cioè per T<Tfus e quindi il processo di fusione non è spontaneo ma è spontaneo quello inverso di solidificazione.

fusione

solidificazione

Page 14: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

14

Se consideriamo una generica reazione

aA + bB cC + dD

avremo che ΔG = G2 – G1 = (cGC + dGD) – (aGA + bGB)

Se consideriamo un sistema a temperatura T, con tutti i componenti a pressione unitaria P=1atm e allo stato standard (G°), avremo:

ΔG° = G°2 – G°1 = (cG°C + dG°D) – (aG°A + bG°B)

1. Se ΔG° < 0, la reazione è spontanea da sinistra verso destra

2. Se ΔG°> 0, la reazione è spontanea da destra verso sinistra

Page 15: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

15

Energia libera standard di reazione ΔG°:

È la differenza fra l’energia libera dei prodotti e quella dei reagenti nei loro stati standard

ΔG° = ΔG°(prodotto) – ΔG°(reagenti)

Energia libera standard di formazione ΔG°f:

È l’energia libera standard per mole della reazione di formazione di un composto a partire dai suoi elementi

costitutivi

ΔG°f = ΔG°f (prodotti) - ΔG°f (reagenti)

Le energie libere standard di formazione degli elementi sono considerate zero (I2, H2, ..)

Page 16: 1 ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO. 2 La tendenza di qualsiasi tipo di trasformazione è quella di raggiungere uno stato di equilibrio, tendenza.

16

REAZIONI SPONTANEE

Es.: formazione di un composto chimico a partire dai suoi elementi costitutivi

Se ΔG°f < 0, la reazione è spontanea.

Se ΔG°f > 0, è spontanea la reazione inversa, cioè quella di decomposizione.

Si dice che un composto è termodinamicamente instabile quando possiede un valore positivo di energia libera standard

di formazione. Tali composti tendono quindi a decomporsi negli elementi costitutivi.

Tuttavia la cinetica di decomposizione potrebbe essere molto lenta e quindi il composto risulta comunque stabile.

Correlazione tra energia libera e costante di equilibrio: lo studieremo nella lezione

sull’equilibrio chimico