Production process of a radiopharmaceutical

70
Processo di produzione di un radiofarmaco Luca Palmieri Corso di laurea in C.T.F. sabato 28 maggio 2011

description

A deep view of a radiopharmaceutical's production process: from the basis to development and synthesis and to transport. If someone needs the animated version, please contact me.

Transcript of Production process of a radiopharmaceutical

Page 1: Production process of a radiopharmaceutical

Processo di produzione di un radiofarmaco

Luca PalmieriCorso di laurea in C.T.F.

sabato 28 maggio 2011

Page 2: Production process of a radiopharmaceutical

Normativa di riferimentoradiofarmaco: qualsiasi medicinale che, quando è pronto per l'uso, include uno o più radionuclidi (isotopi radioattivi) incorporati a scopo sanitario;

generatore di radionuclidi: qualsiasi sistema che include un radionuclide progenitore determinato da cui viene prodotto un radionuclide discendente che viene quindi rimosso per eluizione, o con qualsiasi altro metodo, ed usato in un radiofarmaco;

kit: qualsiasi preparazione da ricostituire o combinare con radionuclidi nel radiofarmaco finale, di solito prima della somministrazione;

precursore di radionuclidi: qualsiasi altro radionuclide prodotto per essere utilizzato quale tracciante di un'altra sostanza prima della somministrazione.

Direttiva EEC 89/343D.L.vo 178/1991D.L.vo 44/1997

D.Lgs n° 219/2006 art.1/e-f-g-hEU GMP, Eudralex vol.4 annex 3

sabato 28 maggio 2011

Page 3: Production process of a radiopharmaceutical

Essendo il radiofarmaco composto da una molecola attiva a livello metabolico, quando questa raggiungerà una sufficiente concentrazione all’interno dei tessuti, il paziente verrà sottoposto ad un esame tramite macchinario PET-CT.Il radionuclide a quel punto inizierà ad emettere dei positroni (l’antiparticella dell’elettrone) che, dopo aver percorso pochi millimetri, andrà ad annichilirsi con un elettrone, emettendo una coppia di fotoni gamma in direzioni opposte tra loro.Quando questa coppia di fotoni, raggiungendo un rilevatore, permetterà quindi di poter creare un’immagine dell’oggetto, a partire dal punto di origine dei fotoni.

Cos’è e come funziona un radiofarmaco ?

sabato 28 maggio 2011

Page 4: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 5: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 6: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 7: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 8: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 9: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 10: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 11: Production process of a radiopharmaceutical

Perché il 18FDG18F

Emivita: 120minTempo utile: 5h Trasporto, su strada, in città distanti anche 400km

18FDG

E’ la molecola più utilizzata nel panorama dell’imaging biomedico. In quanto analoga del glucosio, viene rapidamente metabolizzata da tutti gli organi ad alto consumo di glucosio (rene ed encefalo) e dalle cellule tumorali, secondo l’effetto Warburg.

Vantaggi:- permette una valutazione degli aspetti fisiologici e biochimici, rispetto a quelli prettamente anatomici- offre una prospettiva diversa della malattia ponendo le premesse per una diagnosi più precoce e precisa

