NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata...

64
Articolo #2 NeuroImage Magnetic stimulation of visual cortex impairs perceptual learning Antonello Baldassarre a,n,1 , Paolo Capotosto a,n,1 , Giorgia Committeri a , Maurizio Corbetta b,c a Department of Neuroscience, Imaging and Clinical Science - and ITAB, Institute of Advanced Biomedical Technologies University G. D'Annunzio" Via dei Vestini 33, Chieti, 66100, Italy b Department of Neurology, Radiology, Anatomy & Neurobiology, Washington University School of Medicine, St.Louis, USA c Department of Neuroscience, University of Padua, Italy

Transcript of NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata...

Page 1: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Articolo #2

Magnetic stimulation of visual cortex impairs perceptual learning

Antonello Baldassarre a,n,1, Paolo Capotosto a,n,1, Giorgia Committeri a, Maurizio Corbetta b,c

a Department of Neuroscience, Imaging and Clinical Science - and ITAB, Institute of Advanced Biomedical Technologies University “G. D'Annunzio" Via deiVestini 33, Chieti, 66100, Italyb Department of Neurology, Radiology, Anatomy & Neurobiology, Washington University School of Medicine, St.Louis, USAc Department of Neuroscience, University of Padua, Italy

a r t i c l e i n f o

Article history:Received 13 July 2016Accepted 30 August 2016Available online 31 August 2016

Keywords:Visual cortexPerceptual learningTMS

a b s t r a c t

The ability to learn and process visual stimuli more efficiently is important for survival. Previous neu-roimaging studies have shown that perceptual learning on a shape identification task differently mod-ulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005; Lewis et al.,2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated fortrained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higheractivation for familiar shape. Here, after the intensive training, we employed transcranial magnetic sti-mulation over both visual occipital and parietal regions, previously shown to be modulated, to in-vestigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition.Moreover, the impairment observed after stimulation over the two visual regions was positive correlated.These results strongly support the causal role of the visual network in the control of the perceptuallearning.

& 2016 Elsevier Inc. All rights reserved.

1. Introduction

Observers can voluntarily attend to a location in the visual field,and subsequent stimuli at that location will be recognized moreaccurately and rapidly (Posner, 1980). Furthermore, visual per-ception can be improved through specific training, a phenomenoncalled Visual Perceptual Learning (VPL) (Gibson, 1963). VPL is oneof the strongest examples of plasticity in the adult brain and a corefeature of visual cognition. VPL might depend on attention(Ahissar and Hochstein, 1993) and allows for more efficient re-sponses to environmental stimuli.

Despite several decades of investigations, neuronal mechan-isms of VPL remain debated (Gilbert et al., 2001; Sasaki et al., 2010;Shibata et al., 2014). Neurophysiologic and neuroimaging studiesindicated that VPL induces changes of neural activity in visualcortex (Crist et al., 2001; Schoups et al., 2001; Schwartz et al.,2002; Furmanski et al., 2004) and in higher-order brain regions(Chowdhury and DeAngelis, 2008; Law and Gold, 2009) involvedin the control of spatial attention (Sigman et al., 2005; Lewis et al.,2009), as well as in their interaction (Liu et al., 2010; Lewis et al.,2009).

It has been suggested that VPL shifts the critical locus of pro-cessing for learned stimuli from higher-order control regions, earlyon during training, to visual cortex after learning is completed. Forexample, in human observers, intensive training on a shape or-ientation identification task causes a shift in the pattern of acti-vation, measured with blood oxygenation level dependent (BOLD)signals in functional magnetic resonance imaging (fMRI), betweenfrontal-parietal regions (so-called dorsal attention network, DAN)and occipital visual regions (Sigman et al., 2005; Lewis et al.,2009). Specifically, in our study (Lewis et al., 2009), frontal andparietal regions (e.g. posterior intra-parietal sulcus, pIPS) knownto be involved in the control of visuospatial attention were morestrongly active for novel (untrained) stimuli, and attenuated theirresponse for familiar (trained) stimuli. In contrast, occipital visualregions responded more strongly to trained than untrained sti-muli. Moreover, learning-induced modulation of visual cortex ac-tivity was topographically selective. In fact, since the task requiredobservers to discriminate stimuli at a peripheral location in the leftlower quadrant, corresponding activity modulation was recordedin right dorsal visual cortex. In particular, higher activation wasobserved in both right V2d/V3 and lateral occipital region (LO;Lewis et al., 2009). Finally, response modulations were behavio-rally relevant: subjects with higher sensitivity to trained shapesshowed stronger modulation in the trained quadrant of visualcortex. Overall these findings support the hypothesis that whereashigher-order frontal and parietal regions are more important early

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neuroimage

NeuroImage

http://dx.doi.org/10.1016/j.neuroimage.2016.08.0631053-8119/& 2016 Elsevier Inc. All rights reserved.

n Corresponding authors.E-mail addresses: [email protected] (A. Baldassarre),

[email protected] (P. Capotosto).1 Authors equally contributed to this work.

NeuroImage 143 (2016) 250–255

Magnetic stimulation of visual cortex impairs perceptual learning

Antonello Baldassarre a,n,1, Paolo Capotosto a,n,1, Giorgia Committeri a, Maurizio Corbetta b,c

a Department of Neuroscience, Imaging and Clinical Science - and ITAB, Institute of Advanced Biomedical Technologies University “G. D'Annunzio" Via deiVestini 33, Chieti, 66100, Italyb Department of Neurology, Radiology, Anatomy & Neurobiology, Washington University School of Medicine, St.Louis, USAc Department of Neuroscience, University of Padua, Italy

a r t i c l e i n f o

Article history:Received 13 July 2016Accepted 30 August 2016Available online 31 August 2016

Keywords:Visual cortexPerceptual learningTMS

a b s t r a c t

The ability to learn and process visual stimuli more efficiently is important for survival. Previous neu-roimaging studies have shown that perceptual learning on a shape identification task differently mod-ulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005; Lewis et al.,2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated fortrained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higheractivation for familiar shape. Here, after the intensive training, we employed transcranial magnetic sti-mulation over both visual occipital and parietal regions, previously shown to be modulated, to in-vestigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition.Moreover, the impairment observed after stimulation over the two visual regions was positive correlated.These results strongly support the causal role of the visual network in the control of the perceptuallearning.

& 2016 Elsevier Inc. All rights reserved.

1. Introduction

Observers can voluntarily attend to a location in the visual field,and subsequent stimuli at that location will be recognized moreaccurately and rapidly (Posner, 1980). Furthermore, visual per-ception can be improved through specific training, a phenomenoncalled Visual Perceptual Learning (VPL) (Gibson, 1963). VPL is oneof the strongest examples of plasticity in the adult brain and a corefeature of visual cognition. VPL might depend on attention(Ahissar and Hochstein, 1993) and allows for more efficient re-sponses to environmental stimuli.

