Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in...

53
Stick Slip Michele Piller Liceo cantonale di Bellinzona 2011–2012

Transcript of Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in...

Page 1: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Stick Slip

Michele Piller

Liceo cantonale di Bellinzona

2011–2012

Page 2: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Indice

1 Descrizione dell’esperienza 1

1.1 L’apparecchiatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Procedimenti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Energia accumulata dalla molla . . . . . . . . . . . . . . . . . 2

1.2.2 Energia liberata dal sisma . . . . . . . . . . . . . . . . . . . . 2

2 Introduzione teorica 4

2.1 Il fenomeno di stick and slip . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Descrizione qualitativa del fenomeno . . . . . . . . . . . . . . 4

2.1.2 Equazione del moto . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Obiettivi dell’esperienza 6

4 Risultati 7

4.1 Notazioni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 I grafici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 Spiegazione grafici . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.2 Analisi dei grafici . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Conclusioni 12

5.1 Tempo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Forze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Bibliografia 15

i

Page 3: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito
Page 4: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Capitolo 1

Descrizione dell’esperienza

1.1 L’apparecchiatura

L’apparecchiatura dell’esperienza consiste in una superficie piana di un paio di metri

di mattoni ruvidi sulla quale scorre un blocco, del medesimo materiale, grazie al suo

collegamento ad una molla alla quale viene applicata una forza costante tramite il

moto di un perno messo in rotazione da un piccolo motorino. I dati della forza

esercitata dalla molla sul blocco sono rilevati da un dinamometro situato sopra il

blocco, cosı come il sensore piezoelettrico che rileva le vibrazioni causate dal bolcco in

movimento. Entrambi i dati sono ripresi dall’interfaccia PASCO che le trasmette al

computer, dove (attraverso il programma DataStudio c©) vengono visualizzati sotto

forma di grafici.

L’immagine 1.1 mostra l’apparecchiatura del laboratorio.

Figura 1.1: Veduta del laboratorio

1

Page 5: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

1.2. Procedimenti 2

1.2 Procedimenti

L’esperienza consiste nella registrazione dei dati dell’energia accumulata nella molla

e dell’energia liberata dal sisma.

1.2.1 Energia accumulata dalla molla

L’energia accumulata dalla molla e ricavabile nel modo seguente: un sensore colle-

gato alla molla registra la variazione della forza agente dovuta all’allungamento e

accorciamento della molla. Prendendo il dato massimo e il dato minimo della forza,

F1 e F2 (ricavandoli dal grafico visibile sul monitor, un esempio e riportato in 1.2),

nella sua fase di stick e integrandoli sulla funzione Fel(∆x) (con ∆x corrispondente

all’allungamento della molla) otteniamo l’energia accumulata dalla molla durante la

sua fase di aderenza. Un’esempio, al fine di permettere una miglior comprensione

della situazione e illustrato dall’immagine 1.2.

Di questo fatto ci si puo facilmente convincere pensando che la derivata dell’energia

Figura 1.2: Estratto del grafico della forza visibile sul monitor del computer

potenziale elastica Epotenzialeelastica = 12k∆x2 corrisponde a k∆x che corrisponde a

sua volta alla forza elastica. Percio ne consegue che la primitiva della forza ela-

stica corrisponde all’energia potenziale elastica; per cui integrando sulla funzione

Felastica(x) si ottiene il lavoro effettuato dalla forza elastica lungo il percorso in que-

stione. Sapendo poi che il lavoro corrisponde alla differenza di energia potenziale

(L = −∆U in questo caso L = −∆Epotenzialeelastica) si ottiene la differenza di energia

potenziale elastica che intercorre lungo il percorso.

1.2.2 Energia liberata dal sisma

Per quanto riguarda l’energia liberata dal sisma al seguito della fase di slip del

blocco la misurazione dei dati viene affidata ad un sensore piezoelettrico sistemato

Page 6: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

1.2. Procedimenti 3

sopra il mattone libero. Il sensore piezoelettrico genera una differenza di potenziale

quando subisce una deformazione, deformazione che in questo caso e generata dalle

vibrazioni dovute al moto del blocco sul quale giace il sensore. La differenza di

potenziale e espressa in V = J/C. I risultati dei dati della differenza di potenziale in

funzione del tempo vengono visualizzati sul monitor del PC. Per ricavare il valore che

ci serve e quindi necessario calcolare l’integrale del quadrato del voltaggio, dall’inizio

alla fine del sisma, e dividere il tutto per il ∆t (che in questo caso viene notato ∆t◦

al fine di distinguerlo dal ∆t che intercorre tra un sisma e l’altro) che intercorre

tra l’inizio e la fine della curva sotto la quale si integra. Come per il grafico della

forza e riportato un esempio nell’immagine 1.3 affiche si possa comprendere meglio

il procedimento spiegato.