Svantaggi:- costo di produzione più elevato rispetto al reale guadagno

sabato 28 maggio 2011

Page 12: Production process of a radiopharmaceutical

I locali di produzione

sabato 28 maggio 2011

Page 13: Production process of a radiopharmaceutical

I locali di produzione

sabato 28 maggio 2011

Page 14: Production process of a radiopharmaceutical

I locali di produzione

sabato 28 maggio 2011

Page 15: Production process of a radiopharmaceutical

I locali di produzione

sabato 28 maggio 2011

Page 16: Production process of a radiopharmaceutical

I locali di produzione

sabato 28 maggio 2011

Page 17: Production process of a radiopharmaceutical

I locali di produzione

P: -40 paCambi d’aria: 12/h

Classe: NC

sabato 28 maggio 2011

Page 18: Production process of a radiopharmaceutical

I locali di produzione

P: -40 paCambi d’aria: 12/h

Classe: NC

P: -25 paCambi d’aria: 20/h

Classe: NC

sabato 28 maggio 2011

Page 19: Production process of a radiopharmaceutical

I locali di produzione

P: -40 paCambi d’aria: 12/h

Classe: NC

P: -25 paCambi d’aria: 20/h

Classe: NC

P: atmosfericaCambi d’aria: NC

Classe: NC

sabato 28 maggio 2011

Page 20: Production process of a radiopharmaceutical

I locali di produzione

P: -40 paCambi d’aria: 12/h

Classe: NC

P: -25 paCambi d’aria: 20/h

Classe: NC

P: atmosfericaCambi d’aria: NC

Classe: NC

P: -10 paCambi d’aria: 40/h

Classe: D

sabato 28 maggio 2011

Page 21: Production process of a radiopharmaceutical

I locali di produzione

P: -40 paCambi d’aria: 12/h

Classe: NC

P: -25 paCambi d’aria: 20/h

Classe: NC

P: atmosfericaCambi d’aria: NC

Classe: NC

P: -10 paCambi d’aria: 40/h

Classe: D

P: -20 paCambi d’aria: 20/h

Classe: D

sabato 28 maggio 2011

Page 22: Production process of a radiopharmaceutical

I locali di produzione

P: -40 paCambi d’aria: 12/h

Classe: NC

P: -25 paCambi d’aria: 20/h

Classe: NC

P: atmosfericaCambi d’aria: NC

Classe: NC

P: -10 paCambi d’aria: 40/h

Classe: D

P: -20 paCambi d’aria: 20/h

Classe: D

P: +5paCambi d’aria: 40/h

Classe: C

sabato 28 maggio 2011

Page 23: Production process of a radiopharmaceutical

I locali di produzione

sabato 28 maggio 2011

Page 24: Production process of a radiopharmaceutical

I locali di produzioneZP4

- accesso regolato da sistemi di Air-lock- sistemi di chiusura automatica delle porte- pavimenti in PVC con spigoli arrotondati- pareti in polistirene- superfici lisce- disinfezione frequente- filtri HEPA- flusso d’aria laminare- interfoni per la comunicazione interna

Pass Box

- doppia porta interbloccante- pressione inferiore a quella della clean room- sterilizzazione con UV

sabato 28 maggio 2011

Page 25: Production process of a radiopharmaceutical

I macchinari di produzioneIBA Cyclone 18/9

| 2 IBA Molecular | 3 |

What is your greatest potential ?

To maximize your production capacity, while protecting your team ?

To stay ahead by producing an expanded line of radioisotopes ?

To complete your project on time ?

What if you could find a partner to help you

maximize your greatest potential ?

Wouldn’t your choice be simple ?

Cyclone® 18/9Maximizing Your Potential |

“The Cyclone® 18/9 has met our Centre’s expectations as a reliable and a stable machine, producing ample radioisotopes for our existing customers. Importantly, the Cyclone® 18/9 has sufficient capacity and flexibility to continue to meet increased isotope demand for the foreseeable future, strengthening our position as the number one supplier in our region.

The user friendliness of the IBA operational system has enabled us to establish a broad team of skilled operators to ensure that the facility remains operational, even at times when the availability of some of our staff is reduced, which occurs in busy hospitals.

The personal response and follow-up from individual IBA staff has greatly assisted our Centre’s technical understanding and problem solving capabilities for the Cyclone® 18/9, which is demonstrated by our Centre’s up-time and isotope delivery rates.

We have no hesitation in recommending IBA as a partner for PET radioisotope production.”

Cyclone® 18/9 -HC |Recurrent, fast and high production capacity.