Despite several decades of investigations, neuronal mechan-isms of VPL remain debated (Gilbert et al., 2001; Sasaki et al., 2010;Shibata et al., 2014). Neurophysiologic and neuroimaging studiesindicated that VPL induces changes of neural activity in visualcortex (Crist et al., 2001; Schoups et al., 2001; Schwartz et al.,2002; Furmanski et al., 2004) and in higher-order brain regions(Chowdhury and DeAngelis, 2008; Law and Gold, 2009) involvedin the control of spatial attention (Sigman et al., 2005; Lewis et al.,2009), as well as in their interaction (Liu et al., 2010; Lewis et al.,2009).

It has been suggested that VPL shifts the critical locus of pro-cessing for learned stimuli from higher-order control regions, earlyon during training, to visual cortex after learning is completed. Forexample, in human observers, intensive training on a shape or-ientation identification task causes a shift in the pattern of acti-vation, measured with blood oxygenation level dependent (BOLD)signals in functional magnetic resonance imaging (fMRI), betweenfrontal-parietal regions (so-called dorsal attention network, DAN)and occipital visual regions (Sigman et al., 2005; Lewis et al.,2009). Specifically, in our study (Lewis et al., 2009), frontal andparietal regions (e.g. posterior intra-parietal sulcus, pIPS) knownto be involved in the control of visuospatial attention were morestrongly active for novel (untrained) stimuli, and attenuated theirresponse for familiar (trained) stimuli. In contrast, occipital visualregions responded more strongly to trained than untrained sti-muli. Moreover, learning-induced modulation of visual cortex ac-tivity was topographically selective. In fact, since the task requiredobservers to discriminate stimuli at a peripheral location in the leftlower quadrant, corresponding activity modulation was recordedin right dorsal visual cortex. In particular, higher activation wasobserved in both right V2d/V3 and lateral occipital region (LO;Lewis et al., 2009). Finally, response modulations were behavio-rally relevant: subjects with higher sensitivity to trained shapesshowed stronger modulation in the trained quadrant of visualcortex. Overall these findings support the hypothesis that whereashigher-order frontal and parietal regions are more important early

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neuroimage

NeuroImage

http://dx.doi.org/10.1016/j.neuroimage.2016.08.0631053-8119/& 2016 Elsevier Inc. All rights reserved.

n Corresponding authors.E-mail addresses: [email protected] (A. Baldassarre),

[email protected] (P. Capotosto).1 Authors equally contributed to this work.

NeuroImage 143 (2016) 250–255

Page 2: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Struttura di un articolo scientifico

• Introduction Cosa è stato fatto in precedenza? Perché è stato condotto lo studio? !

• Results + Materials and Methods Cosa è stato scoperto? Come è stato condotto lo studio? !

• Discussion Cosa significa?

Page 3: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Struttura di un articolo scientifico

• Introduction Cosa è stato fatto in precedenza? Perché è stato condotto lo studio? !

• Results + Materials and Methods Cosa è stato scoperto? Come è stato condotto lo studio? !

• Discussion Cosa significa?

Page 4: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Cosa è stato fatto in precedenza? Breve overview della letteratura sul topic affrontato

• Cosa non è chiaro? Introduce il problema • Scopo della ricerca. Espone la motivazione del

lavoro presentato • Come è stato condotto lo studio? Breve overview

del Metodo • Predizioni. Cosa ci aspetta di trovare

Introduction

Page 5: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 6: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 7: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• Gli individui sono in grade di

orientare l’attenzione in maniera volontaria nel campo visivo e gli stimoli visivi verranno riconosciuti in maniera piu’ accurta e rapida

Page 8: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• Gli individui sono in grade di

orientare l’attenzione in maniera volontaria nel campo visivo e gli stimoli visivi verranno riconosciuti in maniera piu’ accurta e rapida

• La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual Perceptual Learning (VPL)

Page 9: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• Gli individui sono in grade di

orientare l’attenzione in maniera volontaria nel campo visivo e gli stimoli visivi verranno riconosciuti in maniera piu’ accurta e rapida

• La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual Perceptual Learning (VPL)

• VPL puo’ dipendere dall’attenzione spaziale

Page 10: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 11: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 12: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• Sebbene il VPL sia stato studiato

da decenni, i suoi meccanismi neurali sono ancora dibattuti.

Page 13: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• Sebbene il VPL sia stato studiato

da decenni, i suoi meccanismi neurali sono ancora dibattuti.

• Studi neurofisiologici e di neuroimaging indicano che il VPL induce cambiamenti dell’attivita’ neural nella corteccia visiva e i aree di ordine piu’ alto che sono coinvolte nel controllo dell’attenzione visuo-spaziale

Page 14: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• Sebbene il VPL sia stato studiato

da decenni, i suoi meccanismi neurali sono ancora dibattuti.

• Studi neurofisiologici e di neuroimaging indicano che il VPL induce cambiamenti dell’attivita’ neural nella corteccia visiva e i aree di ordine piu’ alto che sono coinvolte nel controllo dell’attenzione visuo-spaziale

• Inoltre, studi recenti mostrano che il VPL modifica le interazioni tra tali aree.

Page 15: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #3

variance, but its eigenvalue was less than 1 (scree plot in Fig. S3)and it was therefore not further considered (28). Accordingly,PC1 was used to compute individual measures of performance,which we here define as task fitness (f) by using the followingexpression:

f ¼ ½a0 s kc# ·w [3]

where w is the vector of factor weights (SI Methods). In the restof the analysis, we use task fitness to examine the relationshipbetween performance and pretraining resting-state FC.

Pretraining FC in Visual Cortex and Task Fitness. Resting-statefunctional MRI (fMRI) and visuotopic localizer fMRI were ac-quired 24 to 48 h before first exposure to the task (Methods andSI Methods). During the visuotopic localizer scans, subjects wereasked to maintain central fixation while quarter-field stimulusarrays were passively presented in a blocked design (Fig. 1C).Regions of interest (ROIs) for the computation of FC wereidentified in the ventral and dorsal portions of visual cortex ineach hemisphere. At the group level, two ROIs were identifiedin each quadrant as showing the strongest visuotopic localizerresponses (e.g., in right dorsal cortex for left lower field stimu-lation) compared with the average response to stimuli in theother quadrants [group-level voxel-wise random-effect ANOVAs,multiple comparison corrected over the entire brain (P < 0.05)].These regions are shown in Fig. 1D on a flattened representationof visual cortex in the Population Average Landmark and Surface(PALS) atlas (29) and labeled according to their location withrespect to the probabilistic borders of visual areas in the sameatlas (Table S1). In general, for each quarter-field representationin visual cortex, one ROI is “early” in the visual hierarchy (near/at V1–V2), whereas the other is “intermediate” (near/at V4–V8or V3A; Fig. 1D; Table S1 shows coordinates).To examine the relationship between pretraining FC and the

ability to perform the discrimination task, we computed group-level voxel-wise maps of the Pearson correlation coefficient be-tween task fitness and the strength of FC for each visuotopic