Figura 1.3: Estratto del grafico del voltaggio visibile sul monitor del computer

Page 7: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Capitolo 2

Introduzione teorica

2.1 Il fenomeno di stick and slip

2.1.1 Descrizione qualitativa del fenomeno

Il fenomeno di stick e slip si verifica quando un oggetto, per semplicita consideriamo

un cubo di massa M , posto sopra ad una superficie e sul quale agisce un attrito

statico dovuto alla ruvidezza delle due superfici, viene attaccato ad una molla che

si muove con velocita v allontanandosi dal blocco e caricandosi in questo modo di

energia potenziale elastica fino al momento in cui non sia in grado di vincere la

resistenza della forza di attrito statico.

A questo punto il blocco si stacchera con un salto dalla superficie e comincera a

scivolare (fase di slip, o scorrimento).

A causa di questo scivolamento la molla si accorcera diminuendo la sua estensione

e quindi diminuendo la sua energia potenziale elastica (la formula in questione e

infatti: Epotenzialeelastica = 12k∆x2).

La forza non sara quindi piu sufficiente nemmeno a vincere la forza di attrito dina-

mico (di norma piu bassa di quella dovuta all’attrito statico massimo) e si avra un

conseguente brusco arresto del moto del cubo riportandolo alla situazione iniziale

(fase di stick, o aderenza).

Il fenomeno si ripetera quindi ciclicamente.

2.1.2 Equazione del moto

1 Poniamo x = x(t) la posizione del blocco ad ogni istante di tempo e introduciamo

un sistema di coordinate avente l’origine nella posizione del blocco al momento

t = 0 con la molla a riposo. All’istante t = 0 il motore viene acceso e la molla viene

tirata verso di esso con velocita v. Come descritto in precedenza il blocco rimane

inizialmente fermo a causa dell’attrito statico che ne impedisce il movimento (fase

di stick).

1La seguente sezione e una rielaborazione di [1]

4

Page 8: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

2.1. Il fenomeno di stick and slip 5

La molla si allunghera quindi conformemente all’equazione seguente:

y(t) = vt

Ad un certo istante di tempo t1 la forza elastica

Fel = ky(t) = kvt (2.1)

della molla eguagliera la forza di attrito statico (Fattritostatico = Fmax = µsN = µsmg

[dove N e la forza normale del blocco e µs e il coefficiente di attrito statico]), che

tiene il blocco ”ancorato“ al piano ruvido sul quale poggia, e il blocco iniziera a

scivolare su di esso. Il blocco, a partire dall’istante di tempo t1, sara quindi soggetto

alla forza elastica della molla (di equazione 2.1) e alla forza di attrito dinamico di

equazione: Fad = µdN = µdmg (dove µd e il coefficiente di attrito dinamico).

L’equazione del moto (F = ma) per la fase di scorrimento e data da:

ky(t) − Fad = mx′′ (2.2)

Dove x′′ e la derivata seconda di x e quindi l’accelerazione del blocco. Si puo notare

che essendo la forza di attrito dinamico maggiore della forza elastica (ky(t) = Fel in

conformita con la 2.1) come detto in 2.1.1 l’accelerazione avra segno negativo, cosa

logica visto che poi il blocco rallenta fino a fermarsi.

Le condizioni iniziali di tale moto sono le seguenti: x(t1) = 0 e x′(t1) = v(t1) = 0.

Tale equazione ha forma in y(t) = A cos(ωt + φ) (dove A e φ dipendono dalle

condizioni iniziali e ω =√

km

) poiche, se adottiamo un sistema di riferimento solidale

con la molla essa ci sembrera ferma rispetto al piano, che si muovera sotto di lei, e

noteremo un allungamento e accorciamento della stessa in modo conforme alle leggi

del moto armonico uniforme.

A questo punto abbiamo sia la legge del moto per la fase di slip (y(t) = A cos(ωt+φ))

sia la legge del moto per la fase di stick (x(t) rimane costante e uguale al valore

della posizione nell’istante del suo arresto, in t = 0 sara zero in conformita con le

condizioni iniziali del moto). Il grafico sara quindi orizzontale per tutte le fasi di

stick e cosinusoidale per le fasi di slip.

