L'ATTIVITÀ DI ENEL NEL CAMPO DELLE RISORSE GEOTERMICHE … · L'ATTIVITÀ DI ENEL NEL CAMPO DELLE...

24
L'ATTIVITÀ DI ENEL NEL CAMPO DELLE RISORSE GEOTERMICHE A BASSA ENTALPIA Marco Paci ENEL Engineering & Innovation – Research Technical Area Giovanni Pasqui ENEL Green Power – Engineering & Construction Ferrara, September 2010

Transcript of L'ATTIVITÀ DI ENEL NEL CAMPO DELLE RISORSE GEOTERMICHE … · L'ATTIVITÀ DI ENEL NEL CAMPO DELLE...

L'ATTIVITÀ DI ENEL NEL CAMPO DELLE RISORSE GEOTERMICHE A BASSA ENTALPIAGEOTERMICHE A BASSA ENTALPIA

Marco PaciENEL Engineering & Innovation – Research Technical Area

Giovanni PasquiENEL Green Power – Engineering & Construction

Ferrara, September 2010

USO: Riservato Aziendale

Geothermal energy: a big potential

• Hydrothermal systems – situated at relatively shallow depths from the earth’s surface.steam-dominated systems – steam is the continuous phase that controls the reservoir pressure and stem only (+NCG) is produced by the wells.water-dominated systems - water is the continuous phase that controls the reservoir pressure; the wells produce water, or more often a mixture of water and steam + NCG at high temperature (100÷370°C) and pressure.Hot water reservoirs with temperature ranging from 30°C

GeoThermoExpo 2010 – Ferrara, Settembre 2010 2

Hot water reservoirs with temperature ranging from 30°C to 85°C can be typically used for district or green house heating.Hot dry rocks – rocky masses situated at a considerable depth beneath the earth’s crust and characterized by high temperature and total absence of circulation fluids.

• Geo-pressurized reservoirs – made up of water at high temperature (200°C) and a pressure level near to th e lithostatic one (depths >4000 m).

• Magmatic systems – magma bodies relatively close to the earth’s surface.

With wind and solar energy we look at the sky, but there is a lot of energy under our feet . (J. Tester, MIT)

USO: Riservato Aziendale

Main geothermal fields worldwide

Salton SeaSalton SeaSalton SeaSalton SeaSalton SeaSalton SeaSalton SeaSalton Sea

336 336 336 336 336 336 336 336 MWMWMWMWMWMWMWMW

(California)(California)(California)(California)(California)(California)(California)(California)

The GeysersThe GeysersThe GeysersThe GeysersThe GeysersThe GeysersThe GeysersThe Geysers

1421 1421 1421 1421 1421 1421 1421 1421 MWMWMWMWMWMWMWMW

(California)(California)(California)(California)(California)(California)(California)(California)

CosoCosoCosoCosoCosoCosoCosoCoso

OtakeOtakeOtakeOtakeOtakeOtakeOtakeOtake

153 153 153 153 153 153 153 153 MWMWMWMWMWMWMWMW

(Japan)(Japan)(Japan)(Japan)(Japan)(Japan)(Japan)(Japan)

Installed capacity ~10.000 MWe Potential capacity >100.000 MWe

GeoThermoExpo 2010 – Ferrara, Settembre 2010 3

Cerro PrietoCerro PrietoCerro PrietoCerro PrietoCerro PrietoCerro PrietoCerro PrietoCerro Prieto

720 720 720 720 720 720 720 720 MWMWMWMWMWMWMWMW

(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)

TongonanTongonanTongonanTongonanTongonanTongonanTongonanTongonan

723 723 723 723 723 723 723 723 MWMWMWMWMWMWMWMW

(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)

(California)(California)(California)(California)(California)(California)(California)(California)

LarderelloLarderelloLarderelloLarderelloLarderelloLarderelloLarderelloLarderello

810 810 810 810 810 810 810 810 MWMWMWMWMWMWMWMW

(Italy)(Italy)(Italy)(Italy)(Italy)(Italy)(Italy)(Italy)