ROI (defined as FC–PC1 correlation maps; Methods, SI Meth-ods, and Fig. S4). Fig. 2A shows that the strength of FC betweena representative ROI in right ventral visual cortex (near/at V1–V2) and large swaths of ventral and dorsal peripheral visualcortex in both hemispheres is strongly correlated with task fitness(all voxels Z > 2; P < 0.05, Monte Carlo corrected). Observerswith stronger pretraining FC between visual regions displayedgreater task fitness (Fig. 2B). This relationship was consistentacross different ROIs in left and right visual cortex (Fig. S5). Toquantify this consistency, a conjunction map was computed thatshows the portions of visual cortex with behaviorally predictiveFC across multiple ROIs (Fig. 2C). The most consistent regionsencompassed both early and intermediate retinotopic areas, in-cluding a band outside the foveal region in the near periphery(based on the PALS borders).To examine whether the regions exhibiting behaviorally signifi-

cant pretraining FC coded for the stimuli, we quantified the per-centage of voxels in the FC–PC1 conjunction map that overlappedwith the regions in visual cortex selectively activated by the stim-ulus array (i.e., the sum of the quadrant maps). At a threshold offour of eight ROIs, 72% of the behaviorally predictive voxels fromthe FC–PC1 conjunction map fell within the borders of the regionactivated by the stimulus (Fig. 2D). This proportion increased to86% when the threshold was increased to five of eight ROIs.Computing pairwise correlations for all ROIs and calculating

the correlation with task fitness confirmed these findings. Therange of FC–PC1 correlations varied between an r of 0.1 and an rof 0.8; 13 of 28 (or 8 * 7/2) possible ROI pairs showed a significantcorrelation with task fitness [false discovery rate (FDR), q < 0.05after random permutation test]. Thus, voxel-wise and regionalanalyses confirmed a significant relationship between task fitnessand pretraining FC in portions of visual cortex activated by thevisuotopic localizer stimuli. Fig. 3A shows the group averagestrength of FC between ROI pairs arranged by visual quadrant(i.e., dorsal, ventral). Fig. 3B shows behaviorally significant FC.Behaviorally predictive correlations (FC–PC1) were observedpredominantly in heterotopic region pairs, i.e., region pairs indifferent quadrants within the same (e.g., left dorsal to ventral

Fig. 1. Behavioral training, psychophys-ics results, visuotopic localizer, and ROIs.(A) Experimental paradigm. (B) x axis,number of blocks; y axis, accuracy (i.e.,percentage of correct response correctedfor percentage of false alarms). Blackdots display the group average perfor-mance block by block; solid red lineindicates the psychophysical fittingmodel a = a0 + slog(k) with predictionbounds at 95% of confidence level (dot-ted lines). (C) Design of visuotopic local-izer. Squares of different colors (notshown in real display) indicate a visualquadrant. (D) Visual ROIs/seeds. Eight vi-sual regions (seeds) defined on the basisof the visuotopic localizer scan are dis-played on the flattened representationof posterior occipital cortex using thePALS atlas (29). Blue lines are approxi-mate borders between retinotopic visualareas based on a standard atlas (29) L.H.,left hemisphere; R.H., right hemisphere.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1113148109 Baldassarre et al.

Training di Apprendimento Percettivo Visivo

sponses in the visual cortex by comparing blocks of trials in whichsubjects discriminated stimulus arrays containing either the trainedtarget shape or an untrained target shape (right/left tilted T). Thetarget stimuli were always presented in the trained visual quadrant(Fig. S3). As in the behavioral training sessions, performance washigher for trained than untrained targets (see Fig. S3).

The effect of learning (i.e., a differential response to trainedversus untrained targets) was measured in the regions of interestin the visual cortex defined during the localizer scans. Theresponse to untrained shapes was attenuated (as compared totrained ones) in the right dorsal cortex corresponding to theattended left lower quadrant, but not in the ventral visual cortexcorresponding to the nonattended upper visual quadrants (Fig.2). This pattern indicates topographic and shape specificity of thelearning-dependent modulation. There was also a significantdifference between trained and untrained shapes in the leftdorsal cortex corresponding to the homologous (untrained) rightlower quadrant (see Fig. 2) [condition (trained, untrained) byquadrant (lower left, lower right, upper left, upper right) inter-action [F (3, 33) ! 7,75; P ! 0.0005; posthoc (Newman-Keulstest) for lower left, P " 0.0002; for lower right P " 0.001]]. Themodulation localized to right dorsal V1 to V3 and V3A to LO,and left V1 to V3 on the basis of a population atlas of humanvisual areas (25) (see Fig. 2, Table S2). In addition, the responseto trained shapes was stronger in the contra-lateral (trained)

than ipsi-lateral (untrained) dorsal cortex (P " 0.0002), consis-tent with a shape-specific modulation.

A separate whole brain voxel-wise analysis provided furthersupport for topographic and shape specificity. In this analysis, theonly significant portion of visual cortex showing preferential activityfor trained vs. untrained shape blocks was localized in right dorsalcortex (Fig. 3A) in 2 regions (V2/V3 and LO) that were contralat-eral to the attended left lower quadrant, and within the borders ofthe regions responding to the retinotopic stimulus (Fig. S2C).

These findings are in line with previous studies, showing thatorientation-specific learning changes the tuning properties ofneurons in the early visual cortex, and increases the fMRI signalto trained vs. untrained shapes (26). Here, we show that mod-ulation in the visual cortex is topographically and shape specificand mainly consists of the filtering of sensory-evoked responsesto novel (untrained) shapes in the attended quadrant, whichpresumably leads to a more specific response to the trainedshape. The presence of training-related modulation in the visualcortex homologous to the representation of the trained quadrantis not surprising in light of several recent fMRI studies (27, 28).These studies suggest that modulations in the visual cortex arenot restricted to attended locations, as previously believed, butextend to unattended locations, especially those in the oppositehemisphere homologous to the attended ones. This patternreflects a specific computational mechanism for coding the locusof attention in a cortical map based on activity differencebetween attended and unattended locations (27, 29).

Task-Evoked Activity Outside the Occipital Cortex. A number ofparietal and frontal regions responded more strongly during un-trained as compared to trained shape blocks (see blue regions in Fig.3A; Table S3). These regions correspond to the dorsal fronto-parietal attention network (30), the source of spatially selectiveattention biases to the visual cortex (31), as well as portions of a corecontrol network (32) involved in task set maintenance and errortracking. The stronger activation for novel shape orientation likelyreflects a higher degree of attention engagement, similar to thatoccuring during early training, as opposed to when the shapeorientation is familiar. Finally, a separate set of cortical regions wasmore strongly deactivated during untrained as opposed to trainedshape blocks (see orange regions in Fig. 3A). These regions corre-

Fig. 1. Behavioral training and psychophysics results. (A) Illustration of timelinefor 2 trials. On each trial subjects fixated a central spot for 200 ms (fixation), afterwhich the target shape (an inverted T) was presented at the center of the screenfor 2,000 ms (target presentation); finally, an array of 12 stimuli, differentlyorientedTs (distracters)withorwithoutan invertedT (target),wasbrieflyflashedfor 150 ms (array presentation). Subjects attended to the lower left visual quad-rant and indicated the presence or absence of the target shape (red E) in thatvisual quadrant (E was not present in the display; see SI Methods for moredetails). (B) Example of a single subject’s learning curve. Each block contains 45trials. The red line indicates a learning threshold of 80% accuracy in 10 consec-utive trial blocks. (C) Psychophysical comparison of accuracy in all quadrants. In acontrol session at the end of training, subjects were asked to discriminate be-tween trained and uniquely shaped orientations in all visual quadrants. A re-peated-measure ANOVA, with shape (trained, untrained) and quadrant (trainedLower Left, Lower Right, Upper Left, Upper Right) as factors, showed a significantmain effect of quadrant [F (3, 21) ! 3.52, P " 0.05], and a significant interactionof shape by quadrant [F (3, 21) ! 8.49, P " 0.001 ]. Posthoc contrasts (Newman-Keuls test) showed that performance in the trained condition (trained shape inthe trained visual quadrant) was better with respect to any other condition. (n !6; Error bars, # SEM; *, P " 0.05).