Thomas TuchynaCyclotron Manager

Sir Charles Gairdner Hospital, Perth, Australia

IBA MolecularCyclone® 18/9 |

Energia prodotta: 18 MeV

Resa del target: > 15 Ci

Esposizione alle radiazioni: bassa

Modalità: dual-beam

Variegata produzione di radioisotopi (11C, 13N, 15O2, 18F, 124I, 64Cu)

sabato 28 maggio 2011

Page 26: Production process of a radiopharmaceutical

Tempo di preparazione della sintesi: < 5 min

Tempo di sintesi: 25 min

Resa: tipicamente intorno al 60%

Resa di conversione radiochimica: tipicamente intorno al 70%

Attività residua al termine della sintesi: < 5%

I macchinari di produzioneGE Tracerlab MX FDG

imagination at work

GE Healthcare

TRACERlab MX FDG Fast and easy FDG tracer production

In the near future diseases like cancer, cardiovascular disease, and even neurological disorders may be detected long before symptoms appear. GE Healthcare is helping to make this vision of early health possible with today’s advanced and comprehensive PET imaging solutions. In order to identify early pathways of disease, a chemistry system is required to help produce the right PETtracer. Enter TRACERlab™ MX FDG.

TRACERlab MX FDG was designed to use a disposable cartridge in the synthesis process, allowing multiple back-to-back production runs for 18F-FDG, the most widely utilized PET tracer. The result is a remarkably high yield with little maintenance, which is perfect for high-output FDG production as well as in-house production laboratories. TRACERlab MX FDG is considered today’s gold standard for commercial distribution.

Operation is efficient with TRACERlab MX FDG. Designed with every part that actually contacts the chemicals contained within the cartridge, the revolutionary setup of TRACERlab MX FDG minimizes maintenance and prevents any cross-contamination. Production is fast and efficient with 18F-fluoride/18F-FDG conversion in less than 25 minutes. Integrated diagnostics allow you to measure and record minute variables, not only ensuring consistent tracer production, but making GMP guidelines easy to meet.

The TRACERlab MX FDG module features a Programmable Logic Controller (PLC) with an operation program that facilitates user interaction. The production process itself is designed to optimize production parameters.

sabato 28 maggio 2011

Page 27: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 28: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

camera di ionizzazione per la misurazione

della dose

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 29: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

collect vial

camera di ionizzazione per la misurazione

della dose

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 30: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

siringa di precisione

collect vial

camera di ionizzazione per la misurazione

della dose

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 31: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

siringa di precisione

collect vial

camera di ionizzazione per la misurazione

della dose

filtro sterile

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 32: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

siringa di precisione

collect vial

camera di ionizzazione per la misurazione

della dose

filtro sterile

acqua WFI

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 33: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

siringa di precisione

collect vial

camera di ionizzazione per la misurazione

della dose

braccetto meccanicofiltro sterile

acqua WFI

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 34: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

siringa di precisione

collect vial

camera di ionizzazione per la misurazione

della dose

braccetto meccanicofiltro sterile

sterilizzatore con autoclave

acqua WFI

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 35: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

siringa di precisione

collect vial

camera di ionizzazione per la misurazione

della dose

braccetto meccanicofiltro sterile

sterilizzatore con autoclave

ascensore

acqua WFI

I macchinari di produzioneGE Dispenser

sabato 28 maggio 2011

Page 36: Production process of a radiopharmaceutical

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

I macchinari di produzioneGE Dispenser

2.4. Quality control of heat-sterilized FDG

The quality control of the heat-sterilized FDGsolution for injection was performed according to themonograph of the European Pharmacopeia plus anadditional HPLC method employing a Carbopacks-chromatography column using 0.1M NaOH as eluent,complementing thin-layer chromatography results per-formed on a phosphor-imager (Fuji-instruments).

2.5. Decomposition of FDG after steam sterilization as afunction of pH

The stability of FDG was studied at our standardsteam sterilization conditions of 135 1C and 3.5min as afunction of the pH-value of the FDG solution in a rangeof pH 3–8. The pH was adjusted using corresponding

phosphate buffers. After steam sterilization, the sampleswere analyzed by HPLC and TLC and compared to anon-heat sterilized and unbuffered sample of FDG at apH of 6.

