Leonardo Testi - [email protected] ESO

53
Astrofisica con gli osservatori di ESO Leonardo Testi - [email protected] ESO

Transcript of Leonardo Testi - [email protected] ESO

Page 1: Leonardo Testi - ltesti@eso.org ESO

Astrofisica con gli osservatori di ESO

Leonardo Testi - [email protected]

Page 2: Leonardo Testi - ltesti@eso.org ESO
Page 3: Leonardo Testi - ltesti@eso.org ESO

Le Grandi Domande

• Puo’ la fisica che conosciamo spiegare gli “estremi” dell’Universo?

• Come si sono formate ed evolvono le Galassie?

• Come si e’ formato e come finira’ il Sistema Solare?

• Quale e’ il nostro posto nell’Universo?

Page 4: Leonardo Testi - ltesti@eso.org ESO

M31 Andromeda

M57 Lyra

Page 5: Leonardo Testi - ltesti@eso.org ESO
Page 6: Leonardo Testi - ltesti@eso.org ESO

L’Astrofisica ha bisogno di grandi infrastrutture

• Le infrastrutture per la ricerca astrofisica moderna hanno superato le capacita’ di costruzione e gestionali delle singole nazioni

• Organizzazioni internazionali hanno la capacita’ di sviluppare e gestire le grandi infrastrutture per la ricerca astrofisica osservativa da Terra

• ESO svolge compiti simili a quelli di ESA per gli osservatori spaziali o il CERN per la fisica delle particelle sperimentale

Page 7: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

Page 8: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 2

European Southern ObservatoryMission

ØDevelop and operate world-class observing facilities for astronomical research

ØOrganize collaborations in astronomyIntergovernmental treaty-level organization

ØFounded in 1962, by 5 countries (50 years in 2012!)ØCurrently 14 Member States, will increase furtherØBrazil: Accession Agreement signed 29 Dec 2010

ObservatoriesØOptical/infrared: La Silla and Paranal ØSubmm: APEX and ALMA partnerships on Chajnantor

HQ in Garching and Vitacura Office in Santiago

Page 9: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009 9

Page 10: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 3

La Silla, Paranal & Chajnantor

Santiago

Paranal

La Silla

Chajnantor

Page 11: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 4

La SillaMedium-size telescopes

Ø3.6m: HARPS for exo-planet searches

Ø3.5m NTT: EFOSC2, SOFI & visitor instruments

Ø2.2m in partnership with Max Planck Society

ØVisitor mode only; fewer than 20 staff members

Small telescopes ØClosed/funded externallyØInclude robotic telescopes

(REM, TAROT, TRAPPIST)

Page 12: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 5

The VLT is the world´s most productive ground-based facility producing more than one scientific paper per day!

Page 13: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 6

Page 14: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 6

Page 15: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

Page 16: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

VLT Instruments 2013

VIMOS

FORS2

CRIRES UVES

FLAMES VISIR SINFONI

X-shooter HAWK-IKMOS SPHERE

MUSE

Page 17: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 14

View from Space

Page 18: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 15

Paranal Residencia

Page 19: Leonardo Testi - ltesti@eso.org ESO

Struttura dell’Universo e Leggi della Fisica

• Premio Nobel per la Fisica 2011

The Astrophysical Journal, 737:102 (19pp), 2011 August 20 Sullivan et al.

Figure 4. Confidence contours in the cosmological parameters !m and wassuming a flat universe, produced using the CosmoMC program. The SNLS3contours are in blue, the SDSS DR7 LRG contours in green, and the H0 priorin red. WMAP7 constraints are included in all contours. The contours enclose68.3% and 95.4% of the probability and include all SN systematic uncertainties.The dashed line indicates w = !1. Numerical results are in Table 4.(A color version of this figure is available in the online journal.)

the slope) and d!/dz = 1.0 in our systematics analysis.Even this amount of redshift evolution in " and ! contributesan almost negligible effect (Table 3). The largest identifiedsystematic uncertainty related to the astrophysics of SNe Iais the implementation of the host-galaxy-dependent term inEquation (2).

The lower left panel of Figure 2 shows the !m–w contourswith all systematics included, except those related to calibration.These “no-calibration-systematics” contours are very similar to

the statistical-only contours (only a factor 1.07 larger), withw = !1.048±+0.057

!0.058. This represents a total error in w of"5.5%, and a systematic contribution of "1.8%, significantlysmaller than when the calibration systematics are included. Withour current knowledge and fitting techniques for SNe Ia, thisrepresents the systematic floor given a negligible photometriccalibration uncertainty.