Fig. 2. Task-evoked modulation of the visual cortex after perceptual learn-ing. (Center) Stimulus array with colored squares (not present in real display)indicating 4 visual quadrants. (Flat maps) visual cortex ROIs obtained frompassive localizer scans by stimulating one quadrant at a time (Fig. S2). ROIs areprojected onto a flattened representation of the posterior occipital cortexusing the PALS (population-average, landmark, and surface-based) atlas (25).Bar plots: % signal change of BOLD in each quadrant when attending to thelower left quadrant and discriminating trained or untrained targets. Note thatall 4 quadrants of the visual cortex were stimulated by the stimulus array, butonly the trained visual quadrant in the right dorsal and the homologous areain left dorsal visual cortex show a shape-specific modulation. (PosthocNewman-Keuls test, n ! 12; Error bars, # SEM; *, P " 0.05).

Lewis et al. PNAS ! October 13, 2009 ! vol. 106 ! no. 41 ! 17559N

EURO

SCIE

NCE

Lewis, Baldassarre et al., 2009

Page 16: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #3

variance, but its eigenvalue was less than 1 (scree plot in Fig. S3)and it was therefore not further considered (28). Accordingly,PC1 was used to compute individual measures of performance,which we here define as task fitness (f) by using the followingexpression:

f ¼ ½a0 s kc# ·w [3]

where w is the vector of factor weights (SI Methods). In the restof the analysis, we use task fitness to examine the relationshipbetween performance and pretraining resting-state FC.

Pretraining FC in Visual Cortex and Task Fitness. Resting-statefunctional MRI (fMRI) and visuotopic localizer fMRI were ac-quired 24 to 48 h before first exposure to the task (Methods andSI Methods). During the visuotopic localizer scans, subjects wereasked to maintain central fixation while quarter-field stimulusarrays were passively presented in a blocked design (Fig. 1C).Regions of interest (ROIs) for the computation of FC wereidentified in the ventral and dorsal portions of visual cortex ineach hemisphere. At the group level, two ROIs were identifiedin each quadrant as showing the strongest visuotopic localizerresponses (e.g., in right dorsal cortex for left lower field stimu-lation) compared with the average response to stimuli in theother quadrants [group-level voxel-wise random-effect ANOVAs,multiple comparison corrected over the entire brain (P < 0.05)].These regions are shown in Fig. 1D on a flattened representationof visual cortex in the Population Average Landmark and Surface(PALS) atlas (29) and labeled according to their location withrespect to the probabilistic borders of visual areas in the sameatlas (Table S1). In general, for each quarter-field representationin visual cortex, one ROI is “early” in the visual hierarchy (near/at V1–V2), whereas the other is “intermediate” (near/at V4–V8or V3A; Fig. 1D; Table S1 shows coordinates).To examine the relationship between pretraining FC and the

ability to perform the discrimination task, we computed group-level voxel-wise maps of the Pearson correlation coefficient be-tween task fitness and the strength of FC for each visuotopic

ROI (defined as FC–PC1 correlation maps; Methods, SI Meth-ods, and Fig. S4). Fig. 2A shows that the strength of FC betweena representative ROI in right ventral visual cortex (near/at V1–V2) and large swaths of ventral and dorsal peripheral visualcortex in both hemispheres is strongly correlated with task fitness(all voxels Z > 2; P < 0.05, Monte Carlo corrected). Observerswith stronger pretraining FC between visual regions displayedgreater task fitness (Fig. 2B). This relationship was consistentacross different ROIs in left and right visual cortex (Fig. S5). Toquantify this consistency, a conjunction map was computed thatshows the portions of visual cortex with behaviorally predictiveFC across multiple ROIs (Fig. 2C). The most consistent regionsencompassed both early and intermediate retinotopic areas, in-cluding a band outside the foveal region in the near periphery(based on the PALS borders).To examine whether the regions exhibiting behaviorally signifi-

cant pretraining FC coded for the stimuli, we quantified the per-centage of voxels in the FC–PC1 conjunction map that overlappedwith the regions in visual cortex selectively activated by the stim-ulus array (i.e., the sum of the quadrant maps). At a threshold offour of eight ROIs, 72% of the behaviorally predictive voxels fromthe FC–PC1 conjunction map fell within the borders of the regionactivated by the stimulus (Fig. 2D). This proportion increased to86% when the threshold was increased to five of eight ROIs.Computing pairwise correlations for all ROIs and calculating

the correlation with task fitness confirmed these findings. Therange of FC–PC1 correlations varied between an r of 0.1 and an rof 0.8; 13 of 28 (or 8 * 7/2) possible ROI pairs showed a significantcorrelation with task fitness [false discovery rate (FDR), q < 0.05after random permutation test]. Thus, voxel-wise and regionalanalyses confirmed a significant relationship between task fitnessand pretraining FC in portions of visual cortex activated by thevisuotopic localizer stimuli. Fig. 3A shows the group averagestrength of FC between ROI pairs arranged by visual quadrant(i.e., dorsal, ventral). Fig. 3B shows behaviorally significant FC.Behaviorally predictive correlations (FC–PC1) were observedpredominantly in heterotopic region pairs, i.e., region pairs indifferent quadrants within the same (e.g., left dorsal to ventral

Fig. 1. Behavioral training, psychophys-ics results, visuotopic localizer, and ROIs.(A) Experimental paradigm. (B) x axis,number of blocks; y axis, accuracy (i.e.,percentage of correct response correctedfor percentage of false alarms). Blackdots display the group average perfor-mance block by block; solid red lineindicates the psychophysical fittingmodel a = a0 + slog(k) with predictionbounds at 95% of confidence level (dot-ted lines). (C) Design of visuotopic local-izer. Squares of different colors (notshown in real display) indicate a visualquadrant. (D) Visual ROIs/seeds. Eight vi-sual regions (seeds) defined on the basisof the visuotopic localizer scan are dis-played on the flattened representationof posterior occipital cortex using thePALS atlas (29). Blue lines are approxi-mate borders between retinotopic visualareas based on a standard atlas (29) L.H.,left hemisphere; R.H., right hemisphere.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1113148109 Baldassarre et al.

Training di Apprendimento Percettivo Visivo

sponses in the visual cortex by comparing blocks of trials in whichsubjects discriminated stimulus arrays containing either the trainedtarget shape or an untrained target shape (right/left tilted T). Thetarget stimuli were always presented in the trained visual quadrant(Fig. S3). As in the behavioral training sessions, performance washigher for trained than untrained targets (see Fig. S3).

