HighbrightnessLPPEUVsourcefor% metrologyapplicaons · HighbrightnessLPPEUVsourcefor%...

1
High brightness LPP EUV source for metrology applica:ons Konstan’n Koshelev 1,2 , Alexander Vinokhodov 1 , Mikhail Krivokorytov 1 , Yuri Sidelnikov 2 , Oleg Yakushev 1 , Samir Ellwi* 3 , Denis Glushkov 3 , Pavel Seroglazov 3 1 – RnD-ISAN/EUV Labs, Troitsk, 142190 Russia; 2 – Institute for Spectroscopy RAS, Troitsk, 142090 Russia; 3 – ISTEQ, 5656 AG Eindhoven * – [email protected] Mo:va:on An inspec’on tool is needed to provide feedback on any defects at each semiconductor manufacturing process step. Indeed, inspec’on at the ac’nic wavelength is required in order to detect defects on EUVL photomasks that would otherwise print onto wafers. Metrology tools include Ac’nic Blank Inspec’on (ABI), Ac’nic PaTern Inspec’on (API) and Aerial Image Measurement System (AIMS), which all require high brightness. There are some essen’al parameters needed from the EUV source to fulfil mask inspec’on requirements. Examples of these requirements are; firstly, source brightness, this is necessary due to the limited sensi’vity of imaging sensors. Hence, the need for high throughput is cri’cal for inspec’on. Secondly, metrology tools have a specific requirement regarding energy stability, which is mainly driven by the need to resolve the required cri’cal dimension (CD). CONCLUSIONS 1. The droplet generator based on induced Rayleigh jet breakup was developed. 2. The high droplet posi:on stability and mass uniformity was demonstrated both in short & long term opera:on. 3. The flexibility of opera:on regimes (droplet diameter, velocity and frequency) was demonstrated. 4. Two types of jet modula:on was developed: piezo in hot zone, which limits an opera:on temperature (250˚C), and waveguide with piezo at room temperature, which allows to operate at higher temperatures. 5. Was shown that such DG can be used for high brightness and high stability LPP EUV source. The work was supported by the Ministry of Educa’on and Science of the Russian Federa’on under the Agreement № 14.579.21.0004 (a unique iden’fier for Applied Scien’fic Research (project) RFMEFI57914X0004). Droplet target parameters: Parameter Value (Std %) Pulse energy, mJ 100 (9.9 %) Pulse width, ns 28 (8.1 %) Peak intensity, MW 2 (10.9 %) Focal spot size (FWHM) 50 um Average power density at focal spot, W/cm 2 1.8*10 11 (13 %) Laser parameters: 4˚ GIS spectrometer; I, II, III – diffrac’on orders laser Xray photodiode 720 um Source size ~ 100 um (FWHM) Plasma image inband EUV by pinhole camera EUV pulsetopulse stability can be improved via improving laser parameters: energy pulse, poin:ng and pulse dura:on stability X Y CE = 2.3 % ε Ωinband = 4.2*10 4 J/Sr Scaling law for brightness B 13.5 ≈ 0.5 W/mm 2 Sr (10 Hz); B 13.5 ≈ 50 W/mm 2 Sr (1 kHz); B 13.5 ≈ 400 W/mm 2 Sr (8 kHz) The key requirements for the Ac:nic inspec:on tool: High brightness (>100 W/mm 2 /sr) Stability of plasma posi:on < 3% of FWHM* Energy