Page 9: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Capitolo 3

Obiettivi dell’esperienza

Gli obiettivi dell’esperienza sono verificare sperimentalmente la presenza o meno di

una proporzionalita tra l’energia immagazzinata dalla molla durante il suo allun-

gamento e l’energia liberata dal blocco durante la fase di scivolamento che simula

il sisma. Cosı come la verifica di una proporzionalita rilevante tra il tempo che

intercorre tra un sisma e l’altro (∆t), ma anche se sia possibile o meno notare una

periodicita dell’entita dei sismi. Se sia sempre vero che dopo una grande scarica

di energia e necessario piu tempo per assistere ad un nuovo terremoto, se dopo un

grande accumulo di forza da parte della molla sia lecito attendersi un grande terre-

moto o se, al contrario, seguiranno varie scariche; se dopo un piccolo accumulo di

forza seguira necessariamente un piccolo sisma e via discorrendo.

6

Page 10: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Capitolo 4

Risultati

In allegato si trovano i grafici prodotti a partire dai dati sperimentali rilevati dalle

apparecchiature. A titolo di esempio allego pure la tabella Excel dei dati relativi

al terzo ”run“ al fine di permettere una miglior comprensione delle modalita dei

risultati.

E possibile osservare, nella colonna tutta a sinistra (sotto la nomenclatura t) i valori

del tempo rilevati prendendo i dati sull’asse delle x relativi ai valori di F1 nel grafico

F (x) osservato sul monitor del PC (immagine 1.2). A partire da tali dati e stata

pure calcolata la categoria denominata dt concernente i dati del ∆t. F1 e F2 sono

stati rilevati sullo stesso grafico in cui e stato preso t nelle modalita spiegate in 1.2.1.

Nella colonna seguente, sotto la nomenclatura E, sono presenti i dati delle energie

rilevati dal sensore piezoelettrico, calcolati seguendo il procedimento esplicato in

1.2.2 a partire dall’immagine 1.3. Nella terzultima colonna, sotto la nomenclatura

A, sono presenti i dati delle energie rilevati nel modo illustrato in 1.2.1. La penultima

colonna, indicata dalla nomenclatura dt◦, riporta i dati della differenza del tempo

sotteso al grafico del voltaggio, l’utilita di tali dati, cosı come la sua rilevatura, e

spiegata in 1.2.2. L’ultima colonna e denominata E◦, il valore finale del calcolo

dell’energia (in realta come detto tale valore e solo proporzionale all’energia), e la

sua completa descrizione e spiegazione si possono trovare nella sottosezione 1.2.2.

4.1 Notazioni

Con dt si noti il ∆t (differenza di tempo) che intercorre tra due ”sismi“ e indica il

tempo che si e dovuto attendere per avere un ”sisma“ dopo il precedente.

E rappresenta il valore, che e (come precedentemente spiegato nel capitolo 1.2) pro-

porzionale all’energia, calcolato dal sensore piezoelettrico.

A indica invece l’energia immagazzinata, e liberata durante la fase di slip, dalla

molla.

F1 e F2 mostrano i valori della forza misurata dal dinamometro agli estremi del-

l’intervallo della fase di slip, F1 si riferisce al valore massimo (in valore assoluto)

assunto dalla forza in tale intervallo ed e misurato nell’istante esatto in cui il blocco

7

Page 11: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

4.2. I grafici 8

comincia il suo incedere, F2 al contrario si riferisce al valore minimo assunto ed e

misurato nell’istante preciso in cui il blocco si arresta, rappresenta percio il minimo

allungamento della molla nell’intervallo considerato.

L’appendice ∗ che segue gli ultimi sedici grafici e posta ad indicare una soppressione

del primo dato di ogni grafico, nel capitolo 4.2.2 spieghero in dettaglio il motivo di

tale soppressione.

Queste nomenclature saranno utilizzate sia nei grafici sia nei capitoli seguenti.

4.2 I grafici

4.2.1 Spiegazione grafici

Grafici del tempo

I primi otto grafici, da ”Dati tempo 1“ a ”Dati tempo 8“, riportano i dati del

momento in cui sono cominciate le varie fasi di slip ( in cui il blocco si e mosso). Tali

dati sono inseriti all’interno del grafico con i valori assoluti del tempo rappresentati

sull’asse delle ordinate. E stata poi inserita una linea di tendenza al fine di verificare

la presenza o meno di una linearita nella successione temporale dei ”sismi“, per una

perfetta linearita dei dati del tempo sarebbe necessario un valore di R2 pari a 1.

Il successivo grafico rappresenta invece i valori di ∆t sull’asse delle ordinate. In

questo grafico sono riportati tutti i dati dei vari ”run“, in totale otto, allo scopo di

verificare una certa riccorrenza dei valori di differenza di tempo che intercorre tra

uno slip e l’altro.