The effect of learning (i.e., a differential response to trainedversus untrained targets) was measured in the regions of interestin the visual cortex defined during the localizer scans. Theresponse to untrained shapes was attenuated (as compared totrained ones) in the right dorsal cortex corresponding to theattended left lower quadrant, but not in the ventral visual cortexcorresponding to the nonattended upper visual quadrants (Fig.2). This pattern indicates topographic and shape specificity of thelearning-dependent modulation. There was also a significantdifference between trained and untrained shapes in the leftdorsal cortex corresponding to the homologous (untrained) rightlower quadrant (see Fig. 2) [condition (trained, untrained) byquadrant (lower left, lower right, upper left, upper right) inter-action [F (3, 33) ! 7,75; P ! 0.0005; posthoc (Newman-Keulstest) for lower left, P " 0.0002; for lower right P " 0.001]]. Themodulation localized to right dorsal V1 to V3 and V3A to LO,and left V1 to V3 on the basis of a population atlas of humanvisual areas (25) (see Fig. 2, Table S2). In addition, the responseto trained shapes was stronger in the contra-lateral (trained)

than ipsi-lateral (untrained) dorsal cortex (P " 0.0002), consis-tent with a shape-specific modulation.

A separate whole brain voxel-wise analysis provided furthersupport for topographic and shape specificity. In this analysis, theonly significant portion of visual cortex showing preferential activityfor trained vs. untrained shape blocks was localized in right dorsalcortex (Fig. 3A) in 2 regions (V2/V3 and LO) that were contralat-eral to the attended left lower quadrant, and within the borders ofthe regions responding to the retinotopic stimulus (Fig. S2C).

These findings are in line with previous studies, showing thatorientation-specific learning changes the tuning properties ofneurons in the early visual cortex, and increases the fMRI signalto trained vs. untrained shapes (26). Here, we show that mod-ulation in the visual cortex is topographically and shape specificand mainly consists of the filtering of sensory-evoked responsesto novel (untrained) shapes in the attended quadrant, whichpresumably leads to a more specific response to the trainedshape. The presence of training-related modulation in the visualcortex homologous to the representation of the trained quadrantis not surprising in light of several recent fMRI studies (27, 28).These studies suggest that modulations in the visual cortex arenot restricted to attended locations, as previously believed, butextend to unattended locations, especially those in the oppositehemisphere homologous to the attended ones. This patternreflects a specific computational mechanism for coding the locusof attention in a cortical map based on activity differencebetween attended and unattended locations (27, 29).

Task-Evoked Activity Outside the Occipital Cortex. A number ofparietal and frontal regions responded more strongly during un-trained as compared to trained shape blocks (see blue regions in Fig.3A; Table S3). These regions correspond to the dorsal fronto-parietal attention network (30), the source of spatially selectiveattention biases to the visual cortex (31), as well as portions of a corecontrol network (32) involved in task set maintenance and errortracking. The stronger activation for novel shape orientation likelyreflects a higher degree of attention engagement, similar to thatoccuring during early training, as opposed to when the shapeorientation is familiar. Finally, a separate set of cortical regions wasmore strongly deactivated during untrained as opposed to trainedshape blocks (see orange regions in Fig. 3A). These regions corre-

Fig. 1. Behavioral training and psychophysics results. (A) Illustration of timelinefor 2 trials. On each trial subjects fixated a central spot for 200 ms (fixation), afterwhich the target shape (an inverted T) was presented at the center of the screenfor 2,000 ms (target presentation); finally, an array of 12 stimuli, differentlyorientedTs (distracters)withorwithoutan invertedT (target),wasbrieflyflashedfor 150 ms (array presentation). Subjects attended to the lower left visual quad-rant and indicated the presence or absence of the target shape (red E) in thatvisual quadrant (E was not present in the display; see SI Methods for moredetails). (B) Example of a single subject’s learning curve. Each block contains 45trials. The red line indicates a learning threshold of 80% accuracy in 10 consec-utive trial blocks. (C) Psychophysical comparison of accuracy in all quadrants. In acontrol session at the end of training, subjects were asked to discriminate be-tween trained and uniquely shaped orientations in all visual quadrants. A re-peated-measure ANOVA, with shape (trained, untrained) and quadrant (trainedLower Left, Lower Right, Upper Left, Upper Right) as factors, showed a significantmain effect of quadrant [F (3, 21) ! 3.52, P " 0.05], and a significant interactionof shape by quadrant [F (3, 21) ! 8.49, P " 0.001 ]. Posthoc contrasts (Newman-Keuls test) showed that performance in the trained condition (trained shape inthe trained visual quadrant) was better with respect to any other condition. (n !6; Error bars, # SEM; *, P " 0.05).

Fig. 2. Task-evoked modulation of the visual cortex after perceptual learn-ing. (Center) Stimulus array with colored squares (not present in real display)indicating 4 visual quadrants. (Flat maps) visual cortex ROIs obtained frompassive localizer scans by stimulating one quadrant at a time (Fig. S2). ROIs areprojected onto a flattened representation of the posterior occipital cortexusing the PALS (population-average, landmark, and surface-based) atlas (25).Bar plots: % signal change of BOLD in each quadrant when attending to thelower left quadrant and discriminating trained or untrained targets. Note thatall 4 quadrants of the visual cortex were stimulated by the stimulus array, butonly the trained visual quadrant in the right dorsal and the homologous areain left dorsal visual cortex show a shape-specific modulation. (PosthocNewman-Keuls test, n ! 12; Error bars, # SEM; *, P " 0.05).

Lewis et al. PNAS ! October 13, 2009 ! vol. 106 ! no. 41 ! 17559N

EURO

SCIE

NCE

Lewis, Baldassarre et al., 2009

Page 17: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #31.Corteccia Visiva Allenata e Dorsal Attention Network diventano più Anti-Correlati

0"

1"

2"

3"

4"

5"

6"

7"

1"

0

-0.1

-0.2

Pre Post

Trained Visual Network

Dorsal Attention Network

Lewis, Baldassarre et al., 2009

Page 18: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #31.Corteccia Visiva Allenata e Dorsal Attention Network diventano più Anti-Correlati

0"

1"

2"

3"

4"

5"

6"

7"

1"

0

-0.1

-0.2

Pre Post

Trained Visual Network

Dorsal Attention Network

Lewis, Baldassarre et al., 2009

Page 19: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #31.Corteccia Visiva Allenata e Dorsal Attention Network diventano più Anti-Correlati

0"

1"

2"

3"

4"

5"

6"

7"

1"

0

-0.1

-0.2

Pre Post

Trained Visual Network

Dorsal Attention Network

Lewis, Baldassarre et al., 2009

Page 20: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #31.Corteccia Visiva Allenata e Dorsal Attention Network diventano più Anti-Correlati!2.Corteccia Visiva Non-Allenata e Default Network diventano meno Anti-Correlati

0"

1"

2"

3"

4"

5"

6"

7"

8"

1"

0"

1"

