1 [email protected] Proprietà dellImmagine digitale.

36
1 [email protected] [email protected] Proprietà dell’Immagine digitale

Transcript of 1 [email protected] Proprietà dellImmagine digitale.

Page 1: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

1 [email protected]@imm.cnr.it

Proprietà dell’Immagine digitale

Page 2: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

2 [email protected]@imm.cnr.it

Metrica e Proprieta` topologiche

Distanza Euclidea DE Siano (i,j) e (k,l) le coordinate di due pixel, si definisce distanza euclidea DE, la classica misura geometrica ottenuta dalla nota relazione:

22E )()(l)] (k,j),[(i,D ljki

La distanza Euclidea dal punto di vista computazionale risulta onerosa a causa dell’operatore di radice

Page 3: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

3 [email protected]@imm.cnr.it

4-Distanza (City Block) Un approccio alternativo al calcolo della distanza tra due pixel e` data dal numero minimo di movimenti da effettuare sulla griglia matriciale per passare da un pixel all’altro

ljki l)](k,j),[(i,D4

Page 4: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

4 [email protected]@imm.cnr.it

8-Distanza (chessboard)

ljki ,max l)](k,j),[(i,D8

Le distanze D4 e D8 sono misure convenienti rispetto alla distanza Euclidea per la loro semplicita` computazionale.

Page 5: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

5 [email protected]@imm.cnr.it

Vicinanza tra pixel

4-Vicinanza (4-neighborhood)Quando due qualunque pixel hanno distanza D4=1 da ciascun altro

(i+1,j) (i-1,j) (i,j+1) (i,j-1)

8-Vicinanza (8-neighborhood)Quando due qualunque pixel hanno distanza D8=1 da ciascun altro

Page 6: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

6 [email protected]@imm.cnr.it

Percorso pathIl percorso tra due pixel A e B è definito come sequenza di pixel

S1, S2,------Sn dove S1=A, Sn=B il pixel Si+1 e` vicino al pixel Si per i=1,....,n-1

Percorso Semplice nessun pixel ripetuto (ad esclusione del primo e l’ultimo) in cui nessun pixel ha piu’ di due vicini Percorso Chiuso è un percorso semplice in cui il primo pixel è vicino all’ultimo

Si possono definire allo stesso modo 4-percorso e 8-percorso che scaturiscono dal concetto di vicinanza a 4 o 8

Ambiguità della vicinanza (fig. 1.3b)Soluzione per immagini binarie: usare 8-vicinanza per oggetti e 4-vicinanza per lo sfondo (o viceversa)

Page 7: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

7 [email protected]@imm.cnr.it

Regione

Insieme di pixel in cui è possibile definire un percorso considerando qualsiasi coppia dei pixel stessi.Esempio di Regione: una porzione dell’immagine

ConnettivitàDue pixel P e Q in una immagine I sono connessi se esiste tra P e Q un percorso

La connettivita` e` una relazione di equivalenza ossia definisce una decomposizione dell’immagine in regioni di equivalenza

Siano P, Q ed R tre pixel dell’immagine I, la relazione di connettività stabilisce le seguenti proprieta`:

-Riflessività, il pixel P è connesso a P.

-Commutatività, se P è connesso a Q → Q è connesso a P.-Transitività, se P è connesso a Q e Q è connesso a R consegue che anche P è connesso ad R.

Page 8: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

8 [email protected]@imm.cnr.it

Componenti ConnesseUn insieme di pixel di una immagine in cui ciascun pixel è connesso a tutti gli altri

Foreground SL’insieme S di tutti i pixel a 1 di una immagine binaria

Background (sfondo) ed Holes (buchi)L’insieme di tutte le componenti connesse di S (complemento di S) che comprende anche i punti sul bordo dell’immagine

Sono chiamate Holes invece tutte le altre componenti di S. Se in una regione dell’immagine non vi sono buchi si parla di regione semplice connessa Si chiama regione multipla connessa se una regione presenta buchi

Per eliminare le ambiguità si usano 8-connettività per S e 4-connettività per S

Page 9: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

9 [email protected]@imm.cnr.it

OggettoIl concetto di regione usa soltanto le proprietà di connettività

E` usuale chiamare alcune regioni dell’immagine con oggetti.