stability < 3.5% (3σ) pulsetopulse Cleanliness 100% (debris containment must be included in the source) Availability / Reliability * The posi’onal stability requirement varies depending on source characteris’cs and the illumina’on concept. Source requirements Classical :n DG approach Lithium jet approach Diameter, um 70 Temperature, K 413 Material Sn/In XY posi’on Std, um σ x ≈σ y ≈ 0.5 um Proof of concept with 10 Hz Nd:YAG laser Emission spectrum, plasma size and brightness Examples of DG opera:on High brightness can be achieved Correla:on of EUV and laser pulse energies Jet approach provides extreme stability, renewable and infinite in space target Conversion efficiency (Peak values) 4 th Interna’onal EUVL symposium, 2005 Lithium has rela:vely high conversion efficiency and number of advantages, which makes it highly arrac:ve for the ac:nic source development: Li produces narrow inband spectral emission and low ultravioletvisible outof band radia’on No spectral purity filter needed Lithium has low ion energy intensity Debris mi’ga’on is considerably less in comparison to Tin, which in turn gives longer component life’me No opening of the vacuum chamber is needed 1. Li target has no debris in comparison to the Sn target: due to “closed LPP chamber” design using selfcleaning radia:on input and output windows. 2. Long source life:me: EUV op:cs placed outside the LPP chamber. 3. High spectral purity: usage of Li plasma with narrow “inband” line spectra, concentrated at 13.5nm. 4. High EUV dose stability: provided by stable posi:on of the target and its infinite size. 5. Long (infinite) duty cycle: provided by con:nuous opera:on of liquid lithium pump. Advantages of lithium target Nozzle: 30 um Modula’on frequency: 40 kHz Pressure: 5 bar Droplet diameter: 46 um Droplet velocity: 7 m/s Droplet diameter range: 4565um Droplet diameter STD: 1% Center of mass displacement: σ x = 0.5 um; σ y = 0.8 um High target posi:on stability ISTEQ and RnDISAN have developed a new concept of a compact highbrightness lithium EUV source: to Li pump Drive laser input window EUV light output window LPP plasma λ = 13.5nm f = up to 10kHz B = up to 1kW/mm 2 *sr Li stream from the pump Source components : Target: con’nuous Li liquid jet Drive laser: Nd:YAG, 1.06um, up to 10 kHz, 1 kW [to be selected] Selfcleaning Input and Output windows Recycling target system Main source parameters: Wavelength: 13.5nm Brightness: up to 1kW/mm 2 sr Frequency: up to 10kHz Collectable inband power: >60mW Etendue: 2410 5 mm 2 sr Preliminary experiments have been successfully performed and the feasibility of the approach has been proved. Unique hardware has been developed and tested, making the technology ready for implementa:on: Lithium jet EUV brightness: up to 1 kW/mm 2 sr Centrifugal pump for genera’on of liquid lithium jet was tested under varying condi’ons, up to 200 hours in nonstop regime at temperature of 350Liquid lithium pump CE mean:2.3% CE std: 0.1%

