Unità Operativa di Geriatria e Laboratorio di Ricerca ......IRCCS “Casa Sollievo della Sofferenza...

Post on 10-Jul-2020

9 views 0 download

Transcript of Unità Operativa di Geriatria e Laboratorio di Ricerca ......IRCCS “Casa Sollievo della Sofferenza...

Greco A, Addante F, Longo MG, Scarcelli C, Niro V, Sancarlo D, D’Agostino MP, Paroni G, Seripa D

Unità Operativa di Geriatria e Laboratorio di Ricerca Geriatria e Gerontologia IRCCS “Casa Sollievo della Sofferenza” San Giovanni Rotondo (FG) Italia

sarx – carne penia – perdita

riduzione della massa e/o della forza muscolare che si riscontra nel corso di invecchiamento

FATTORI CHE POSSONO CONTRIBUIRE ALLO SVILUPPO DELLA SARCOPENIA

- Diminuzione età correlata delle fibre muscolari

- Riduzione delle attività fisiche

- Declino ormonale: sia riproduttivi che dell’asse hypothalamic-GH-insulinlike growth factor

- Insufficienza nutrizionale

- È stata anche rilevata una componente genetica nella sarcopenia. [Roth SM, et al: j gerontol biol sci 2004;59a:10–5]

Sarcopenia compares with malnutrition and inactivity

• To fight against sarcopenia, one needs to:

– Screen

–Treat

Screening strategy

Cruz-Jentoft et al. Age Ageing 2010

• ↓ forza, potenza e resistenza muscolare

• ↓ massa ossea

• ↓ equilibrio con instabilità posturale

• ↓ isolamento corporeo

• ↓ produzione basale di calore

• ↑ calore specifico

• ↓ contenuto corporeo acqua

• ↓ capacità dispersione cutanea calore

• ↓ metabolismo basale e aumento della massa grassa

Burton LA, Clinical Intervention in Aging 2010

Causes of sarcopenia: therapeutic approaches?

SARCOPENIA

Senescence

Inflammation

Disuse

Starvation

Endocrine

Insulin resistance

Vitamin D deficiency

Cederholm et al. Clin Geriatr Med 2011

Inactivity

Malnutrition

Balance

Synthesis

Breakdown

Muscle

growth

Muscle

loss

Nutrition

Exercise

Hormones

Maintaining Muscle Mass and

Function

Protein

Illness/Injury

Exercise – physical activity

Inactivity and Aging Muscle

-1500

-1000

-750

-500

-250

0

250

Loss

of

lean

leg

mass

(g)

-2000

Healthy Young

28 Days Inactivity

2%

total lean leg mass

Healthy Elders

10 Days Inactivity

10%

total lean leg mass

Paddon-Jones et. al. 2004

Kortebein et al. 2007

3 times more

muscle loss

1/3 the time

All volunteers

consumed the

RDA for protein

Kortebein, P. et al. JAMA 2007

Effects of 10 Days of Bed Rest in Older Adults

Randomized-controlled trials of exercise benefits on functional impairment (10 RCTs, 1150 persons)

Brown et al. 00 Buchner et al. 97 Cress et al. 99 Fiatarone et al 94 Jette et al. 97 Jette et al. 99 Lord et al. 95 Pollock et al. 91 Rooks et al. 91 Wolfson et al. 96

84 frail m+w, 83 y 105 impaired m+w, 75 y 49 healthy m+w, 76 100 frail nursing home p, 87y 102 nondisabled m+w, 72 y 215 disabled m+w, 75 y 197 healthy w, 72 y 57 healthy m+w, 72 y 131 healthy m+w, 74 y 110 healty m+w, 80 y

muscle strength, reaction time, balance muscle strength muscle strength muscle strength muscle strength muscle strength muscle strength, balance muscle strength muscle strength, reaction time, balance muscle strength, balance

Adjusted % change in disability score

Ettinger et al. JAMA 1997;277:25

-10%

-5%

0%

5%

10%

15%

Control

Resistance exercise

Aerobic exercise

Follow up (months)

0 18 9 3

Exercise and Disability (FAST)

P<.001 vs. control

N=439

La revisione ha interessato 1021 studi per un totale di 6700 pazienti anziani. Dimostra che PRT è un intervento efficace per migliorare le funzionalità fisiche nelle persone anziane, tra cui l’aumento della forza e il miglioramento delle prestazioni nelle attività semplici e complesse

CONCLUSIONI DEGLI AUTORI

Is exercise a validated treatment for sarcopenia? Yes, in particular resistance training