La procedura che elabora una immagine per ricercare particolari regioni che corrispondono a oggetti del mondo e` chiamata segmentazionesegmentazione. Un oggetto è rappresentato nell’immagine da una componente connessa. I buchi sono pixel non appartenenti all’oggetto.

Esempio: Se consideriamo questo foglio come una immagine,

il foglio bianco rappresenta il background, gli oggetti sono tutti i caratteri individuali in nero, i buchi sono le aree bianche che circondano le lettere (nella lettera “O” è rappresentata dall’area interna bianca).

Page 10: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

10 [email protected]@imm.cnr.it

ContornoUna caratteristica importante di una regione R è il contorno che assume una importanza notevole nell’analisi dell’immagini.

Il contorno è l’insieme dei pixel R interni alla regione che hanno una o piu` vicinanze esterne ad R.

In altre parole il contorno delimita tutti i pixel di una regione contorno interno.

Il contorno esterno coincide, invece, con il contorno del background ossia del complemento della regione R.

Page 11: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

11 [email protected]@imm.cnr.it

Bordi (Edges)Mentre il contorno è un concetto associato globalmente ad una regione, il bordo costituisce una proprietà locale di un pixel con i suoi vicini ed è caratterizzato come un vettore definito dal modulomodulo e dalla direzionedirezione.

I bordi, normalmente individuati ai confini tra regioni omogenee di una immagine, sono fondamentali per il sistema visivo umano in quanto costituiscono le informazioni di base per la percezione del mondo.

Normalmente rappresentano le forti variazioni geometriche degli oggetti osservati e sono i pixel sui quali si concentra la massima attenzione per la ricostruzione 3D degli oggetti stessi.

Diversi sono gli operatori locali che verranno utilizzati per l’estrazione dei bordi partendo dalla funzione di livello di grigio di una immagine

Page 12: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

12 [email protected]@imm.cnr.it

PROPRIETA` TOPOLOGICHE DI UNA IMMAGINE

Sono quelle proprietà che non variano quando una immagine subisce una trasformazione che modifica la sua forma geometrica.

Immaginate per esempio la deformazione che subisce una immagine disegnata su un pallone che gonfiato perde la sua figura sferica.

Le deformazioni subite dall’immagine non alterano l’omogeneità degli oggetti rappresentati dall’immagine stessa, ne’ alterano l’eventuale presenza di buchi nelle regioni.

NUMERO DI EULEROIl numero di Eulero E è usato come caratteristica dell’oggetto.

E` definito come la differenza tra le componenti connesse (regioni) C ed il numero di buchi B presenti nell’immagine

E=C-B

Page 13: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

13 [email protected]@imm.cnr.it

INVOLUCRO CONVESSO (CONVEX HULL)

L’involucro convesso è la regione più piccola che contiene un oggetto, tale che, presi due punti qualunque della regione, possono essere connessi da un segmento, i cui punti appartengono alla regione stessa.

Esempio: Sia R un oggetto che rassomiglia alla lettera R e supponiamo di

avvolgere un elastico sottile intorno ad R. La figura rappresentata dall’elastico costituisce l’involucro convesso.

Deficit di convessità: regione intorno all’involucro convesso non appart. all’oggettoQuesta può essere divisa in due sotto regioni.

• LAKES sono completamente circondati dall’oggetto,• BAYS sono connesse con il contorno dell’involucro convesso.

Page 14: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

14 [email protected]@imm.cnr.it

AREA, PERIMETRO E COMPATTEZZA-L’area e perimetro costituiscono altri due parametri topologici che caratterizzano le componenti connesse S1, S2---------Sn presenti nell’immagine.

-L’areaL’area per ogni componente Si è data dal numero dei pixel contenuti

-Il perimetroperimetro di una componente connessa è definito come la somma dei pixel che costituiscono il contorno della componente. Esistono altre definizioni che saranno introdotte nel seguito.