Grafici delle energie

Nei due grafici seguenti sono riportati i dati delle energie misurate, tutti i valori di

A in uno e tutti i valori di E◦ nell’altro, allo scopo di verificare ancora una volta

un’eventuale riccorrenza di dati delle varie energie al fine di sapere qualora ci siano

dei valori, o meglio una regione di valori, piu probabili di energie liberate dai sismi.

Grafici della forza

I prossimi due grafici contengono invece i valori delle forze dei vari ”run“, in uno

tutti gli F1 e nell’altro tutti gli F2, cosı che si possa stabilire ancora una volta se ci

siano delle regioni di valori della forza della molla che si possano definire privilegiati

e quindi piu ricorrenti nelle varie misurazioni.

Gli otto grafici seguenti invece rappresentano i valori di tutte le F2 in funzione

delle F1 allo scopo di verificare se all’aumentare della F1 diminuisca la F2. Questo ci

permette di verificare uno degli obiettivi illustrati nel capitolo tre: se dopo un grande

accumulo di energia sia lecito aspettarsi un grande evento. Infatti il grande accumulo

e rappresentato da un grande valore di F1 e il grande evento e rappresentato da un

Page 12: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

4.2. I grafici 9

piccolo valore di F2 (questo infatti significherebbe un grande ∆x dovuto ad una

lunga fase di slip).

Energia in funzione del tempo

Gli ultimi grafici, quaranta, rappresentano i valori delle energie, A e E◦, in funzione

del tempo (abbiamo quindi, alternati, A ed E◦ sulle assi delle ordinate e il tempo

sulle assi delle ascisse) cosı come di loro stessi (la E◦ e in funzione della A allo scopo

di vedere se aumentando un valore aumenta pure l’altro).

Lo scopo dei grafici sopraccitati e quindi quello di evidenziare, qualora sia presente,

una linearita piu o meno marcata tra il tempo di attesa tra uno slip e l’altro e

l’energia misurata, se l’energia liberata sia tanto maggiore tanto quanto sia maggiore

il tempo di attesa tra un sisma e l’altro.

Fusione dei grafici

Al fine di avere una statistica piu ampia grazie ad un numero maggiore di dati a

cui attenersi ho unito tutti i grafici delle E in funzione del tempo, di tutte le A in

funzione del tempo e di tutte le F2 in funzione delle F1. Per ragioni di coerenza

ho escluso sia i dati del secondo ”run“, poiche ottenuti con una velocita doppia del

motore, sia tutti i primi dati di ogni misurazione per i motivi spiegati nella sezione

4.2.2.

4.2.2 Analisi dei grafici

Grafici del tempo

Come detto lo scopo di questi grafici e quello di verificare qualora fosse presente una

linearita nella successione temporale della fasi di slip. La linea di tendenza inserita

nei grafici sembrerebbe proprio suggerirci la presenza di tale linearita: il valore di

R2 va da un minimo di R2 = 0.9947 ad un massimo di R2 = 0.9993, una precisione

a mio parere piu che accettabile in quanto una precisione assoluta e praticamente

impossibile, o quantomeno altamente improbabile, da raggiungere attraverso i mezzi

sperimentali in nostro possesso.

Nel grafico del ∆t e invece osservabile, come auspicato dall’obiettivo del grafico, una

maggior concentrazione di valori tra 1 s e 3 s con eccezione rilevante dei primi valori

di ogni ”run“ che si attestano a valori che oscillano, mediamente, tra 11 s e 17 s.

Grafici delle energie

Nel grafico rappresentante i valori di E◦ e possibile riscontrare un’altissima concen-

trazione di valori compresi tra ordinata 2.5.10−3 e 0, dalle tabelle e infatti possibile

rendersi conto che la maggior parte dei dati assume valori dell’ordine di 10−4.

E pure possibile osservare che la maggior parte dei valori che sono al di sopra di

Page 13: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

4.2. I grafici 10

tale media appartengono al secondo ”run“, effettuato con una velocita di rotazione

del motore pressoche doppia. In effetti tutti i dati di tale misurazione (a parte tre)

si attestano ad un valore superiore alla media, di tutti i valori superiori alla media,

come anticipato precedentemente, ben il 28.72% di tali valori appartiene a dati ot-

tenuti a partire da misurazioni provenienti dal secondo ”run“, un dato tutt’altro che

irrilevante.

Nel grafico successivo, rappresentante i valori assunti dalle A, si puo notare una

concentrazione superiore nella regione delimitata dai valori delle ordinate compresi

tra 0.025 e 0.125, la concentrazione e sı maggiore in questa regione, tuttavia essa

non raggiunge certamente i valori osservati in precedenza per i valori di E◦. Vo-

lendosi riallacciare a quanto detto precedentemente per quanto riguarda il secondo

”run“ e, questa volta, possibile osservare che, esclusi due dati, tutti i dati di tale

misurazione sono all’interno della regione di valori media, non vale percio in questo

caso il discorso fatto precedentemente.