4.2. Cosmological Results

We now present our main cosmological results. We considervarious combinations of the SNLS3, WMAP7, SDSS DR7LRGs, and H0 data sets: WMAP7+SNLS3+DR7 is the mostsimilar to the constraints used in the grid marginalizationapproach (Table 2), but still differs as it uses the full matter powerspectrum of LRGs rather than the BAO constraint, and the fullWMAP7 power spectrum rather than the shift parameters. Thebest-fitting value of w (Table 4) is therefore slightly differentdue to these differing external constraints even though the SNIa constraints are identical, but the percentage error in w is thesame at 7.6%.

4.2.1. Constant w Fits

All the results are consistent with a spatially flat, w = !1universe. Our results for a flat universe with a constant darkenergy equation of state are

!m = 0.269 ± 0.015,

w = !1.061+0.069!0.068,

and, relaxing the assumption of spatial flatness,

!m = 0.271 ± 0.015,

!k = !0.002 ± 0.006,

w = !1.069+0.091!0.092,

including external constraints from WMAP7 and SDSS DR7and a prior on H0 (all quoted uncertainties in this section

Figure 5. Confidence contours in the cosmological parameters !m, !DE, !k , and w produced using the CosmoMC program. The SNLS3 contours are in blue, the SDSSDR7 LRG contours in green, and the H0 prior in red. WMAP7 constraints are included in all contours. The contours enclose 68.3% and 95.4% of the probability andinclude all SN systematic uncertainties. In the left-hand panel, the dashed line indicated w = !1; in the center and right-hand panels, the line indicates a flat (!k = 0)universe. Numerical results are in Table 4.(A color version of this figure is available in the online journal.)

10

Page 20: Leonardo Testi - ltesti@eso.org ESO

Struttura dell’Universo e Leggi della Fisica

• Possibili variazioni spazio-temporali della costante di struttura fine nell’Universo

Spatial variation in the fine-structure constant 19

Figure 12. Sky map in equatorial (J2000) coordinates showing ∆α/α values aggregated for each sightline to a quasar, where the value of ∆α/α along a

sightline is taken as the weighted mean of the ∆α/α values for that sightline. This necessarily obscures any z dependence that may be present. The symbols

show the residual of the value of ∆α/α with respect to the null model, that is r = (∆α/α)/σ∆α/α. Larger symbols indicate greater deviation. Circles

represent Keck quasars, squares represent VLT quasars and triangles represent quasars common to both samples. The colour coding indicates the difference

between the sightline value of ∆α/α and zero. The green shaded region indicates the 1σ confidence limit for a dipole of the form ∆α/α = A cos(Θ) fitted

to values of ∆α/α from all Keck absorbers. The blue and red regions show the same for dipole models fitted to the VLT and VLT+Keck sample respectively.

The anti-pole is marked with an “A”. The blue, dashed line indicates the equatorial region of the dipole. The grey shaded region indicates the galactic plane,

with the bulge indicating the galactic centre. The dipole is visible as more large, blue points near the pole and more large, pink points near the anti-pole.

Table 3. Parameters for the model ∆α/α = A cos(Θ) + m for z < 1.6 and z > 1.6 samples. The column “δA” gives 1σ confidence limits on A. The

column labelled “significance” gives the significance of the dipole model with respect to the monopole model. Although it is clear that most of the significance

comes from the z > 1.6 sample, the z < 1.6 sample also contributes. Additionally, a dipole model for the z < 1.6 sample points in a similar direction to that

of the z > 1.6 sample.

Sample A (10−5) δA (10−5

) RA (hr) dec. (◦

) m (10−5) significance

z < 1.6 0.56 [0.38, 0.85] (18.1± 1.8) (−57± 22) (−0.390± 0.108) 1.4σz > 1.6 1.38 [1.12, 1.74] (16.5± 1.4) (−63± 11) (0.097± 0.138) 3.5σ

in figure 14, showing the combined results from both telescopes,

where the mean value of ∆α/α shifts from approximately zero at

high z to negative values at low z.