-L’area ed il Perimetro sono grandezze dipendenti dalle operazioni di trasformazioni geometriche eseguite sull’immagine.

-La compattezzacompattezza è un altro parametro topologico di una figura geometrica connessa. Esprime una misura di ineguaglianza isoperimetrica di una componente connessa

Una regione circolare ha un valore di compattezza C minimo (raggiunge il valore 4).Nell’ellisse, l’area diminuisce in proporzione maggiore rispetto al perimetro che varia leggermente. Conseguentemente il valore di compattezza aumenta.

42

A

pC

22

2516

Page 15: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

15 [email protected]@imm.cnr.it

PROPRIETA` INDIPENDENTE DALLA POSIZIONE DEL PIXEL

Istogramma

L’istogramma HI(L) di una immagine I è un vettore che fornisce la frequenza dei livelli di grigio presenti nell’immagine compresi nell’intervallo Lmin L Lmas

Algoritmo istogramma:1. Inizializza a zero tutti gli elementi del vettore H(L).

2. Esamina tutti i pixel (x,y) dell’immagine; per ogni pixel considerato utilizza il valore di livello di grigio I(x,y) come puntatore al vettore istogramma HII(x,y)) ed incrementalo di 1

Se l’immagine è prodotta da un processo stocastico, l’istogramma rappresenta una stima della distribuzione di probabilità dei livelli di grigio.

L’istogramma è l’unica informazione globale disponibile per l’immagine. L’istogramma sarà utilizzato in molti algoritmi di elaborazione dell’immagine:

• modificare i livelli di grigio, • segmentare una immagine, • estrarre gli oggetti dal background, • ecc..

Page 16: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

16 [email protected]@imm.cnr.it

Page 17: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

17 [email protected]@imm.cnr.it

Grani di risoIl valore 100 si riferisce al background

Page 18: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

18 [email protected]@imm.cnr.it

Dall’istogramma si ricavano parametri statistici del primo ordine quali

max

0

)(L

k

kpkIm

NxM

kHkp

)()(

max

0max 1)( L,0,k 1)( 0

L

k

kpkp

La varianza (momento di ordine 2) è data invece da

max

0

222 )()()(L

k

mkkpII

i momenti di ordine n sono dati da

max

0

)()(L

k

nn mkkpM

Il momento di ordine 3 rappresenta una misura di asimmetria della funzione di probabilità intorno al valore della media (skewness)

Viceversa se tale funzione di distribuzione è simmetrica rispetto al valore medio, i momenti di ordine 3 e gli altri di ordine dispari maggiore, hanno valore zero

Page 19: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

19 [email protected]@imm.cnr.it

PROPRIETA` DIPENDENTE DALLA CORRELAZIONE TRA PIXEL

CorrelazioneLa statistica del primo ordine considerata con il calcolo dell’istogramma, non contiene informazioni sulla relazione tra i pixel

L’istogramma calcolato può appartenere a diverse immagini e non contiene informazioni sul numero degli oggetti e la loro dimensione

Per considerare anche la disposizione spaziale dei livelli di grigio, è necessario considerare la statistica del secondo ordine.

La matrice rappresentante l’immagine consisterebbe di NxM variabili random.

Questo implica il calcolo della funzione di probabilità per ciascun pixel dell’immagine.Le medie per ciascun pixel (i,j) sarebbero calcolate come segue

max

0

),,(),(L

k

jikpkjiI

Page 20: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

20 [email protected]@imm.cnr.it

la cui stima è ottenuta dalla media integrata IT, che nelle stesse condizioni di acquisizione sarebbe

Relativa a Q osservazioni dello stesso pixel I(i,j)

La varianza è stimata come segue

Misura di correlazionePer porre in relazione pixel di posizione diversa nell’immagine, si utilizza la misura di correlazione dei livelli di grigio data come il prodotto dei livelli di grigio nelle due posizioni considerate. Ciò viene realizzato dalla funzione di autocorrelazione

Ossia la probabilità che viene simultaneamente stimata per il pixel (i,j) con livello di grigio r e per il pixel (k,l) con livello di grigio s