Grafici delle forze

In entrambi i casi e osservabile una concentrazione elevatissima, pressoche totale, in

una regione ben definita.

Nel caso delle F1 tale regione e delimitata dai valori di ordinata variabile tra 3.5 e

5. Nel caso delle F2 tale regione e invece delimitata dai valori di ordinata compresi

tra 2.5 e 4.

Una prima osservazione possibile e quindi che i valori medi di F2 sono minori di

quelli di F1.

Energia in funzione del tempo

I primi otto grafici della presente sezione rappresentano, come gia anticipato, i valori

di E ′ in funzione di A per vedere se sia presente una linearita nell’aumento di uno

in funzione dell’altro. Anche in questo caso e stata inserita una linea di tendenza al

fine di ottenere una piu precisa analisi dei grafici in questione.

I risultati sono in questo caso piuttosto scoraggianti: i valori di R2 si aggirano da

un minimo di R2 = 0.0011 ad un massimo di R2 = 0.5631, tutt’altro che prossimi

al valore ideale R2 = 1.

Nei trentadue grafici seguenti sono rappresentati i valori delle energie in funzione

del ∆t. Nei primi sedici di tali grafici sono riportati tutti i valori assunti nelle varie

misurazioni sia dal tempo sia dalle energie. In questo modo e quindi possibile os-

servare come non sia presente alcuna linearita di valori, o piuttosto si puo osservare

come quasi tutti i valori in tutti e sedici i grafici siano pressoche confinati, e quindi

all’apparenza piuttosto lineari, in una regione del grafico ben definita.

Quasi tutti i valori a parte uno, in tutti i grafici: il primo dato di ogni misurazione

era in effetti totalmente ”a sbalzo“, al di fuori di tale regione. Il motivo per cui ho

provato a rappresentere gli ultimi sedici grafici, quasi uguali ai precedenti, togliendo

Page 14: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

4.2. I grafici 11

il primo dato di ogni ”run“ era quindi verificare se sopprimendo tale dato era pos-

sibile osservare una linearita piu o meno marcata, e se, di conseguenza, era logico

pensare di dover trattare il primo dato di ogni misurazione come differente dagli

altri, se si dovesse considerarlo (in qualche modo) come a se stante nelle analisi e ,

quindi, nelle conclusioni.

Con una rielaborazione dei grafici si ottengono valori di R2 che oscillano tra R2 =

−0.0366 a R2 = 0.509, mentre prima si avevano dati oscillanti tra R2 = −0.0288 e

R2 = 0.2137. Un miglioramento, non proprio marcatissimo, e quindi osservabile in

quasi tutti i valori, alcuni sono tuttavia peggiorati nel loro avvicinamento al valore

ideale R2 = 1.

Interessante sarebbe pure osservare se i dati delle A aumentino piu linearmente al-

l’aumentare del tempo rispetto ai valori delle E◦ o viceversa.

Si puo notare che i dati di E◦ variano tra R2 = −0.0288 eR2 = 0.2137, E◦∗ invece ha

valori che variano tra R2 = −0.0366 eR2 = 0.1533. A varia invece tra R2 = 0.0003

e R2 = 0.1963 e A∗ varia tra R2 = 0.0199 e R2 = 0.5017.

Una prima osservazione possibile ci porta a notare come i dati di R2 sia di A sia

di A∗ non assumano mai valori negativi, cosa che succede invece in 9 casi su 16 tra

dati di E◦ e dati di E◦∗. Si puo pure osservare che i valori di R2 siano maggiori per

A e notevolmente maggiori per A∗.

Fusione dei grafici

Per quanto concerne i risultati relativi al grafico di E◦(dt) si puo notare una confer-

ma dei risultati precedentemente osservati con i grafici costruiti separatamente. La

linea di tendenza indica infatti un valore di −0.0109 per quanto riguarda R2.

Una conferma giunge pure dal grafico di A(dt) che ci indica un valore di R2 = 0.3064

confermandoci cosı una certa dipendenza di A con il tempo.

Dal grafico di F2(F1) giunge una mezza sorpresa: il dato relativo alla linea di ten-

denza indica infatti un valore di 0.2491 per R2 suggerendo cosı una linearita dei

valori.

Riguardo alla fusione dei grafici di E ′ in funzione di A la linea di tendenza ci indica

un valore R2 = 0.0359, confermando una difficolta nel dedurre una linearita.