Los AzufresLos AzufresLos AzufresLos AzufresLos AzufresLos AzufresLos AzufresLos Azufres

188 188 188 188 188 188 188 188 MWMWMWMWMWMWMWMW

(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)(Mexico)

MiravallesMiravallesMiravallesMiravallesMiravallesMiravallesMiravallesMiravalles

163 163 163 163 163 163 163 163 MWMWMWMWMWMWMWMW

(Costa Rica)(Costa Rica)(Costa Rica)(Costa Rica)(Costa Rica)(Costa Rica)(Costa Rica)(Costa Rica)

CosoCosoCosoCosoCosoCosoCosoCoso

274 274 274 274 274 274 274 274 MWMWMWMWMWMWMWMW

(California)(California)(California)(California)(California)(California)(California)(California)

WairakeiWairakeiWairakeiWairakeiWairakeiWairakeiWairakeiWairakei

220 220 220 220 220 220 220 220 MWMWMWMWMWMWMWMW

(New Zealand))(New Zealand))(New Zealand))(New Zealand))(New Zealand))(New Zealand))(New Zealand))(New Zealand))

KamojangKamojangKamojangKamojangKamojangKamojangKamojangKamojang

140 140 140 140 140 140 140 140 MWMWMWMWMWMWMWMW

(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)

SalakSalakSalakSalakSalakSalakSalakSalak

330 330 330 330 330 330 330 330 MWMWMWMWMWMWMWMW

(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)

DarajatDarajatDarajatDarajatDarajatDarajatDarajatDarajat

135 135 135 135 135 135 135 135 MWMWMWMWMWMWMWMW

(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)(Indonesia)

MakMakMakMakMakMakMakMak--------BanBanBanBanBanBanBanBan

426 426 426 426 426 426 426 426 MWMWMWMWMWMWMWMW

(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)

PalinpinonPalinpinonPalinpinonPalinpinonPalinpinonPalinpinonPalinpinonPalinpinon

192 192 192 192 192 192 192 192 MWMWMWMWMWMWMWMW

(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)

TiwiTiwiTiwiTiwiTiwiTiwiTiwiTiwi

330 330 330 330 330 330 330 330 MWMWMWMWMWMWMWMW

(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)(Philippines)

100 100 100 100 ÷÷÷÷ 400 400 400 400 MWMWMWMW

50 50 50 50 ÷÷÷÷ 100 100 100 100 MWMWMWMW

< < < < 50 50 50 50 MWMWMWMW

400 400 400 400 ÷÷÷÷ 1500 1500 1500 1500 MWMWMWMW

USO: Riservato Aziendale

Low enthalpy geothermal resources

Ring of fireRing of fire

High temperature geothermal resources naturally occur in geologically active

areas

GeoThermoExpo 2010 – Ferrara, Settembre 2010 4

Medium/low temperature hydrothermal reservoirs are abundantly available and

have by far the biggest electricity generation potential throughout Europe and

worldwide

ORC technology represents the best way to generate electricity fromlow-enthalpy geothermal resources

USO: Riservato Aziendale

Binary cycles for low enthalpy geo-resources

GeoThermoExpo 2010 – Ferrara, Settembre 2010 5

� For water-dominated resources with temperature lower than 180°C , the binary cycle technology is the most efficient.

� The geo-fluid energy is transferred through a heat exchanger to a secondary fluid that works in a closed ORC cycle.

� The binary power plants have the least environmental impact due to the “confinement” of the geo-fluid.

Conventional working fluid: -Isobutane-Isopentane-Butane-Pentane

USO: Riservato Aziendale

ENEL’s interest in low enthalpy geothermal resources

LATERA Geothermal Power Plant:

1st ENEL attempt (1999) to use binary technology based on ORC, as bottoming cycle.