Q

kkT I

QI

1

1

I KK

Q

QI I2 2

1

1

1

( )

1max

0

1max

0

),;,;,(,),;,(L

r

L

ssrklijII lkjisrpIIIIlkjiR

Page 21: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

21 [email protected]@imm.cnr.it

La funzione di autocorrelazione ha 4-dimensioni e diventa complicato utilizzarla

Il problema si semplifica se si assume che la statistica non sia dipendente dalla posizione del pixel

In questo caso il campo random è detto omogeneo, ed il valore della media non dipendendo più dalla posizione di ciascun pixel, è costante per tutta l’immagine:

<I> = costante

la funzione di autocorrelazione diventa SHIFT INVARIANT, ossia indipendente dalla posizione dei due pixel:

RII (i+n,j+m;k+n,l+m)= RII(i,j;k,l) = RII(i-k,j-l;0,0) = RII(0,0;k-i,l-j)

Le ultime identità si ottengono ponendo (n,m)=-(k,l) ed (n,m)=-(i,j).

In pratica la funzione di autocorrelazione R dipende solo dalla distanza dei due pixel e conseguentemente la dimensionalità della funzione passa da 4 a 2.

1

0

1

,)(M

i

N

ojljkiijII IIklR

Page 22: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

22 [email protected]@imm.cnr.it

QUALITA` DELL’IMMAGINE

Durante le varie fasi di acquisizione, di elaborazione e trasmissione, una immagine può subire delle degradazioni.

Una misura della qualità dell’immagine può essere adottata per stimare il livello di degradazione, in relazione al campo di applicazione.

Metodi quantitativi misurano la qualità dell’immagine confrontando una immagine con quella di riferimento (immagine modello).

Normalmente come immagine modello si scelgono quelle (acquisite realmente), che sono ben calibrate di cui si conoscono bene sia le condizioni radiometriche, sia quelle geometriche

In alternativa in alcune applicazioni si è costretti ad utilizzare solo immagini modello ottenute in modo sintetico.

minimo )( dxdyfg

Page 23: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

23 [email protected]@imm.cnr.it

QUALITA` DELL’IMMAGINE

MSE – Mean Squared Error

Con MSE ci sono problemi di scala

PSNR – Peak Signal-to-Noise Ratio

Dove S rappresenta il valore di grigio massimo

M

i

N

jMSE jifjig

MNe

1 1

2),(),(1

210log10S

ePSNR MSE

40dB

10dB

30dB 20dB

0dB

Page 24: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

24 [email protected]@imm.cnr.it

RUMORE DELL’IMMAGINELe immagini reali sono normalmente degradate da errori casuali introdotti

• dal processo di digitalizzazione dell’immagine, • durante l’elaborazione • in trasmissione

Tale degradazione è usualmente chiamata rumorerumore.

Questo fenomeno è consuetudine modellarlo come un processo stocastico.

Un rumore ideale è chiamato white noisewhite noise che ha spettro di potenza costante ossia la sua intensità non diminuisce con l’incremento delle frequenze

INFORMAZIONI PERCETTIVE DELL’IMMAGINEIl sistema visivo umano utilizza alcuni parametri psico-fisici per la percezione degli oggetti della scena. Gli algoritmi di percezione sono sviluppati tentando di emulare alcuni meccanismi del sistema visivo umano.Nella percezione umana gli oggetti sono piu` localizzati ed identificati se sono ben contrastati rispetto allo sfondo.In alcuni contesti è noto che anche il sistema umano fallisce

Page 25: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

25 [email protected]@imm.cnr.it

CONTRASTODefinisce un cambiamento locale della intensità luminosa ed è definito come il rapporto tra la brillanza media di un oggetto e la brillanza di uno sfondo

Il sistema visivo umano è sensibile alla brillantezza logaritmica e conseguentemente per la stessa percezione, valori di brillanza più alti richiedono contrasti più alti.

ACUTEZZAEsprime l’abilità a determinare i dettagli in una immagine.