2.6. Stability of FDG towards radiolysis as a function oftime, activity concentration and pH

The stability of heat sterilized FDG (pH 5.5) towardsradiolysis was studied as a function of time (up to 10 h)and activity concentration at two different pH-values of5.5 and 7.2, thus comparing typical ‘‘long-term’’ storageconditions of heat-sterilized (pH 5.5) vs. conventionalsterile-filtered FDG, which is typically obtained inneutral solution. In this study, a pH of 7.2 was chosen.For this comparison, always a 1.8ml sample offour representative batches with activity concentrations

ARTICLE IN PRESS

Fig. 2. Computer-working platform for automatic or manual control of the dispensing unit.

Sterilization parameters with time

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600Time / s

Tem

p / °

C

0

0.5

1

1.5

2

2.5

3

3.5Pr

essu

re /

bar

TempPressure

Fig. 3. Example of a sterilization protocol of the key parameters; temperature and pressure over time.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586580

sabato 28 maggio 2011

Page 37: Production process of a radiopharmaceutical

Processo di produzione1° step: Produzione di un radionuclide

Il processo di produzione del [18]FDG inizia con la produzione di un radionuclide, il 18F attraverso l’uso di un acceleratore di particelle, un ciclotrone.

Fase di bombardamento:

1) Un generatore di idrogeno effettua l’elettrolisi dell’acqua in idrogeno ed ossigeno molecolare;2) l’idrogeno molecolare viene mandato nel centro del ciclotrone, dove la sorgente di ioni effettua la rottura elettrolitica del legame;3) gli ioni idruro vengono quindi accelerati, su orbite diverse e progressive, dal ciclotrone;4) passano attraverso una lamina di carbonio che li converte in protoni e strappano i 2 elettroni;5) a quel punto, colpendo il target, si ottiene fluoruro di idrogeno disciolto in acqua.

H2O18 + p H+ 18F- + p + n

sabato 28 maggio 2011

Page 38: Production process of a radiopharmaceutical

Processo di produzione2° step: manutenzione del modulo e del dispensatore

Contemporaneamente al bombardamento, vengono effettuate le normali procedure di manutenzione dei moduli:

- vengono svuotati i waste dei moduli di sintesi e del dispensatore

- vengono svuotati i flaconi contenenti l’acqua arricchita

I rifiuti, liquidi, vengono stoccati in un apposito locale ed in delle taniche ermetiche opportunamente etichettate, in attesa che l’attività decada a limiti previsti per legge e quindi smaltiti secondo la normativa vigente.

e del dispensatore (in automatico):

- vengono avviati il “rinse”, il “clean 1” ed infine il “clean 2” Il dispensatore effettua dei lavaggi con etanolo ed acqua, di tutte le linee in cui il

prodotto passerà. In questo modo si garantisce la totale sterilità del percorso che l’FDG affronterà dal termine della sintesi, al

termine della dispensazione.

sabato 28 maggio 2011

Page 39: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

sabato 28 maggio 2011

Page 40: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

sabato 28 maggio 2011

Page 41: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

sabato 28 maggio 2011

Page 42: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

acetonitrile

sabato 28 maggio 2011

Page 43: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

precursore(mannosio triflato)

acetonitrile

sabato 28 maggio 2011

Page 44: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

precursore(mannosio triflato)

acetonitrile etanolo

sabato 28 maggio 2011

Page 45: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

buffer

precursore(mannosio triflato)

acetonitrile etanolo

sabato 28 maggio 2011

Page 46: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

buffer

precursore(mannosio triflato)

acetonitrile

acqua

etanolo

sabato 28 maggio 2011

Page 47: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

buffer

precursore(mannosio triflato)

acetonitrile

eluente

acqua

etanolo

sabato 28 maggio 2011

Page 48: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

buffer

precursore(mannosio triflato)

acetonitrile

NaOHeluente

acqua

etanolo

sabato 28 maggio 2011

Page 49: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

sabato 28 maggio 2011

Page 50: Production process of a radiopharmaceutical

Processo di produzione3° step: montaggio della rampa

Contemporaneamente ai processi di preparazione del dispensatore, vengono eseguite:

imagination at work

GE Healthcare3000 North Grandview BlvdWaukesha, WI 53188 U.S.A.

www.gehealthcare.com

Ease. Automation. Speed. Yield. TRACERlab MX FDG has it . Whether modifying the system’s ready-to-use sequences or designing your own sequences, TRACERlab MX FDG offers excellent flexibility with GE Healthcare’s proven quality.