An obvious question is whether the monopole arises from

one of the Keck or VLT samples. For a dipole+monopole model

(∆α/α = A cos(Θ) + m), the Keck sample yields a z < 1.6monopole of m = (−0.404± 0.171)× 10−5

, which differs from

zero at the 2.4σ level. However, the same model fitted to the VLT

∆α/α values at z < 1.6 yields m = (−0.373 ± 0.295) × 10−5,

differing from zero at the 1.3σ level. There are three important

considerations from these values: i) Both data sets yield consis-

tent monopole values for ∆α/α at low redshift, differing at only

the 0.09σ level. Therefore, whatever is generating the monopole

appears to affect both the Keck and VLT samples. ii) Because there

is no significant difference between the monopole values in the

Keck and VLT samples, the monopole cannot be responsible for

mimicing angular variation in α across the sky. iii) Additionally, the

dipole signal is dominated by ∆α/α values at z > 1.6; there, the

dipole+monopole model is significant at 3.5σ over the monopole-

only model. As such, the significance of the dipole signal is not

strongly affected by the presence of the low-z monopole. That is,

to first order, the dipole and low-z monopole signals appear decou-

pled.

There are several possible explanations for this, and we dis-

cuss each of them in turn:

i) Telescope systematics. Perhaps the most obvious and im-

portant concern is that there is some simple, wavelength-dependent

systematic effect between the Keck or VLT telescopes or spectro-

graphs. However, such wavelength-dependent telescope systemat-

ics seem difficult to support given the inter-telescope consistency

of the best-fitting dipole directions on the sky. Nevertheless, such

effects are difficult to rule out entirely. Therefore, we address this

c� 2012 RAS, MNRAS 000, 1–38

Page 21: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 3

La Silla, Paranal & Chajnantor

Santiago

Paranal

La Silla

Chajnantor

Page 22: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

Atacama Large Millimeter Array

1. Detect and map CO and [C II] in a Milky Way galaxy at z=3 in less than 24 hours of observation

2. Map dust emission and gas kinematics in protoplanetary disks3. Provide high fidelity imaging in the (sub)millimeter at 0.1 arcsec

resolution

èAt least 50x12m Antennas èFrequency range 30-1000 GHz

(0.3-10mm)è16km max baseline (<10mas)èALMA Compact Array (4x12m

and 12x7m)

Page 23: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 22

San Pedro de Atacama,Atacama Desert, Chile

Page 24: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009 23

Page 25: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009 23

Page 26: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009

Lascar – April + October 2006

Page 27: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

Page 28: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009 26

Operations Support Facility - 2900m

Page 29: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009

First antennas at 5000m

27

Page 30: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009

First antennas at 5000m

27

Page 31: Leonardo Testi - ltesti@eso.org ESO
Page 32: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009

Array Operations Site

29

Page 33: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: EIROforum CERN, 20 November 2009

Array Operations Site

29

Page 34: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

èWater Vapour Radiometers

ØAll ALMA antennas will be equipped with water vapour radiometers observing the 183GHz atmospheric water line.

Phase rms

Atm Opacity

Good Opacity Poor Phase

WVRs track phase on 1s timescales along the same path (within 3-10 arcmin) as the astronomical signal from the source (complementary to fastswitching: ≥10s and few degs)

-Improve Sensitivity and Fidelity-Allow to increase switch time

Page 35: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

WVR initial tests è Successful testing at Onsala, OSF and AOSè Correction very promising

Page 36: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

WVR initial tests è Successful testing at Onsala, OSF and AOSè Correction very promising

Page 37: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

ALMA - Image Fidelity

Page 38: Leonardo Testi - ltesti@eso.org ESO

Some complex organic moleculesRivelate Non (ancora) rivelate

Acetic acid Di-methyl ether

Ethanol Simple Sugar

Methyl formate CaffeinePyrimidine

PurineGlycine

Methyl cyanide

Ethyl cyanide Based on Ehrenfreund 2003

Quanto e’ complessa la chimica del mezzointerstellare?E’ possibile produrre molecole pre-biotiche?