Dipende dall’ottica del sistema e dalla distanza tra oggetto e osservatore.

La risoluzione dell’immagine deve essere appropriata rispetto alla capacità percettiva del sistema di visione.

Page 26: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

26 [email protected]@imm.cnr.it

Matrice di co-occorrenzaÈ un altro esempio di informazione globale dell'immagine

Consideriamo una stima di probabilità congiunta associata alla coppia di pixel I(i,j) e I(k,l), di una immagine I, con livelli di grigio da 0 a Lmax, legati da una qualunque relazione geometrica (per esempio distanza espressa in coordinate cartesiane Δx, Δy oppure polari r,θ)

La matrice di co-occorrenza rappresenta l'istogramma bidimensionale P(L1,L2;i,j,k,l) considerato come una stima delle distribuzioni della probabilità congiunta che una coppia di pixel hanno rispettivamente intensità L1 ed L2, ossia:

P(L1,L2)=Prob. cong. {I(i,j)=L1 ∧ I(k,l)=L2}

Ogni elemento dell'istogramma bidimensionale è dato da:

TN

LLFLLP

),(),( 21

21 Freq. Co-occorrenza che I(i,j)=L1 e I(k,l)=L2 secondo una relazione geometrica di distanza (Δx, Δy)

Page 27: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

27 [email protected]@imm.cnr.it

Per una data relazione geometrica R tra coppie di pixel di intensitàL1 ed L2, la matrice di co-occorrenza PR(L1,L2) ha dimensioni quadrate

NLmax×NLmax corrispondente al massimo numero di livelli di grigio presenti nell'immagine

Algoritmo per il calcolo della matrice di co-occorrenzaSia R una generica relazione (per esempio geometrica, di vicinanza, ecc.) tra

coppie di intensità L1, ed L2, segue:

1. (Inizializzazione) FR(L1,L2)=0 ∀ L1,L2 ∊ (0,Lmax) con Lmax il massimo valore di intensità dell'immagine I.

2. pixel (i,j) nell'immagine, calcola il pixel (k,l) che soddisfa la relazione R con il pixel (i,j) ed aggiorna la matrice di co-occorrenza:

FR(I(i,j),I(k,l)) = FR(I(i,j),I(k,l))+1

EsempioConsideriamo una immagine di 5×5 pixel con intensità 0,1 e 2

Nell'immagine vi sono tre livelli di grigio pertanto la matrice di co-occorrenza risulterà di dimensioni 3×3

Page 28: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

28 [email protected]@imm.cnr.it

La relazione geometrica che lega tutte le possibili coppie di livello di grigio (L1,L2) è del tipo (Δx, Δ y)=(1,1) ossia

la relazione della coppia di pixel sarà:considera il pixel alla destra e l'adiacente sottostante (pixel lungo la diagonale dall'alto in basso)

Esaminiamo l'elemento della matrice di co-occorrenza FR(2,1)=3 ciò è giustificato poiché vi sono tre coppie di pixel con intensità (2,1) che soddisfano la relazione geometrica R e corrispondono ai pixel

(i,j) (k,l) → (i+1,j+1)

(0,2) (1,3)

(2,3) (3,4)

(3,1) (4,2)

Page 29: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

29 [email protected]@imm.cnr.it

Page 30: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

30 [email protected]@imm.cnr.it

La matrice PR(L1,L2) non è simmetrica poichè il numero di coppie di pixel con livello di grigio (L1,L2) non necessariamente eguaglia il numero di coppie di intensità (L2,L1)

Gli elementi della diagonale principale FR(Li,Li) rappresentano l'area delle regioni nell'immagine con livelli di grigio corrispondenti a Li

Conseguentemente corrispondono all'istogramma del primo ordine

La funzione di probabilità congiunta espressa da ogni elemento di PR può essere normalizzata con il numero di coppie di pixel (N-1) (M-1) invece di NT numero totale di casi in cui si realizza la relazione nella griglia

La matrice di co-occorrenza contiene l'informazione globale di distribuzione spaziale dei livelli di grigio di una immagine