Page 15: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Capitolo 5

Conclusioni

5.1 Tempo

Come sperimentato attraverso i primi nove grafici si puo afferamare che i sismi si

succedano con delle differenze temporali sempre pressoche costanti o, meglio ancora,

una volta avuto il primo sisma si succedono linearmente tutti gli altri. Si puo

osservare infatti, nel grafico di tutti i ∆t che il primo sisma di ogni ”run“ necessiti

di un tempo maggiore per avvenire.

E pure possibile concludere che, come previsto, anche con una maggior velocita

del motore i ∆t si succedano piu frequentemente ma comunque linearmente, tale

deduzione e avvalorata sia attraverso l’osservazione del grafico del tempo numero 2,

in cui la linearita e marcata tanto quanto negli altri (R2 = 0.9956 contro una media

di R2 = 0.99685), sia attraverso l’osservazione del grafico dei ∆t in cui i dati del

secondo ”run“ sono tanto inferiori agli altri quanto costanti.

5.2 Forze

L’analisi del grafico delle forze ci porta a concludere che sia F1 sia F2 abbiano dei

valori privilegiati che si ripetono con maggior frequenza (ovviamente i valori di F1

sono maggiori di quelli di F2).

Dall’analisi del grafico riassuntivo e possibile pure osservare come, seppur abbastanza

leggermente (R2 = 0.2491), i valori di F2 aumentano all’aumentare dei valori di F1.

Questo ci porta a concludere che un aumento, sempre in valore assoluto, del valore

di F1 non e sinonimo di un aumento dell’entita del sisma a causa dell’aumento del

valore di F2 che diminuisce il ∆F e quindi ci segnala uno spostamento nella fase di

”slip“ poco marcato da parte del blocco.

12

Page 16: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

5.3. Energie 13

5.3 Energie

Come si puo facilmente notare dai grafici i valori di A e di E◦ non sono in relazione

lineare tra di loro, lo si puo notare sia dai grafici separati sia dal grafico riassuntivo

(un valore di R2 = 0.0359 non puo essere considerato indice di linearita assoluta.

Dagli ultimi grafici si puo invece concludere che i valori di A sono molto piu in re-

lazione al variare del tempo, non in relazione lineare comunque, rispetto a quelli di

E ′, soprattutto nel caso di A∗ dove i valori arrivano ad un massimo di R2 = 0.5017.

E pure interessante constatare che i valori di E◦ sono, nella maggior parte dei casi,

indirettamente proporzionali al tempo, all’aumentare del tempo diminuiscono i va-

lori dell’energia liberata: si puo infatti notare la presenza di valori negativi di R2 in

alcuni ”run“ per i grafici di E ′. Da cio si puo dedurre che E ′ non e assolutamente

influenzato dal tempo, a volte proporzionale a volte no, e invece del tutto casuale.

Dall’analisi degli ultimi grafici si puo pure trarre alcune conclusioni per quel che

riguarda il primo dato di ogni misurazione. Per quanto riguarda E◦ e E◦∗ si puo

osservare che dopo la rielaborazione ci sono sia miglioramenti sia peggioramenti del

dato di R2 per cui ci si puo riallacciare alle considerazioni precedenti, per quel che

riguarda la linearita dei valori con il tempo, e affermare che pure in questo caso

il ”rapporto“ con il primo dato e casuale: ogni tanto influenza negativamente la

linearita dei valori, ogni tanto la influenza positivamente. Per quanto riguarda A e

A∗ invece si puo dire che il primo dato deve essere considerato a parte in quanto

influenzante negativamente la linearita dei valori in rapporto al tempo di tutti i

grafici, tutti i valori di R2 di A sono migliorati dopo la rielaborazione.

Dal grafico riassuntivo si puo dedurre una conferma delle conclusioni precedente-

mente presentate. E◦(dt) infatti parrebbe indirettamente proporzionale al tempo:

R2 presenta effettivamente un valore pari a −0.0109, un dato insufficiente per po-

terci esprimere a favore di tale proporzionalita indiretta ma sicuramente sufficiente

per poterci permettere di scartare una linearita diretta.

Per quanto riguarda A(dt) invece possiamo confermare quanto affermato in prece-

denza, e cioe che tale valore aumenta all’aumentare del tempo (e quindi direttamente

proporzionale) anche se non totalmente in modo lineare, un valore di R2 = 0.3064 e

pur sempre abbastanza lontano dal valore ideale.

Page 17: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito
Page 18: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

Bibliografia

[1] Francesco di Liberto, Emilio Balzano, Marco Serpico, Fulvio Peruggi. Dina-

mica Stick-Slip: Oscillazioni con attrito. http://www.fedoa.unina.it/287/1/Di-

Liberto.pdf. Visitato l’ultima volta il 16.10.2011.