Tracer Molecular LevelSynthesis preparation time < 5 min

Synthesis time 25 min

Production yield (not corrected for decay)

Typical 60%

Radio chemical conversion yield (corrected for decay)

Typical 70%

Residual activity at end of synthesis

< 5%

Additional features:

• Recovery of enriched water

• Graphical real-time user interface

• In-progress controls

• Automated record-keeping

• Reagent sets available

RDPH-0105-09.06-EN-US

© 2006 General Electric Company – All rights reserved.GE Healthcare, a division of General Electric Company.

General Electric Company reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your GE representative for the most current information.

GE, GE Monogram and TRACERlab are registered trademarks of General Electric Company.

- la successiva configurazione all’interno del modulo di sintesi della cassetta completamente montata

- montaggio della cassetta monouso

- montaggio del kit dei reagenti di sintesi

sabato 28 maggio 2011

Page 51: Production process of a radiopharmaceutical

Test preliminari (durata: 3min circa)- test per la perdita di pressione e di controllo del vuoto- test per il controllo della tenuta della cassetta (vengono simulati alcuni momenti della sintesi, per poter evitare la presenza di sovrapressioni possano far staccare parti della rampa o danneggiare il modulo di sintesi).- pressurizzazione dei vial con 10ml di aria

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 52: Production process of a radiopharmaceutical

Eluizione ed essiccamento del 18F (2min + 9min)- l’eluente, a base di carbonato di potassio, passa attraverso una cartuccia QMA a scambio anionico (pre-condizionata) ed eluisce l’acqua contenente il radioisotopo- l’acqua arricchita viene separata dal 18F, che passa all’interno di un pozzetto di reazione assieme ad una quota di acetonitrile- il 18F viene essiccato portando la temperatura a circa 90° per 9 minuti

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 53: Production process of a radiopharmaceutical

Eluizione ed essiccamento del 18F (2min + 9min)- l’eluente, a base di carbonato di potassio, passa attraverso una cartuccia QMA a scambio anionico (pre-condizionata) ed eluisce l’acqua contenente il radioisotopo- l’acqua arricchita viene separata dal 18F, che passa all’interno di un pozzetto di reazione assieme ad una quota di acetonitrile- il 18F viene essiccato portando la temperatura a circa 90° per 9 minuti

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 54: Production process of a radiopharmaceutical

Eluizione ed essiccamento del 18F (2min + 9min)- l’eluente, a base di carbonato di potassio, passa attraverso una cartuccia QMA a scambio anionico (pre-condizionata) ed eluisce l’acqua contenente il radioisotopo- l’acqua arricchita viene separata dal 18F, che passa all’interno di un pozzetto di reazione assieme ad una quota di acetonitrile- il 18F viene essiccato portando la temperatura a circa 90° per 9 minuti

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 55: Production process of a radiopharmaceutical

Labeling e condizionamento della c18 (4min + 1min)- il precursore, precedentemente sciolto in 3.5ml di acetonitrile, viene portato nel pozzetto- la temperatura viene portata ad 85° per 4 min, permettendo quindi il labeling del radioisotopo al precursore- 5ml di etanolo + 22ml di acqua, vengono fatti passare attraverso una c18, condizionandola

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 56: Production process of a radiopharmaceutical

Labeling e condizionamento della c18 (4min + 1min)- il precursore, precedentemente sciolto in 3.5ml di acetonitrile, viene portato nel pozzetto- la temperatura viene portata ad 85° per 4 min, permettendo quindi il labeling del radioisotopo al precursore- 5ml di etanolo + 22ml di acqua, vengono fatti passare attraverso una c18, condizionandola

FDG

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 57: Production process of a radiopharmaceutical