•Installed capacity: 5 MW

•OEM : ORMAT

•Units : 2 (2500 kW net each)

GeoThermoExpo 2010 – Ferrara, Settembre 2010 6

•Working fluid : N-Pentane 394 t/h

•Cold Source : Geothermal Steam Condensate from Wet Cooling Towers 4000 t/h @ 25°-35°C

•Hot Source : Geothermal Brine – 1250 t/h @ 130°C

•Plant has been shut down (2002) due to public acceptance problems.

USO: Riservato Aziendale

ENEL’s interest in low enthalpy geothermal resources

• In early 2007 Enel North America acquired the rights to develop 4 geothermal fields in California, Nevada and Utah.

• Approximately 65 MWe from low enthalpy geo-resources are now in operation (Stillwater and Salt Wells power plants).

US Geothermal Provinces

GeoThermoExpo 2010 – Ferrara, Settembre 2010 7

Salt Wells Stillwater Surprise Valley Cove Fort II

Brine mass flow [kg/s] 504 ÷ 560 877 756 756

Brine Temperature [°C] 135 154 165 152

Temperature > 100°CTemperature < 100°CAreas suitable for geothermal heat pumps

USO: Riservato Aziendale

Stillwater PlantPFD at Design point

Air Cooled Condensers

Turboexpander 1-1

~Hot Brine

7255 kph

310 °F

STILLWATER PLANT2 Units in parallelTotal Power @ des. point:- GROSS 47.2 MW- NET 33.6 MW

To Unit 2

Turboexpander 1-2

~

Unit 1

Hot Air(84 °F)

261 °F ; 455 psia

261 °F ; 455 psia

1556 kph

1556 kph

Cool Air (53.7 °F)

Hot Air(84 °F)

GeoThermoExpo 2010 – Ferrara, Settembre 2010 8

Isobutane feed pumps

Vaporizer

Hot Brine

Pre-Heater 2

Production Wells

Pre-Heater 1

Injection Wells

From Unit 2

7255 kph

157.5 °F

Accumulator

Cool Air (53.7 °F)

Cold Brine

3113 kph ; 88 °F ; 495 psia

Demister

84 °F ; 61,5 psia

USO: Riservato Aziendale

Stillwater PlantLayout

GeoThermoExpo 2010 – Ferrara, Settembre 2010 9

USO: Riservato Aziendale

Stillwater Plant

GeoThermoExpo 2010 – Ferrara, Settembre 2010 10

USO: Riservato Aziendale

Innovation in binary cycle technology

ENHANCED PERFORMANCESENHANCED PERFORMANCES & & OPERATIONAL FLEXIBILITYOPERATIONAL FLEXIBILITY

• To upgrade geothermal

BYNARY PLANTBYNARY PLANTCAPITAL COSTCAPITAL COST

1200 ÷1600 €/KW(1 ÷ 5 MWe unit )

2300 €/kW(400 ÷ 500 kWe unit)

ORC CYCLE ORC CYCLE EFFECTIVENESSEFFECTIVENESS

7% ÷ 12%

INNOVATION INNOVATION MAINSTAYSMAINSTAYS

GeoThermoExpo 2010 – Ferrara, Settembre 2010 11

• To upgrade geothermal resources exploitation (electric generation more profitable)

• To better match the intrinsic characteristics of geothermal reservoirs

• To avoid performance decline due to the natural resources depletion and temperature drop

ORC power production from low temperature resources has a low thermal efficiency

(400 ÷ 500 kWe unit)

Low efficiency requires increased power plant

equipment size that can become cost prohibitive

STATE OF THE ARTSTATE OF THE ART

USO: Riservato Aziendale

PHASE 1 - Development of an innovative supercritical pilot binary plant ( 500 kWe)

PHASE 2 - Development of a prototipal Hybrid PlantDetection of the configuration that optimizes the efficiency and the productivity of binary plants

Effi

cien

cy

15%

18%

Project “Geotermia Innovativa”

GeoThermoExpo 2010 – Ferrara, Settembre 2010 12

State of art

• 1-5 MWe subcritical binary ORC

• Net specific work 35÷40 kJ/kg brine

plant ( 500 kWe)

•Optimization of the cycle’s configuration to aim at the maximum flexibility

•Detection of the best working fluidEffi

cien

cy

12%

15%

Time1 year 3-4 year

USO: Riservato Aziendale

Project “Geotermia Innovativa” - Objectives

• To develop an advanced, supercritical, ORC technology in order to improve ENEL’s geothermal production from low enthalpy geothermal resources worldwide (with a specific focus to USA).