15

Page 19: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito
Page 20: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

t F1 F2 E A dt dt° E°11.45 3.56 2.7 0.001 0.06579 11.45 0.5 0.00213.7 3.5 2.62 0.004 0.0658 2.25 1 0.00416.2 3.65 2.54 0.001 0.08822 2.5 0.8 0.0012518.8 3.6 2.77 0.003 0.0652 2.6 0.8 0.0037522.9 4.62 1.82 0.005 0.20854 4.1 0.7 0.00714326.8 3.62 2.6 0.001 0.0849 3.9 0.6 0.00166728.4 3.22 3.02 0.004 0.01543 1.6 0.7 0.00571429.5 3.11 2.7 0.01 0.02979 1.1 1.1 0.00909131.3 3.45 2.72 0.002 0.05974 1.8 0.6 0.00333332.8 3.36 2.88 0.003 0.03348 1.5 1 0.00334.4 3.46 2.84 0.001 0.05627 1.6 0.7 0.00142936.6 3.85 2.17 0.013 0.13846 2.2 0.6 0.02166739.6 3.68 2.6 0.001 0.08738 3 0.7 0.00142941.2 3.32 2.83 3.94E-04 0.03376 1.6 0.4 9.85E-0443 3.54 2.69 0.005 0.06543 1.8 0.8 0.0062544.45 3.3 2.8 3.24E-04 0.03399 1.45 0.5 6.48E-0445.7 3.34 2.76 0.002 0.03681 1.25 0.4 0.00547.2 3.46 2.77 2.00E-03 0.05848 1.5 0.8 2.50E-0349 3.52 2.61 0.002 0.0801 1.8 0.7 0.00285750.6 3.36 2.74 4.00E-03 0.03833 1.6 1.1 3.64E-0352.4 3.49 2.62 8.70E-04 0.06522 1.8 0.3 2.90E-0354.3 3.5 2.63 5.89E-04 0.06514 1.9 0.5 1.18E-0356.2 3.48 2.53 1.00E-03 0.08055 1.9 0.6 1.67E-0358.25 3.39 2.75 7.97E-04 0.03945 2.05 0.5 1.59E-0359.55 3.27 2.96 6.52E-04 0.0271 1.3 0.5 1.30E-0360.45 3.3 3.03 1.82E-04 0.02134 0.9 0.4 4.55E-0461.9 3.68 2.71 4.00E-03 0.07067 1.45 0.9 4.44E-0364.1 3.76 2.62 1.40E-02 0.07754 2.2 1.3 1.08E-0266.15 3.58 2.64 3.00E-03 0.06853 2.05 0.9 3.33E-0367.7 3.28 2.98 4.00E-03 0.02688 1.55 0.7 5.71E-0369.1 3.64 2.76 4.00E-03 0.0671 1.4 0.9 4.44E-0370.5 3.39 2.99 5.00E-03 0.03074 1.4 0.8 6.25E-0372.1 3.67 2.62 6.00E-03 0.07341 1.6 0.9 6.67E-0374.15 3.61 2.7 5.00E-03 0.06795 2.05 0.9 5.56E-0376.6 3.89 2.52 5.00E-03 0.11912 2.45 0.6 8.33E-0378.45 3.38 3.13 7.88E-04 0.02038 1.85 0.6 1.31E-0380.05 3.88 2.55 7.00E-03 0.11733 1.6 0.8 8.75E-0381.5 3.28 2.91 1.00E-03 0.02951 1.45 0.6 1.67E-0382.75 3.46 2.82 4.25E-04 0.05691 1.25 0.5 8.50E-0483.9 3.32 2.98 9.11E-04 0.02843 1.15 0.5 1.82E-0385.45 3.66 2.67 3.00E-03 0.07132 1.55 0.8 3.75E-0387.25 3.54 2.79 3.00E-03 0.06167 1.8 0.7 4.29E-0388.7 3.45 2.88 2.00E-03 0.05417 1.45 0.5 4.00E-0389.9 3.36 2.93 4.00E-03 0.0318 1.2 1.1 3.64E-0391.1 3.41 2.84 9.26E-04 0.03689 1.2 0.6 1.54E-0392.85 3.65 2.86 3.00E-03 0.0644 1.75 0.7 4.29E-0394.55 3.68 2.88 7.48E-04 0.06464 1.7 0.5 1.50E-0396.6 3.92 2.62 1.00E-03 0.10418 2.05 0.5 2.00E-0398.8 3.75 2.75 3.00E-03 0.07274 2.2 1 3.00E-03100.6 3.54 2.89 1.00E-03 0.05803 1.8 0.6 1.67E-03