2"

3"

4"

5"

6"

7"

1"

0

-0.1

-0.2

0

-0.1

-0.2

Pre PostPre Post

Trained Visual Network

Dorsal Attention Network

Untrained Visual Network

Default Mode Network

Lewis, Baldassarre et al., 2009

Page 21: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #31.Corteccia Visiva Allenata e Dorsal Attention Network diventano più Anti-Correlati!2.Corteccia Visiva Non-Allenata e Default Network diventano meno Anti-Correlati

0"

1"

2"

3"

4"

5"

6"

7"

8"

1"

0"

1"

2"

3"

4"

5"

6"

7"

1"

0

-0.1

-0.2

0

-0.1

-0.2

Pre PostPre Post

Trained Visual Network

Dorsal Attention Network

Untrained Visual Network

Default Mode Network

Lewis, Baldassarre et al., 2009

Page 22: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction #31.Corteccia Visiva Allenata e Dorsal Attention Network diventano più Anti-Correlati!2.Corteccia Visiva Non-Allenata e Default Network diventano meno Anti-Correlati

0"

1"

2"

3"

4"

5"

6"

7"

8"

1"

0"

1"

2"

3"

4"

5"

6"

7"

1"

0

-0.1

-0.2

0

-0.1

-0.2

Pre PostPre Post

Trained Visual Network

Dorsal Attention Network

Untrained Visual Network

Default Mode Network

Lewis, Baldassarre et al., 2009

Page 23: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 24: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 25: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• E’ stato suggerito che il VPL sposta il

locus corticale dell’elaborazione deli stimuli appresi da regioni di alto-ordine di control cognitive (nella fase iniziale del training) verso region della corteccia visiva (quando il training e’ completato)

Page 26: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• E’ stato suggerito che il VPL sposta il

locus corticale dell’elaborazione deli stimuli appresi da regioni di alto-ordine di control cognitive (nella fase iniziale del training) verso region della corteccia visiva (quando il training e’ completato)

• Per esempio, lo studio fMRI di Lewis e coll. (2009) sul VPL han mostrato che il dorsal attention network era maggiormente attivato per la forma nuova (non-allenata) e meno activate per la forma familiare (allenata).

Page 27: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction• E’ stato suggerito che il VPL sposta il

locus corticale dell’elaborazione deli stimuli appresi da regioni di alto-ordine di control cognitive (nella fase iniziale del training) verso region della corteccia visiva (quando il training e’ completato)

• Per esempio, lo studio fMRI di Lewis e coll. (2009) sul VPL han mostrato che il dorsal attention network era maggiormente attivato per la forma nuova (non-allenata) e meno activate per la forma familiare (allenata).

• Dicontro, la corteccia visiva era piu’ attivata per la forma familiare (allenata) rispetto a quella nova (non-allenata)

Page 28: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• 14 soggetti sani!• Stimoli: 12 T con diverso orientamento!• Durata stimolo: 150 msec!• Target: T rovesciata solo nel quadrante

inferiore sx!• 80% casi presente; 20% assente!• Distrattori: T diverso orientamento!• Compito: mantenere la fissazione e

prestare attenzione quadrante inferiore sx per identificare la forma target !

• Risposta: presente/assente!• Registrazione dell’accuratezza e dei

tempi di reazione (RTs)!• Learning threshold (soglia di

apprendimento): 10 blocchi consecutivi con 80% accuratezza!

• Risposte “pesate” per i falsi positivi

variance, but its eigenvalue was less than 1 (scree plot in Fig. S3)and it was therefore not further considered (28). Accordingly,PC1 was used to compute individual measures of performance,which we here define as task fitness (f) by using the followingexpression:

f ¼ ½a0 s kc# ·w [3]

where w is the vector of factor weights (SI Methods). In the restof the analysis, we use task fitness to examine the relationshipbetween performance and pretraining resting-state FC.

Pretraining FC in Visual Cortex and Task Fitness. Resting-statefunctional MRI (fMRI) and visuotopic localizer fMRI were ac-quired 24 to 48 h before first exposure to the task (Methods andSI Methods). During the visuotopic localizer scans, subjects wereasked to maintain central fixation while quarter-field stimulusarrays were passively presented in a blocked design (Fig. 1C).Regions of interest (ROIs) for the computation of FC wereidentified in the ventral and dorsal portions of visual cortex ineach hemisphere. At the group level, two ROIs were identifiedin each quadrant as showing the strongest visuotopic localizerresponses (e.g., in right dorsal cortex for left lower field stimu-lation) compared with the average response to stimuli in theother quadrants [group-level voxel-wise random-effect ANOVAs,multiple comparison corrected over the entire brain (P < 0.05)].These regions are shown in Fig. 1D on a flattened representationof visual cortex in the Population Average Landmark and Surface(PALS) atlas (29) and labeled according to their location withrespect to the probabilistic borders of visual areas in the sameatlas (Table S1). In general, for each quarter-field representationin visual cortex, one ROI is “early” in the visual hierarchy (near/at V1–V2), whereas the other is “intermediate” (near/at V4–V8or V3A; Fig. 1D; Table S1 shows coordinates).To examine the relationship between pretraining FC and the

ability to perform the discrimination task, we computed group-level voxel-wise maps of the Pearson correlation coefficient be-tween task fitness and the strength of FC for each visuotopic

ROI (defined as FC–PC1 correlation maps; Methods, SI Meth-ods, and Fig. S4). Fig. 2A shows that the strength of FC betweena representative ROI in right ventral visual cortex (near/at V1–V2) and large swaths of ventral and dorsal peripheral visualcortex in both hemispheres is strongly correlated with task fitness(all voxels Z > 2; P < 0.05, Monte Carlo corrected). Observerswith stronger pretraining FC between visual regions displayedgreater task fitness (Fig. 2B). This relationship was consistentacross different ROIs in left and right visual cortex (Fig. S5). Toquantify this consistency, a conjunction map was computed thatshows the portions of visual cortex with behaviorally predictiveFC across multiple ROIs (Fig. 2C). The most consistent regionsencompassed both early and intermediate retinotopic areas, in-cluding a band outside the foveal region in the near periphery(based on the PALS borders).To examine whether the regions exhibiting behaviorally signifi-

cant pretraining FC coded for the stimuli, we quantified the per-centage of voxels in the FC–PC1 conjunction map that overlappedwith the regions in visual cortex selectively activated by the stim-ulus array (i.e., the sum of the quadrant maps). At a threshold offour of eight ROIs, 72% of the behaviorally predictive voxels fromthe FC–PC1 conjunction map fell within the borders of the regionactivated by the stimulus (Fig. 2D). This proportion increased to86% when the threshold was increased to five of eight ROIs.Computing pairwise correlations for all ROIs and calculating

the correlation with task fitness confirmed these findings. Therange of FC–PC1 correlations varied between an r of 0.1 and an rof 0.8; 13 of 28 (or 8 * 7/2) possible ROI pairs showed a significantcorrelation with task fitness [false discovery rate (FDR), q < 0.05after random permutation test]. Thus, voxel-wise and regionalanalyses confirmed a significant relationship between task fitnessand pretraining FC in portions of visual cortex activated by thevisuotopic localizer stimuli. Fig. 3A shows the group averagestrength of FC between ROI pairs arranged by visual quadrant(i.e., dorsal, ventral). Fig. 3B shows behaviorally significant FC.Behaviorally predictive correlations (FC–PC1) were observedpredominantly in heterotopic region pairs, i.e., region pairs indifferent quadrants within the same (e.g., left dorsal to ventral