- Net specific work > 44 kJ/kg brine (~ +30% compared to actual technology).

- High operation flexibility (capability to work with high performances in a wide range of brine temperatures).

- Reduced investment cost.

GeoThermoExpo 2010 – Ferrara, Settembre 2010 13

• To demonstrate an advanced ORC at the pilot scale (500kWe).

- Cycle thermodynamic performance.

- Operating flexibility.

- Component design and scale-up criteria (with a particular focus on turbo - expander).

- Component reliability during long term operation (some thousands hours).

• To evaluate the feasibility to increase the productivity of ENEL’s ORC geothermal plants in the USA by means of integration with solar energy.

USO: Riservato Aziendale

Project “Geotermia Innovativa” - Overview

Project time schedule

GeoThermoExpo 2010 – Ferrara, Settembre 2010 14

Short -Middle Term

Activities

• TD cycle and working fluid have been selected.

• Basic design of pilot plant SC ORC (Apr. '10).

• Permitting procedure start-up (Dec. '09).

• Construction works at ENEL’s Leghorn experimental area (Sep. '11).

• Pre-feasibility study completion for geo-solar hybrid cycles (Sep. ‘10).

• An agreement has been signed with Turboden and Milan Polytechnic for an advanced ORC development, pilot plant EPC and ORC testing (Phase 1) on April the 24th of 2009.

• A cooperation has been activated with MIT in order to evaluate the feasibility of geo-solar integration in USA geothermal fields.

USO: Riservato Aziendale

• Working fluid screening criteria

- 6 Hydrocarbons tested

Cycle optimization and working fluid selection

• Cycle modelling

- Sub-critical cycles (saturated, superheated)

- Super-critical cycles

GeoThermoExpo 2010 – Ferrara, Settembre 2010 15

- 4 Refrigerants tested

•Low boiling point and high vapor pressure fluids related to operating T and P

•Heavy fluid, characterized by small enthalpy drop; hence, the turbo-machinery stress is reduced

USO: Riservato Aziendale

Calculation Hypotheses

Constraints of the model and cycle optimization criteria

in

netth Q

Wη =

in

netu E

Wη =

PERFORMANCE INDICATORS• Utilization

efficiency

• Thermal efficiency

OPTIMIZATION VARIABLES

• Working fluid mass flow rate• Working fluid turbine inlet pressure • Working fluid condensing pressure

GeoThermoExpo 2010 – Ferrara, Settembre 2010 16

MAIN INPUT DATA

Brine inlet temperature: 100°C ÷ 200°CBrine reinjection temperature: ≥70°CCooling water: NOT AVAILABLEGeothermal fluid mass flow: 100 kg/sDead-state temperature (Air ambient temperature): 20°CTurbine isentropic efficiency:

85% for fully-vapor expansions<85% when liquid is present (calculated from the Baumann equation)

Turbine exit vapor quality: 90%Pump efficiency: 80%

USO: Riservato Aziendale

Subcritical vs. Supercritical Cycles

Subcritical cycle Supercritical cycle

GeoThermoExpo 2010 – Ferrara, Settembre 2010 17

USO: Riservato Aziendale

30

40

50

60U

tiliz

atio

n E

ffici

ency

(%

)

SupercriticalCyclesH-1

H-2R-1R-2R-3

Simulation results 1/2

GeoThermoExpo 2010 – Ferrara, Settembre 2010 18

0

10

20

30

100 110 120 130 140 150 160 170 180 190 200

Geo-fluid Temperature (°C)

Util

izat

ion

Effi

cien

cy (

%)

SubcriticalCycles

Supercritical cycles provide higher utilization efficiency for the whole geo-fluid temperature range, resulting in 23% max. increase in net power.