Page 21: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.9947

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

Dati tempo 1

R² = 0.9956

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Dati tempo 2

Page 22: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.9957

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Dati tempo 3

R² = 0.9993

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

Dati tempo 4

Page 23: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.9972

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Dati tempo 5

R² = 0.9975

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

Dati tempo 6

Page 24: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.9967

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

Dati tempo 7

R² = 0.9981

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Dati tempo 8

Page 25: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70

dt1

dt2

dt3

dt4

dt5

dt6

dt7

dt8

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

0 10 20 30 40 50 60 70

E°1

E°2

E°3

E°4

E°5

E°6

E°7

E°8

Page 26: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70

A1

A2

A3

A4

A5

A6

A7

A8

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

F1.1

F2.1

F3.1

F4.1

F5.1

F6.1

F7.1

F8.1

Page 27: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

F1.2

F2.2

F3.2

F4.2

F5.2

F6.2

F7.2

F8.2

R² = 0.1719

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E°1(A1)

Page 28: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0011

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E°2(A2)

R² = 0.1952

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15 0.2 0.25

E°3(A3)

Page 29: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.5631

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E°4(A4)

R² = 0.1312

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.05 0.1 0.15 0.2 0.25

E°5(A5)

Page 30: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0718

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.05 0.1 0.15 0.2 0.25 0.3

E°6(A6)

R² = 0.1586

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E°7(A7)

Page 31: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0283

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E°8(A8)

R² = 0.2137

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

0 2 4 6 8 10 12 14

E°1(dt1)

Page 32: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.1963

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

A1(dt1)

R² = 0.0288

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2 2.5 3 3.5

E°2(dt2)

Page 33: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0504

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5 3 3.5

A2(dt2)

R² = 0.0003

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10 12 14

E°3(dt3)

Page 34: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0931

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14

A3(dt3)

R² = 0.0044

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10 12 14

E°4(dt4)

Page 35: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0003

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

A4(dt4)

R² = 0.0028

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 2 4 6 8 10 12 14

E°5(dt5)

Page 36: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0063

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14

A5(dt5)

R² = 0.0002

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 2 4 6 8 10 12 14 16 18

E°6(dt6)

Page 37: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0085

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16 18

A6(dt6)

R² = 0.0066

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 2 4 6 8 10 12 14 16 18 20

E°7(dt7)

Page 38: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0758

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

A7(dt7)

R² = 5E-05

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 1 2 3 4 5 6 7 8 9 10

E°8(dt8)

Page 39: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0271

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10

A8(dt8)

R² = 0.1533

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

0 1 2 3 4 5 6 7

E°1(dt1)*

Page 40: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.5017

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7

A1(dt1)*

R² = 0.0366

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2 2.5

E°2(dt2)*

Page 41: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.281

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5

A2(dt2)*

R² = 0.0174

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

E°3(dt3)*

Page 42: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.509

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A3(dt3)*

R² = 0.0131

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

E°4(dt4)*

Page 43: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0199

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A4(dt4)*

R² = 0.0407

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E°5(dt5)*

Page 44: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.4473

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

A5(dt5)*

R² = 0.0413

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 1 2 3 4 5 6

E°6(dt6)*

Page 45: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.3363

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

A6(dt6)*

R² = 0.001

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

E°7(dt7)*

Page 46: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.2328

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A7(dt7)*

R² = 0.0063

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 0.5 1 1.5 2 2.5 3

E°8(dt8)*

Page 47: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.3697

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.5 1 1.5 2 2.5 3

A8(dt8)*

R² = 0.8042

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6

F1.2(F1.1)

Page 48: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.8897

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

F2.2(F2.1)

R² = 0.6269

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

F3.2(F3.1)

Page 49: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0066

0

1

2

3

4

5

6

0 1 2 3 4 5 6

F4.2(F4.1)

R² = 0.1268

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6

F5.2(F5.1)

Page 50: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0455

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7

F6.2(F6.1)

R² = 0.2541

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7

F7.2(F7.1)

Page 51: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.1804

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6

F8.2(F8.1)

R² = 0.0109

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

0 1 2 3 4 5 6 7

E°(dt)

Page 52: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.3064

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7

A(dt)

R² = 0.2491

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

F2(F1)

Page 53: Stick Slip - seismoatschool.ethz.ch · energia potenziale elastica no al momento in cui non sia in grado di vincere la ... mico (di norma piu bassa di quella dovuta all’attrito

R² = 0.0359

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E°(A)