Transcript of HighbrightnessLPPEUVsourcefor% metrologyapplicaons · HighbrightnessLPPEUVsourcefor%...

Page 1: HighbrightnessLPPEUVsourcefor% metrologyapplicaons · HighbrightnessLPPEUVsourcefor% metrologyapplicaons % Konstan’n(Koshelev1,2,(Alexander(Vinokhodov1,(Mikhail(Krivokorytov1,Yuri(Sidelnikov

High  brightness  LPP  EUV  source  for  metrology  applica:ons  

Konstan'n  Koshelev1,2,  Alexander  Vinokhodov1,  Mikhail  Krivokorytov1,  Yuri  Sidelnikov2,  Oleg  Yakushev1,  Samir  Ellwi*3,  Denis  Glushkov3,  Pavel  Seroglazov3  

1 – RnD-ISAN/EUV Labs, Troitsk, 142190 Russia; 2 – Institute for Spectroscopy RAS, Troitsk, 142090 Russia; 3 – ISTEQ, 5656 AG Eindhoven * – [email protected]

Mo:va:on  An  inspec'on  tool  is  needed  to  provide  feedback  on  any  defects  at  each  semiconductor  manufacturing  process  step.   Indeed,   inspec'on  at   the  ac'nic  wavelength   is   required   in  order   to  detect  defects  on  EUVL  photomasks  that  would  otherwise  print  onto  wafers.  Metrology  tools   include  Ac'nic  Blank  Inspec'on  (ABI),  Ac'nic  PaTern  Inspec'on   (API)   and   Aerial   Image  Measurement   System   (AIMS),   which   all   require   high   brightness.   There   are  some   essen'al   parameters   needed   from   the   EUV   source   to   fulfil  mask   inspec'on   requirements.   Examples   of  these   requirements   are;   firstly,   source   brightness,   this   is   necessary   due   to   the   limited   sensi'vity   of   imaging  sensors.    Hence,  the  need  for  high  throughput  is  cri'cal  for  inspec'on.  Secondly,  metrology  tools  have  a  specific    requirement   regarding     energy   stability,   which   is   mainly   driven   by   the   need   to   resolve   the   required   cri'cal  dimension  (CD).  

CONCLUSIONS  1.   The  droplet  generator  based  on  induced  Rayleigh  jet  breakup  was  developed.  2.   The  high  droplet  posi:on  stability  and  mass  uniformity  was  demonstrated  both  in  short  &  long  term  

opera:on.  3.   The  flexibility  of  opera:on  regimes  (droplet  diameter,  velocity  and  frequency)  was  demonstrated.  4.   Two  types  of  jet  modula:on  was  developed:  piezo  in  hot  zone,  which  limits  an  opera:on  

temperature  (250˚C),  and  waveguide  with  piezo  at  room  temperature,  which  allows  to  operate  at  higher  temperatures.  

5.   Was  shown  that  such  DG  can  be  used  for  high  brightness  and  high  stability  LPP  EUV  source.  The  work  was  supported  by  the  Ministry  of  Educa'on  and  Science  of  the  Russian  Federa'on  under  the  Agreement  №  14.579.21.0004  (a  unique  iden'fier  for  Applied  Scien'fic  Research  (project)  RFMEFI57914X0004).  

Droplet  target  parameters:  Parameter   Value  (Std  %)  Pulse  energy,  mJ   100  (9.9  %)  Pulse  width,  ns   28  (8.1  %)  Peak  intensity,  MW   2  (10.9  %)  Focal  spot  size  (FWHM)   50  um  Average  power  density  at  focal  spot,  W/cm2  

 1.8*1011  (13  %)  

Laser  parameters:  

4˚  GIS  spectrometer;  I,  II,  III  –  diffrac'on  orders  

laser  

X-­‐ray  photodiode  

720  um

 

Source  size  ~  100  um  (FWHM)  

Plasma  image  in-­‐band  EUV  by  pinhole  camera  

EUV  pulse-­‐to-­‐pulse  stability  can  be  improved  via  improving  laser  parameters:  energy  pulse,  poin:ng  and  pulse  dura:on  stability  

X  Y

CE2π  =  2.3  %  

εΩinband  =  4.2*10-­‐4  J/Sr  

Scaling  law  for  brightness  B13.5  ≈  0.5    W/mm2Sr  (10  Hz);  B13.5  ≈  50      W/mm2Sr  (1  kHz);  B13.5  ≈  400  W/mm2Sr  (8  kHz)  

The  key  requirements  for  the  Ac:nic  inspec:on  tool:  •  High  brightness  (>100  W/mm2/sr)  •  Stability  of  plasma  posi:on  <  3%  of  FWHM*  •  Energy  stability  <  3.5%  (3σ)  pulse-­‐to-­‐pulse  •  Cleanliness  100%  (debris  containment  must  be  included  in  the  source)    •  Availability  /  Reliability  *  The  posi'onal  stability  requirement  varies  depending  on  source  characteris'cs  and  the  illumina'on  concept.  