Labeling e condizionamento della c18 (4min + 1min)- il precursore, precedentemente sciolto in 3.5ml di acetonitrile, viene portato nel pozzetto- la temperatura viene portata ad 85° per 4 min, permettendo quindi il labeling del radioisotopo al precursore- 5ml di etanolo + 22ml di acqua, vengono fatti passare attraverso una c18, condizionandola

FDG

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 58: Production process of a radiopharmaceutical

Purificazione preliminare ed idrolisi (5min + 2min)- l’FDG, assieme a 26ml di acqua passano attraverso una c18 che intrappola il 18F non legato ed i prodotti secondari- 1ml di NaOH fluisce attraverso la c18 determinando la deacetilazione del farmaco- l’FDG basico, viene quindi lavato con 10ml di acqua

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 59: Production process of a radiopharmaceutical

Purificazione preliminare ed idrolisi (5min + 2min)- l’FDG, assieme a 26ml di acqua passano attraverso una c18 che intrappola il 18F non legato ed i prodotti secondari- 1ml di NaOH fluisce attraverso la c18 determinando la deacetilazione del farmaco- l’FDG basico, viene quindi lavato con 10ml di acqua

FDG

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 60: Production process of a radiopharmaceutical

Purificazione preliminare ed idrolisi (5min + 2min)- l’FDG, assieme a 26ml di acqua passano attraverso una c18 che intrappola il 18F non legato ed i prodotti secondari- 1ml di NaOH fluisce attraverso la c18 determinando la deacetilazione del farmaco- l’FDG basico, viene quindi lavato con 10ml di acqua

FDG

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 61: Production process of a radiopharmaceutical

Purificazione finale e trasferimento (2min)- 6ml di tampone vengono aggiunti all’FDG, per regolarne pH ed osmolalità- il passaggio attraverso una seconda c18 ed una N-allumina ne garantiscono un’ulteriore purificazione- il farmaco viene inviato al dispensatore

FDG

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 62: Production process of a radiopharmaceutical

Purificazione finale e trasferimento (2min)- 6ml di tampone vengono aggiunti all’FDG, per regolarne pH ed osmolalità- il passaggio attraverso una seconda c18 ed una N-allumina ne garantiscono un’ulteriore purificazione- il farmaco viene inviato al dispensatore

FDG

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 63: Production process of a radiopharmaceutical

Purificazione finale e trasferimento (2min)- 6ml di tampone vengono aggiunti all’FDG, per regolarne pH ed osmolalità- il passaggio attraverso una seconda c18 ed una N-allumina ne garantiscono un’ulteriore purificazione- il farmaco viene inviato al dispensatore

Processo di produzione4° step: sintesi (25min)

sabato 28 maggio 2011

Page 64: Production process of a radiopharmaceutical

Processo di produzione5° step: dispensazione

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

Dispensazione e lock-out (30min circa)- il prodotto viene raccolto nel collect vial- il braccetto meccanico porta ogni singolo vial dalla “tray” alla clean room per il riempimento- la siringa aspira l’FDG dal collect vial e, attraverso un microfiltro sterile da 0,2µm, riempie i vial secondo il volume precedentemente impostato- i vial vengono portati all’interno dello sterilizzatore dove, ad una temperatura di circa 130° per almeno 3min, viene del tutto azzerata la carica batterica eventualmente rimasta

sabato 28 maggio 2011

Page 65: Production process of a radiopharmaceutical

Processo di produzione5° step: dispensazione

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

Dispensazione e lock-out (30min circa)- il prodotto viene raccolto nel collect vial- il braccetto meccanico porta ogni singolo vial dalla “tray” alla clean room per il riempimento- la siringa aspira l’FDG dal collect vial e, attraverso un microfiltro sterile da 0,2µm, riempie i vial secondo il volume precedentemente impostato- i vial vengono portati all’interno dello sterilizzatore dove, ad una temperatura di circa 130° per almeno 3min, viene del tutto azzerata la carica batterica eventualmente rimasta