Available evidence: Very good

Exercise – physical activity

Protein - Nutritional supplements

Inactivity reduces muscle protein

synthesis

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Day 1 Day 10

Pro

tein

Synth

esis

(%

/h)

* 30%

Kortebein et al. 2007

24 h muscle protein synthesis during 10 day of inactivity in elders

(stable isotope methodology)

Protein combats inactivity-induced

muscle loss

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Day 1 Day 10

Pro

tein

Syn

the

sis

(%

/h)

*

Normal Diet Normal Diet Normal Diet + Amino Acids

#

Normal Diet + Amino Acids

30%

Ferrando & Paddon-Jones et. al. 2009

- older adults -

Houston, D. K et al. Am J Clin Nutr 2008

Lean mass loss by quintile of energy-adjusted total protein intake

Muscle Protein Synthesis and Age

Symons et. al. AJCN, 2007

* *

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fasting

Pro

tein

Synth

esis

(%

/h)

Young

Elderly

50% increase

30 g protein

* 10 g essential

amino acids

Building muscle in response to protein

Plasma leucine concentration and

protein synthesis rate

Rieu I et al. Nutrition 2007

How much protein do we need –

and when ?

Protein Synthesis and Portion Control - a message of moderation -

* *

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fasting 30 g protein

Pro

tein

Syn

the

sis

(%

/h) * *

Fasting 90 g protein

Young

Old

~1.2 g/kg/day for 180 lb individual

90 g protein 30 g protein

Symons et. al. AJCN, 2007 Symons et. al. JADA. 2009

* *

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fasting

Pro

tein

Synth

esis

(%

/h) 0.16

0.18 No age-related

impairment

Key points

Moderate protein meal

Symons et. al. AJCN, 2007

Ne

t M

uscle

Pro

tein

Syn

thesis

(m

g P

he/le

g)

More than ~25 g protein

Age-related dose-response

0

10

20

30

40

50

60

Young

Elderly

Less than ~15 g protein

Katsanos et. al. AJCN, 2005

Relationship between the amount of protein per meal and the resultant anabolic response

Adapted from Paddon-Jones, 2009

Daily protein distribution - typical ? -

Total Protein

90 g

Cat

abol

ism

A

nabol

ism

10 g

maximum rate of protein synthesis

15 g 65 g

A skewed daily protein distribution fails

to maximize potential for muscle growth

Daily protein distribution - Optimal -

Cat

abol

ism

A

nabol

ism

maximum rate of protein synthesis

30 g 30g 30 g

Total Protein

90 g

Repeated maximal stimulation of protein synthesis increase / maintenance of muscle mass

~ 1.3 g/kg/day

Protein-exercise interaction

Resistance exercise + nutrition (protein)

Adapted from Biolo, 1997

Physical Disability

Time (months)

0 6 12 18

Su

mm

ary

Dis

ab

ilit

y S

core

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

Healthy Lifestyle Control

Diet

Exercise

Diet + Exercise

*

Messier et al Arthritis & Rheumatism 2004;50:1501

ADAPT – Diet, exercise and

disability

Options to optimize post-prandial anabolic action of dietary proteins

• Increase protein intake

– Age-specific RDAs

• Increase amino acid bioavailability

– Distribution of protein intake

– Digestion rate

• Use specific substrates

– Leucine

– ß-hydroxy-ß-methylbutyrate (HMB)

– Vitamin D

Leucine-HMB Metabolic Pathway

HMB KIC

(Liver, Muscle)

Urine (10-40%)

95%

5%

Other pathway

Liver Circulates

Muscle:

- Cholesterol

synthesis

- NFkB

- mTOR

Leucine

(Diet only)

The is an amino acid metabolite that occurs naturally in human muscle cells.

Traditionally, HMB has been used by athletes to enhance performance and

build muscle mass. Recent studies have focused on the use of HMB to

preserve or rebuild muscle mass.

Role of HMB on muscle function

Studies in Elderly with HMB

Citation Population Intervention Results

Vukovich et al.

J Nutr 2001

31 elderly individuals 70 ± 1 years old

8-week study

CaHMB: 3 g/d or Placebo

Trained with walking and stretching

Greater reduction in % body fat*

Lean mass increased

Greater upper and lower body strength*

Panton et al.

Med Sci Sports Ex 1998

35 M/F elderly adults

8-week study

CaHMB group or Placebo group

Resistance training

Greater functional mobility*

Coelho et al.