Il calcolo di PR richiede notevole calcolo intensivo in quanto per accumulare l'istogramma 2D deve essere elaborato ogni pixel (i,j) dell'immagine ed applicata la relazione R per il pixel da correlare

Per ridurre i tempi di calcolo può essere ristretta la relazione geometrica R per la coppia dei pixel da considerare

Page 31: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

31 [email protected]@imm.cnr.it

Ciò è possibile in due modi: Ridurre i livelli di grigio dell'immagine

Ridurre il dominio di influenza della relazione R

Questo comporta • perdita di accuratezzaperdita di accuratezza sulle strutture di intensità presenti nell'immagine (tessitura)

• mentre ridurre il dominio della relazione R comporta errori in presenza di strutture geometriche estese.

Un buon compromesso si ottiene utilizzando immagini con 16 livelli di grigio e finestre quadrate di circa 30÷50 pixel.

La matrice di co-occorrenza è applicata per la descrizione delle microstrutture (tessitura) presenti nelle immagini

Se le coppie di pixel di una immagine sono molto correlate gli elementi di PR(L1,L2) della diagonale principale contengono la maggior parte dell'informazione

Page 32: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

32 [email protected]@imm.cnr.it

ENTROPIAUna caratteristica che misura la casualità della distribuzione di livello di grigio è l'entropia; definita come

max

0

max

02 ),(log),(

L

r

L

ssrsr LLPLLPE

Il valore più alto dell'Entropia si ha quando tutti gli elementi di P sono equiprobabili

Ciò corrisponde quando l'immagine non presenta coppie di livello di grigio con particolare preferenza rispetto ad altre

Contrasto o Inerzia ),()(max

0

max

0

2sr

L

r

L

ssr LLPLLC

Energia ),(max

0

max

0

2sr

L

r

L

s

LLPEnergia

Omogeneità

max

0

max

0 ||1

),(L

r

L

s sr

sr

LL

LLPH

Page 33: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

33 [email protected]@imm.cnr.it

Valore Assoluto

max

0

max

0

),(||L

r

L

ssrsr LLPLLV

Per diverse applicazioni, la matrice di co-occorrenza è calcolata per una stessa immagine variando il tipo di relazione R .tra le coppie di livello di grigio

La matrice P, che massimizza una data misura statistica, viene scelta per l'analisi dell'immagine, per l’identificazione di microstrutture

Un buon impiego della matrice di co-occorrenza è avvenuta per la classificazione del territorio utilizzando immagini multispettrali provenienti da satelliti

Page 34: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

34 [email protected]@imm.cnr.it

Con questo tipo di codifica è possibile ricavare alcune informazioni utili come:•Proiezioni orizzontali•Proiezioni verticali

La prima è ottenuta in modo immediato come è indicato nella figura

ym

xm

y1

yc -

y2

xcx1 x2

Proiezioni Orizzontali e VerticaliProiezioni Orizzontali e Verticali

Page 35: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

35 [email protected]@imm.cnr.it

RUMORE GAUSSIANOE` un altro modello di approssimazione del rumore. Sia x la variabile casuale che descrive il rumore , segue:

2

2

2

)(

2

1)(

x

exp

dove e` la media e la deviazione standard della variabile casuale.

Nella elaborazione delle immagini risulta essere una buona approssimazione del rumore per i sistemi di acquisizione tipo ccd. Il rumore interessa qualunque livello di grigio

Page 36: 1 Cosimo.Distante@imm.cnr.it Proprietà dellImmagine digitale.

36 [email protected]@imm.cnr.it

SALT E PEPPER

E` un rumore dovuto alla presenza casuale di entrambi valori di intensita` bianchi e neri. Questo rumore può essere dovuto ad errori di

• Classificazione risultante da: o variazioni di illuminazione; o da caratteristiche della superficie del materiale;

• Rumore causato dalla conversione analogico/digitale del frame grabber

• Dalla costruzione di un'immagine binaria ottenuta con un'operazione di thresholding (soglia)

Per rimuovere l’effetto si possono usare due maschere 8-vicinanza