sabato 28 maggio 2011

Page 66: Production process of a radiopharmaceutical

Processo di produzione5° step: dispensazione

thickness) with KryptofixTM mediated nucleophilicsubstitution on tetraacetylated mannose triflate (ABX;Radeberg; Germany) and acidic hydrolysis (Hamacheret al., 1986) followed by purification using a specialpurification column (GE). The crude FDG solution of14ml is then formulated by 2.8ml of a phosphate/salineconcentrate (15.0 g sodium dihydrogenphosphate dihy-drate; 0.5 g disodium hydrogenphosphate dihydrate in100ml water and 20ml 10% saline) to achieve iso-tonicity and a pH of 5.5–5.8.

2.2. Dispensing unit

The dispensing unit (GE) with overall dimensions of79! 77! 70 cm (l! d! h) is housed in a hot cell of 6-cmlead thickness and an inner finishing of stainless steel(Comecer; Italy) which was validated for air purity to beof Class B. The clean room classification of thelaboratory itself is validated to be of Class D. Thisdispensing unit as shown in Fig. 1 is constructed mainlyout of five central components: A miniaturized laminar-flow unit for aseptical filling of the vials through a0.2mm sterile filter (Sterfix-Pad; B.Braun-Melsungen,Germany) in Class A atmosphere, a robot arm for thetransport of the vials, a high-resolution syringe (Tecan,Tecan-GmbH, Germany) for exact dose dispensing, anautoclave for the final steam sterilization of up to 17vials and an ionization chamber-based dose calibrator(MED, Dresden, Germany) for radioactivity measuringof the initial batch and the final vials. Anothercomponent, not part of the dispensing unit providedby GE, but part of the dispensing hot cell as realized inour case by Comecer, is a lift installed underneath thedispensers working platform for in- and out-lockingof the lead containers to receive the sterilized vials.The dispenser and the lift is controlled by a computerand a Windowst-based software. Fig. 2 shows thescreen display.The dispensing process works either in an automatic

mode or, on demand, under operator control with

mouse and keyboard commands. The temperature in theautoclave is monitored by two sensors of which one isplaced within a reference vial filled with 10ml saline. Thepressure inside the autoclave is also monitored. Boththe temperature and pressure are monitored throughoutthe whole sterilization cycle and finally documented in asterilization protocol as shown exemplified in Fig. 3.The sterilization is following the F0-procedure

(described within the European Pharmacopeia) wherethe temperature within the reference vial is continuouslymonitored and after reaching a temperature of 1301, it iskept for a period of at least 3min. The F0-value iscalculated by the computer software according to Eq. (1)

F0 "Xt2

t1

10T0#T$t%=zDt; (1)

where t1 is the time at which a temperature of 130 1C isreached during the heating phase; t2 the time at whichthe temperature falls below 130 1C during the coolingphase; T0 the temperature to which the F0 value isrelated (it is fixed to 121 1C); T(t) the time-dependenttemperature in the sterilization unit; z the temperaturedifference in 1C that causes an increase of the D value bya factor of 10; Dt the time interval of the periodicallytemperature measurements (it is equal or less than 2 s).The obtained F0-value is the final quality attribute and

part of the sterilization protocol.A minimum value of F0=60min (as our internal

specification; see discussion) must be reached or thesoftware marks the batch as ‘‘unsterile’’. The wholesterilization process takes about 10min, a 4-min heatingphase, a 3.5-min holding phase and a 2.5-min coolingphase. Following the sterilization process, the vials aredetermined for radioactivity by the ionization chamberand finally locked out in lead shielding using apneumatic lift construction.A separate clean run employing 70% ethanol, which is

removed prior to the actual dispensing process by sterilewater and sterile physiological saline, ensures thesterility of all relevant parts of the unit in between twoproduction runs.

2.3. Dispensing precision

The precision of dispensing was validated with respectto volume- and activity accuracy. In five runs 7–12samples of different volumes and activities were filled inorder to simulate a real production run. The volumes tobe dispensed were verified by weighing the samples bymeans of an analytical balance (Sartorius MC210S) andthe corresponding activities were verified by an externalionization chamber (Biodex, Atomlab 100) calibratedwith a Cesium-137 standard source of 2.7MBq. Thedispensing units built in the ionization chamber wascalibrated against the same cesium-137 standard source.