Benzene

Page 39: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

Chemistry and Planetary Systems

Detection of glycolaldehyde and water isotopes is a young Solar System analog

Snowline and grain growth in protoplanetary disksTracing the origins of complex pre-biotic

molecules and water on Earth-like planets

Page 40: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 28

E-ELTDetailed design study

ØBaseline 39.3m segmented M1 ØAdaptive optics built-in ØIndustry strongly engagedØ60+ M€ (2007-2011)

ProjectØBuilds on entire expertise at

ESO and in Member StatesØConstruction on ArmazonesØIntegrated into Paranal systemØExo-planets, resolved stellar

populations, deep Universe

Page 41: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 29

Armazones and Paranal

Page 42: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 30

Instrument Studies

ACRONYM (P.I.) INSTRUMENT TYPE

EAGLE (J.G. Cuby) Wide Field, Multi IFU NIR Spectrograph with MOAO EPICS (M. Kasper) Planet Imager and Spectrograph with XAO MICADO (R. Genzel) Diffraction-limited NIR Camera- AO assisted HARMONI (N. Thatte) Single Field, Wide Band Spectrograph - AO assisted

CODEX (L.Pasquini) High Spectral Resolution, High Stability Visual Spectrograph

METIS (B. Brandl) Mid Infrared Imager & Spectrograph –AO assisted OPTIMOS (F.Hammer,-

O.LeFevre)Wide Field , Visual, MOS (fibre or slit-based)- AO assisted?

SIMPLE (L. Origlia) High Spectral Resolution NIR Spectrograph –AO assisted

POST-FOCAL AO MODULES

MAORY (E. Diolaiti) Multi Conjugate AO module (high Strehl, field up to 2’)

ATLAS (T. Fusco) Laser Tomography AO Module (high Strehl, narrow field)

CODEX

EAGLE

MICADO

Page 43: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

Recent Development39.3m main mirror diameter

ØTechnically ready for construction ØCost 1083 M€ and take 10 years to build

Risk/schedule critical items startedØAdaptive designØUnique exo-earth science caseØThe largest in the next generation of telescopesØCan be build on a competitive timescale

A ‘40m class’ E-ELT in 2023 can be the first giantØPick the ‘low-hanging fruit’ including JWST follow-up (as

Keck telescope did for early Hubble follow-up)

31

Page 44: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

The E-ELT primary mirror

31

Page 45: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

The E-ELT primary mirror

31

Page 46: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

The E-ELT primary mirror

31

Page 47: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

The E-ELT primary mirror

31

Page 48: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO

Financing the ProgrammeFunding model

ØAdditional contribution by 14 MS: 250 M€• Payments spread over 10 yr• All but one MS committed• Advance paid by some

Ø2% year-on-year increase in annual contributions• On top of normal indexation • For a decade

Additional Countries interested in joining ESO

Council approved Dec 2012

32

Page 49: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 33

HeadquartersHQ built in 1981

ØExpanded a few timesØCapacity ~290 personsØ~200 others

• In temporary offices • Elsewhere on campus

HQ ExtensionØDesign: Auer & Weber ØOffice building +

auditoriumØTechnical building ØConstruction 2012-13

Page 50: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 16

End-to-end Operations ModelOperations

Ø70/30 in Service/Visitor mode (Paranal)Ø~90% clear nights: ~1300 UT nights per yearØTravel support by ESO for member states ØUser portal: 7000+ registered users

Data productsØPipe-line reduction software (in-house/external)ØArchive includes advanced data products, some

developed by communityEuropean ALMA Regional Center

ØUser support for ALMA operationsØNodes in many Member States, externally funded

Page 51: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 17

Observing ProgramsObserving proposals

Ø~1000 proposals per semester (+ ~50 DDT)ØLa Silla, Paranal, APEXØOver-subscription factor ~4-6 on VLT

Observing Programs CommitteeØTwo meetings per

year (may change) Ø13 sub-panelsØMembership from

MS and beyondØTime allocated on on

scientific merit

1977 20100

275.0000

550.0000

825.0000

1100.0000

20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83

Num

ber o

f Pro

posa

ls

Period

#

Page 52: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 18

Science at ESOMission: enable science for the community

Ø~80 astronomers with up to 50% research timeØKey to providing best instruments and user supportØSeminars, colloquia, workshops, visitor program

Active fellowship and studentship programØ~30 fellows and 30 studentsØ9 externally funded ALMA Fellows (in ARC nodes) Ø http://www.eso.org/sci/activities/FeSt-overview/ESOfellowship.html

Page 53: Leonardo Testi - ltesti@eso.org ESO

Leonardo Testi: Astrofisica con gli osservatori ESO 18

Students and Fellows at ESO