Temperature range of interest

USO: Riservato Aziendale

4

6

8

10

12

Pow

er (

MW

e)

Gross Turbine Power

Net Power

6

7

8

9

10

Pow

er (

MW

e)

Gross Turbine Power

Simulation results 2/2

Subcritical cycle

Supercritical cycle

GeoThermoExpo 2010 – Ferrara, Settembre 2010 19

Power, MW H-1 @ 100°C H-2 @ 150°C H-1 @ 200°C

Gross 1.03 4.37 9.12

Parasitic losses 40% 31% 22%

Net 0.62 3.00 7.07

0

2

100 110 120 130 140 150 160 170 180 190 200

Geofluid Temperature ( oC)

CP Power

ACC Fan Power

0

1

2

3

4

5

100 110 120 130 140 150 160 170 180 190 200

Geofluid Temperature ( oC)

Pow

er (

MW

CP Power

ACC Fan Power

Net Power

Power, MW R-1 @ 100°C R-2 @ 150°C R-3 @ 200°C

Gross 1.41 5.43 11.23

Parasitic losses 53% 34% 26%

Net 0.66 3.56 8.30

USO: Riservato Aziendale

ORC Turbine coupled with

500kWe

generator

Primary Heat Exchangers

Air cooled condenserIntermediate

Heat Exchanger

Advanced 500 KWe ORC pilot plant PFD

GeoThermoExpo 2010 – Ferrara, Settembre 2010 20

Boiler

(2,8kg/s steam 30bar/a sat.)

Circulation pump

USO: Riservato Aziendale

CASPER

EFCC

Auxiliary boiler already available 5,6 MW (8,5 t/h, 250°C)

Livorno

Advanced 500 KWe ORC pilot plant

GeoThermoExpo 2010 – Ferrara, Settembre 2010 21

CASPER

EFCC

EFCC

200 m2 foundation platform for pilot plant installation

USO: Riservato Aziendale

Hybrid-cycles – First resultsPhase 2: Preliminary results for the old Stillwater Plant

Stillwater, NV, USA

GeoThermoExpo 2010 – Ferrara, Settembre 2010 22

Hybrid

Geothermal only

Incremental energy

0

100

200

300

400

500

600

700

800

900

Janu

ary

Febr

uary

Mar

ch

April

May

June

July

Augus

t

Septe

mbe

r

Oct

ober

Novem

ber

Decem

ber

Energ

y (

MW

h)

USO: Riservato Aziendale

Concluding remarks

• Within the temperature range investigated and for the design specifications assumed, supercritical binary cycles are more efficient than subcritical cycles, producing up to23% more net power, despite the fact that parasitic pumping losses are 2-3 times higher in the supercritical cases than in subcritical ones.

• Refrigerants performed very well as working fluids, especially for supercritical cycles.

• In a supercritical cycle the possibility of operating outside the fluid saturation diagram during the heat adduction phase guarantees a greater operational flexibility with respect to subcritical cycles.

GeoThermoExpo 2010 – Ferrara, Settembre 2010 23

• Based on the positive results of the work undertaken, ENEL has signed a cooperation agreement with Turboden and Milan Polytechnic aimed at designing and constructing a 500 kWe pilot plant in its experimental area in Leghorn in order to assess TD performance, component reliability and costs of the new technology.

• In the meantime, the techno-economical feasibility of geo-solar integration for ENEL’s binary plant in the USA is under evaluation in cooperation with Massachusetts Institute of Technology, aiming at increasing production, reducing risks and increasing flexibility.

• ENEL Green Power geothermal development relies heavily on ORC technology, foreseeing more investments in the USA as well as in Southern Europe and in the Mediterranean countries.

USO: Riservato Aziendale

Q & A’ s time

GeoThermoExpo 2010 – Ferrara, Settembre 2010 24

Q & A’ s time