ARTICLE IN PRESS

Fig. 1. Frontal view of the dispensing unit.

P. Karwath et al. / Applied Radiation and Isotopes 62 (2005) 577–586 579

Dispensazione e lock-out (30min circa)- il prodotto viene raccolto nel collect vial- il braccetto meccanico porta ogni singolo vial dalla “tray” alla clean room per il riempimento- la siringa aspira l’FDG dal collect vial e, attraverso un microfiltro sterile da 0,2µm, riempie i vial secondo il volume precedentemente impostato- i vial vengono portati all’interno dello sterilizzatore dove, ad una temperatura di circa 130° per almeno 3min, viene del tutto azzerata la carica batterica eventualmente rimasta

sabato 28 maggio 2011

Page 67: Production process of a radiopharmaceutical

Processo di produzione6° step: lock-out e trasporto

Lock out- la concentrazione radioattiva del prodotto, dopo la sterilizzazione, viene misurata all’interno della camera di ionizzazione- successivamente il vial viene espulso dalla hot cell attraverso l’ascensore, e quindi rinchiuso all’interno di un contenitore in tungsteno

TrasportoUna volta rinchiuso il vial all’interno del contenitore piombato, esso viene messo dentro ad un’ulteriore cassa in tungsteno.L’FDG è ora pronto per essere trasportato, tramite furgone, nel centro di destinazione.

sabato 28 maggio 2011

Page 68: Production process of a radiopharmaceutical

Il controllo qualitàNel momento immediatamente successivo alla fine della dispensazione vengono avviate tutte le analisi necessarie al fine di verificare se il prodotto ottenuto rientra o meno nei parametri imposti dalle direttive GMP, dalla USP e dalla Farmacopea Europea (Ph.-Eur).

Purezza chimica e radio-chimicaSi effettua un’analisi all’HPLC per determinare la presenza di prodotti secondari e di 18F che non si è legato.

Purezza radionuclidicaSi ottiene attraverso l’uso di uno spettrometro multicanale che fornisce l’emivita del prodotto.

sabato 28 maggio 2011

Page 69: Production process of a radiopharmaceutical

Il batch recordInsieme dei documenti, compilati in fase di produzione, atti a garantire la tracciabilità delle diverse fasi del processo di produzione dei radiofarmaci.

Esso deve riportare:- numero di lotto- numero di vial preparati- data di preparazione (ora/minuti)- nome dei centri richiedenti le preparazioni- composizione completa, forma farmaceutica e posologia- numero di lotto delle materie prime e degli altri materiali utilizzati- riferimento alle SOP seguite- documentazione dei locali e degli apparecchi utilizzati- data limite di utilizzazione della preparazione- copia etichetta dei vial e dei piombi- nome e firma dell’operatore- approvazione/rifiuto della preparazione, tramite data e firma del responsabile di produzione- controlli qualità effettuati con data e firma del responsabile del QC- accettazione/rifiuto tramite data e firma del QP (Qualified Person)

sabato 28 maggio 2011

Page 70: Production process of a radiopharmaceutical

DocumentazioneLa documentazione raccolta per ogni singola sintesi si compone di:

- batch record- dati del bombardamento al ciclotrone- report del modulo di sintesi- pending (documento che riassume la quantità di attività totale da produrre, suddivisa per l’attività richiesta da ogni centro)- sterilization data- copia delle etichette apposte su ciascun vial- copia delle etichette provvisorie (± 10%) apposte su ciascun piombo- distribution report (descrive precisamente l’attività totale ottenuta a fine dispensazione e la suddivisione per ciascun vial)- delivery notes (stampati per ciascun vial prodotto, descrivono dettagliatamente le caratteristiche del prodotto in esso contenuto)- copia etichette piombi definitive

sabato 28 maggio 2011