Source  requirements  

Classical  :n  DG  approach   Lithium  jet  approach  

Diameter,  um   70  

Temperature,  K   413  

Material   Sn/In  

X-­‐Y  posi'on  Std,  um   σx  ≈  σy  ≈  0.5  um  

Proof  of  concept  with  10  Hz  Nd:YAG  laser  

Emission  spectrum,  plasma  size  and  brightness  

Examples  of  DG  opera:on  

High  brightness  can  be  achieved  

Correla:on  of  EUV  and  laser  pulse  energies  

Jet  approach  provides    extreme  stability,  renewable  and  infinite  in  space  target  

Conversion  efficiency  (Peak  values)  

4th  Interna'onal  EUVL  symposium,  2005    

Lithium  has  rela:vely  high  conversion  efficiency  and  number  of  advantages,  which  makes  it  highly  arrac:ve  for  the  ac:nic  source  development:  •  Li  produces  narrow  in-­‐band  spectral  emission  and  low  ultraviolet-­‐visible  out-­‐of-­‐band  radia'on    

•  No  spectral  purity  filter  needed  •  Lithium  has  low  ion  energy  intensity  •  Debris  mi'ga'on  is  considerably  less  in  comparison  to  Tin,  which  in  turn  gives  longer  component  life'me  

•  No  opening  of  the  vacuum  chamber  is  needed      

1.   Li  target  has  no  debris  in  comparison  to  the  Sn  target:  due  to  “closed  LPP  chamber”  design  using  self-­‐cleaning  radia:on  input  and  output  windows.  

2.   Long  source  life:me:  EUV  op:cs    placed  outside    the  LPP  chamber.  

3.   High  spectral  purity:  usage  of  Li  plasma  with  narrow  “in-­‐band”  line  spectra,  concentrated  at  13.5nm.  

4.   High  EUV  dose  stability:  provided  by  stable  posi:on  of  the  target  and  its  infinite  size.    

5.   Long  (infinite)  duty  cycle:  provided  by  con:nuous  opera:on    of  liquid  lithium  pump.    

 

Advantages  of  lithium  target  Nozzle:                                                                            30  um    Modula'on  frequency:                    40  kHz  Pressure:                                                                      5  bar  Droplet  diameter:                                        46  um  Droplet  velocity:                                              7  m/s  Droplet  diameter  range:                  45-­‐65um  Droplet  diameter  STD:                          1%  Center  of  mass  displacement:  σx  =  0.5  um;  σy  =  0.8  um  High  target  posi:on  stability          

ISTEQ  and  RnD-­‐ISAN  have  developed  a  new  concept  of  a  compact  high-­‐brightness  lithium  EUV  source:  

 to  Li  pump  

Drive  laser    input  window  

EUV  light  output  window  

LPP  plasma  λ  =  13.5nm  f  =  up  to  10kHz  B  =  up  to  1kW/mm2*sr  

Li  stream  from  the  pump  

Source  components  :    •  Target:  con'nuous  Li  liquid  jet  •  Drive  laser:  Nd:YAG,  1.06um,  up  to  10  kHz,  1  kW  [to  be  selected]  

•  Self-­‐cleaning  Input  and  Output  windows  

•  Recycling  target  system      Main  source  parameters:    •  Wavelength:  13.5nm  •  Brightness:  up  to  1kW/mm2·∙sr  •  Frequency:  up  to  10kHz  •  Collectable  in-­‐band  power:  >60mW  •  Etendue:  2-­‐4·∙10-­‐5mm2·∙sr  

Preliminary  experiments  have  been  successfully  performed  and  the  feasibility  of  the  approach  has  been  proved.  Unique  hardware  has  been    developed  and  tested,  making  the  technology  ready  for  implementa:on:  

Lithium  jet  

EUV  brightness:  up  to  1  kW/mm2·∙sr    

Centrifugal  pump  for  genera'on  of  liquid  lithium  jet  was  tested  under  varying  condi'ons,  up  to  200  hours  in  non-­‐stop  regime  at  temperature  of  350℃  

Liquid  lithium  pump  

CE  mean:2.3%  CE  std:  0.1%