Fig. 1. Behavioral training, psychophys-ics results, visuotopic localizer, and ROIs.(A) Experimental paradigm. (B) x axis,number of blocks; y axis, accuracy (i.e.,percentage of correct response correctedfor percentage of false alarms). Blackdots display the group average perfor-mance block by block; solid red lineindicates the psychophysical fittingmodel a = a0 + slog(k) with predictionbounds at 95% of confidence level (dot-ted lines). (C) Design of visuotopic local-izer. Squares of different colors (notshown in real display) indicate a visualquadrant. (D) Visual ROIs/seeds. Eight vi-sual regions (seeds) defined on the basisof the visuotopic localizer scan are dis-played on the flattened representationof posterior occipital cortex using thePALS atlas (29). Blue lines are approxi-mate borders between retinotopic visualareas based on a standard atlas (29) L.H.,left hemisphere; R.H., right hemisphere.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1113148109 Baldassarre et al.

Orientation Discrimination taskIntroduction

Page 29: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Orientation Discrimination taskIntroduction

Accu

racy

50 100 150 200

20

40

80

60

Block

Blocks

Page 30: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

IntroductionDopo il Training, Stesso compito del training con la Forma Allenata

(T rovesciata) vs. Forma Non Allenata (T dx, T sx)

2000

150

2000

150

ms

Trained Shape

Page 31: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

2000

150

2000

150

ms

Trained Shape

IntroductionDopo il Training, Stesso compito del training con la Forma Allenata

(T rovesciata) vs. Forma Non Allenata (T dx, T sx)

2000

150

2000

150

ms

Untrained Shape

Page 32: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

IPS FEF

aI

PrCe

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata

Introduction

Page 33: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

IPS FEF

aI

PrCe

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata

Introduction

Page 34: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

IPS FEF

aI

PrCe

0"

1"

2"

3"

4"

5"

6"

7"

1"

Untrained > Trained

0

0.2

% B

OLD

cha

nge

Dorsal Attention Network

Trained Untrained

*

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata

Introduction

Page 35: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

IPS FEF

aI

PrCe

0"

1"

2"

3"

4"

5"

6"

7"

1"

Untrained > Trained

0

0.2

% B

OLD

cha

nge

Dorsal Attention Network

Trained Untrained

*

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata

Introduction

Page 36: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

LO

IPS FEF

aI

PrCe

0"

1"

2"

3"

4"

5"

6"

7"

1"

Untrained > Trained

0

0.2

% B

OLD

cha

nge

Dorsal Attention Network

Trained Untrained

*

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata

Introduction

Page 37: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

LO

IPS FEF

aI

PrCe

0"

1"

2"

3"

4"

5"

6"

7"

1"

Untrained > Trained

0

0.2

% B

OLD

cha

nge

Dorsal Attention Network

Trained Untrained

*

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata2. Corteccia Visiva Dorsale di Destra (Allenata): Maggior Attivazione Forma

Allenata vs. Non-Allenata

Introduction

Page 38: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

LO

IPS FEF

aI

PrCe

0"

1"

2"

3"

4"

5"

6"

7"

1"

Untrained > Trained

0

0.2

% B

OLD

cha

nge

Dorsal Attention Network

Trained Untrained

*

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata2. Corteccia Visiva Dorsale di Destra (Allenata): Maggior Attivazione Forma

Allenata vs. Non-Allenata

Introduction

Page 39: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

LO

IPS FEF

aI

PrCe

0"

1"

2"

3"

4"

5"

6"

7"

8"

1"

Trained > Untrained

0

0.2

% B

OLD

cha

nge

Trained Visual Cortex

Trained Untrained

*

0"

1"

2"

3"

4"

5"

6"

7"

1"

Untrained > Trained

0

0.2

% B

OLD

cha

nge

Dorsal Attention Network

Trained Untrained

*

MT+

IPSFEF

aI

PrCe

MT+

1. Dorsal Attention Network: Maggior Attivazione Forma Non-Allenata > Allenata2. Corteccia Visiva Dorsale di Destra (Allenata): Maggior Attivazione Forma

Allenata vs. Non-Allenata

Introduction

Page 40: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 41: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 42: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Considerati nel complesso, questi risultati supportano l’ipotesi che, mentre le regioni attentive/controllo fronto-parietali sono piu’ importanti nella fase iniziale del training, il controllo attentive diviene meno importante nella fase finale del training quando si formano dei ‘templati’ in corteccia visiva.

Introduction

Page 43: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 44: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 45: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Mentre ci soon study che offrono informazioni important sui meccanismi neurali del VPL, non ci sono evidenze dirette che le regioni visive (V2d/V3 e LO) mediano in realta’ il VPL.

Introduction

Page 46: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Mentre ci soon study che offrono informazioni important sui meccanismi neurali del VPL, non ci sono evidenze dirette che le regioni visive (V2d/V3 e LO) mediano in realta’ il VPL.

• In quest studio abbiamo utilizzato la rTMS in un gruppo di soggetti sani per testare con un approccio causale il ruolo cruciale delle aree visive nel VPL.

Introduction

Page 47: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Mentre ci soon study che offrono informazioni important sui meccanismi neurali del VPL, non ci sono evidenze dirette che le regioni visive (V2d/V3 e LO) mediano in realta’ il VPL.

• In quest studio abbiamo utilizzato la rTMS in un gruppo di soggetti sani per testare con un approccio causale il ruolo cruciale delle aree visive nel VPL.

• Abbiamo utilizzato lo stesso paradigma degli studi di Lewis et al., 2009 e Baldassarre et al., 2012

Introduction

Page 48: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Introduction

Page 49: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Dopo un training intensivo la TMS e’ stat utilizzata per interferire con l’attivita’ delle aree visive alienate (V2d/V3 e LO) e di una regione del solco intraparietale (IPS)

Introduction

Page 50: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Dopo un training intensivo la TMS e’ stat utilizzata per interferire con l’attivita’ delle aree visive alienate (V2d/V3 e LO) e di una regione del solco intraparietale (IPS)

• Se il VPL e’ raggiunto e il template si e’ formato nella porzione della corteccia visiva allenata (dorsale di destra), la stimolazione di IPS non peggiorera’ il VPL

Introduction

Page 51: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Dopo un training intensivo la TMS e’ stat utilizzata per interferire con l’attivita’ delle aree visive alienate (V2d/V3 e LO) e di una regione del solco intraparietale (IPS)

• Se il VPL e’ raggiunto e il template si e’ formato nella porzione della corteccia visiva allenata (dorsale di destra), la stimolazione di IPS non peggiorera’ il VPL

• Dicontro, ci si aspetta che la stimolazione di V2d/V3 e LO peggiorera’ la perfomance.