Med Sci Sports Ex 2001

12 Males 50–72 years old with high cholesterol

3 grams CaHMB or Placebo

Endurance and resistance training

Reduced LDL-cholesterol

Increased LBM

Greater weight lifting and strength*

*P<0.05

Study in elderly subjects receiving HMB

• Objective:

– Can HMB increase LBM and strength in older

adults engaged in resistance training?

• Prospective, randomized, blinded, placebo-

controlled trial

• 31 subjects ( age > 70 yrs); male and female

• 8-week supplementation + exercise (5 d / wk)

• 3 g HMB/day versus placebo

Vukovich et al. J Nutr 2001

Improved LBM in elderly subjects receiving HMB (p=0.08)

Vukovich et al. J Nutr 2001

Reference: Vukovich et al J. Nutr. 2001;131:2049-2052

Ca HMB

55.2 kg

Mean

baseline

Placebo

54.7 kg

Ca HMB +

resistance training (n = 14)

Placebo +

resistance training (n = 14)

Mechanism of action Vitamin D

Role of Vitamin D on muscle function :

Vitamin D and muscle function

• Institutionalized elderly

• Vitamin D : 150,000 IU per month for 2 months, then 90,000 IU per month for 4 months

Moreira-Pfrimer et al. Ann Nutr Metab 2009

RCTs: Vitamin D and Physical Performance

Bischoff et al.

2003

122 ♀

85,3 y

NH

800 IU D3/d +Ca

vs. Ca, p.o.

3 months

+ Strength M. quadriceps, Handgrip,

TUG

Latham et al.

2003

243 ♀♂

79,1 y

Rehab

300000 IU D3

vs. Placebo, p.o.

3/6 months

- Strength M. quadriceps, TUG,

Balance

Dhesi et al.

2004

139 ♀♂

76,6 y

Amb

600000 IU D2

vs. Placebo, i.m.

6 months

+ Physical performance, Reaction

time, Body sway

- Strength

Pfeifer et al.

2009

242 ♀♂

77 y

Amb

800 IU D3/d +Ca

vs. Ca, p.o.

12 months

+ Strength M. quadriceps, TUG,

Body sway

Zhu et al.

2010

302 ♀

77 y

Amb, VD

deficient

1000 IU D3/d +Ca

vs. Ca, p.o.

12 months

+ Strength hip extensor and adductor,

TUG, Body sway

Meta-analysis: Fall prevention

n=1921

700-1000 IU Vitamin D/d

Bischoff-Ferrari et al. BMJ 2009

• Anticorpi della MIOSTATINA → inibisce rigenerazione muscolare

• CREATINA → aumenta la massa muscolare e le performance fisiche

• TRICOSTATINA A → antagonista della miostatina

• PGC-1α → regolatore della mitocondrogenesi

• Attivatori della AMP-activator protein

• CELLULE STAMINALI

• What should clinicians look for?

• Well recognized risk factors for sarcopenia include increasing age, low levels of physical activity, inadequate nutrition, and comorbidity.

• Identifying high risk groups of older people is straightforward, but making a diagnosis is more difficult.

• In the European guidelines, sarcopenia is diagnosed firstly on the basis of impaired physical performance, characterized by slow gait speed, and then either by low muscle strength assessed by handheld dynamometry or low muscle mass measured, for example, by bioimpedance.

Sayer AA. BMJ 2010; 341:952.

• In terms of managing sarcopenia, meta-analyses show that resistance exercise can improve muscle mass and strength in older adults.

• The evidence for the role of nutrition in the prevention and treatment of sarcopenia is less clear. In particular, more information is needed on protein and specific amino acids, such as leucine.

• Protein intake may become insufficient with the reduction in total food intake seen in later life and dietary reference intake for protein may be set too low to ensure optimal intake in healthy older adults.

Sayer AA. BMJ 2010; 341:952.

• Attempts to improve muscle mass and function with protein supplementation have had variable results.

• Similarly, findings from observational studies and randomized controlled trials reporting the effects of vitamin D on muscle strength have not been consistent, although some do report benefit.

• Sarcopenia is firmly on the agenda for research into ageing and now needs to be recognized in routine clinical practice.

Sayer AA. BMJ 2010; 341:952.

Il movimento è lo stato dell’uomo e la base della sua essenza. La vita umana non può essere concepibile in senso statico. Dal battere delle palpebre alla massima velocità in corsa, nel sonno o nella piena attività, l’uomo è in movimento.

(Kaplan A)