Introduction

Page 52: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• Dopo un training intensivo la TMS e’ stat utilizzata per interferire con l’attivita’ delle aree visive alienate (V2d/V3 e LO) e di una regione del solco intraparietale (IPS)

• Se il VPL e’ raggiunto e il template si e’ formato nella porzione della corteccia visiva allenata (dorsale di destra), la stimolazione di IPS non peggiorera’ il VPL

• Dicontro, ci si aspetta che la stimolazione di V2d/V3 e LO peggiorera’ la perfomance.

• La stimolazione su V2d/V3 e LO produrra’ effete neagtivi simili.

Introduction

Page 53: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Methods

Page 54: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Methods

Page 55: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

• 16 soggetti sani!• Stimoli: 12 T con diverso orientamento!• Durata stimolo: 150 msec!• Target: T rovesciata solo nel quadrante

inferiore sx!• 80% casi presente; 20% assente!• Distrattori: T diverso orientamento!• Compito: mantenere la fissazione e

prestare attenzione quadrante inferiore sx per identificare la forma target !

• Risposta: presente/assente!• Registrazione dell’accuratezza e dei

tempi di reazione (RTs)!• Learning threshold (soglia di

apprendimento): 12 blocchi consecutivi con 80% accuratezza!

• Risposte “pesate” per i falsi positivi

variance, but its eigenvalue was less than 1 (scree plot in Fig. S3)and it was therefore not further considered (28). Accordingly,PC1 was used to compute individual measures of performance,which we here define as task fitness (f) by using the followingexpression:

f ¼ ½a0 s kc# ·w [3]

where w is the vector of factor weights (SI Methods). In the restof the analysis, we use task fitness to examine the relationshipbetween performance and pretraining resting-state FC.

Pretraining FC in Visual Cortex and Task Fitness. Resting-statefunctional MRI (fMRI) and visuotopic localizer fMRI were ac-quired 24 to 48 h before first exposure to the task (Methods andSI Methods). During the visuotopic localizer scans, subjects wereasked to maintain central fixation while quarter-field stimulusarrays were passively presented in a blocked design (Fig. 1C).Regions of interest (ROIs) for the computation of FC wereidentified in the ventral and dorsal portions of visual cortex ineach hemisphere. At the group level, two ROIs were identifiedin each quadrant as showing the strongest visuotopic localizerresponses (e.g., in right dorsal cortex for left lower field stimu-lation) compared with the average response to stimuli in theother quadrants [group-level voxel-wise random-effect ANOVAs,multiple comparison corrected over the entire brain (P < 0.05)].These regions are shown in Fig. 1D on a flattened representationof visual cortex in the Population Average Landmark and Surface(PALS) atlas (29) and labeled according to their location withrespect to the probabilistic borders of visual areas in the sameatlas (Table S1). In general, for each quarter-field representationin visual cortex, one ROI is “early” in the visual hierarchy (near/at V1–V2), whereas the other is “intermediate” (near/at V4–V8or V3A; Fig. 1D; Table S1 shows coordinates).To examine the relationship between pretraining FC and the

ability to perform the discrimination task, we computed group-level voxel-wise maps of the Pearson correlation coefficient be-tween task fitness and the strength of FC for each visuotopic

ROI (defined as FC–PC1 correlation maps; Methods, SI Meth-ods, and Fig. S4). Fig. 2A shows that the strength of FC betweena representative ROI in right ventral visual cortex (near/at V1–V2) and large swaths of ventral and dorsal peripheral visualcortex in both hemispheres is strongly correlated with task fitness(all voxels Z > 2; P < 0.05, Monte Carlo corrected). Observerswith stronger pretraining FC between visual regions displayedgreater task fitness (Fig. 2B). This relationship was consistentacross different ROIs in left and right visual cortex (Fig. S5). Toquantify this consistency, a conjunction map was computed thatshows the portions of visual cortex with behaviorally predictiveFC across multiple ROIs (Fig. 2C). The most consistent regionsencompassed both early and intermediate retinotopic areas, in-cluding a band outside the foveal region in the near periphery(based on the PALS borders).To examine whether the regions exhibiting behaviorally signifi-

cant pretraining FC coded for the stimuli, we quantified the per-centage of voxels in the FC–PC1 conjunction map that overlappedwith the regions in visual cortex selectively activated by the stim-ulus array (i.e., the sum of the quadrant maps). At a threshold offour of eight ROIs, 72% of the behaviorally predictive voxels fromthe FC–PC1 conjunction map fell within the borders of the regionactivated by the stimulus (Fig. 2D). This proportion increased to86% when the threshold was increased to five of eight ROIs.Computing pairwise correlations for all ROIs and calculating

the correlation with task fitness confirmed these findings. Therange of FC–PC1 correlations varied between an r of 0.1 and an rof 0.8; 13 of 28 (or 8 * 7/2) possible ROI pairs showed a significantcorrelation with task fitness [false discovery rate (FDR), q < 0.05after random permutation test]. Thus, voxel-wise and regionalanalyses confirmed a significant relationship between task fitnessand pretraining FC in portions of visual cortex activated by thevisuotopic localizer stimuli. Fig. 3A shows the group averagestrength of FC between ROI pairs arranged by visual quadrant(i.e., dorsal, ventral). Fig. 3B shows behaviorally significant FC.Behaviorally predictive correlations (FC–PC1) were observedpredominantly in heterotopic region pairs, i.e., region pairs indifferent quadrants within the same (e.g., left dorsal to ventral

Fig. 1. Behavioral training, psychophys-ics results, visuotopic localizer, and ROIs.(A) Experimental paradigm. (B) x axis,number of blocks; y axis, accuracy (i.e.,percentage of correct response correctedfor percentage of false alarms). Blackdots display the group average perfor-mance block by block; solid red lineindicates the psychophysical fittingmodel a = a0 + slog(k) with predictionbounds at 95% of confidence level (dot-ted lines). (C) Design of visuotopic local-izer. Squares of different colors (notshown in real display) indicate a visualquadrant. (D) Visual ROIs/seeds. Eight vi-sual regions (seeds) defined on the basisof the visuotopic localizer scan are dis-played on the flattened representationof posterior occipital cortex using thePALS atlas (29). Blue lines are approxi-mate borders between retinotopic visualareas based on a standard atlas (29) L.H.,left hemisphere; R.H., right hemisphere.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1113148109 Baldassarre et al.

Orientation Discrimination taskMethods

Page 56: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Orientation Discrimination taskAc

cura

cy

50 100 150 200

20

40

80

60

Block

Blocks

Methods

Page 57: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Methods

Page 58: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Methods

Page 59: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Methods

Page 60: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

MethodsLa TMS e’ stat applicata in maniera attivia su 3 siti: V2d/3, LO e IPS piu’ una stimolazione ‘finta' (Sham)

Page 61: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Results

Page 62: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Results

Page 63: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Results

Page 64: NeuroImage 143 (2016) 250 255 Articolo #2 · • La percezione visiva puo’ essere migliorata attraverso il training, fenomeno chiamato Visual ... dell’attenzione visuo-spaziale

Results