Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal...

44
Contrazione muscolare Biofisica e Fisiologia I Corso di Laurea Magistrale in “Medicina e Chirurgia”

Transcript of Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal...

Page 1: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Contrazione muscolare

Biofisica e Fisiologia I

Corso di Laurea Magistrale in “Medicina e Chirurgia”

Contrazione muscolare

Page 2: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Energia chimica

muscolo

I muscoli hanno due funzioni: generare movimentogenerare forza

I muscoli scheletrici generano anche calore e contribuiscono alla termoregolazione (in ambiente freddo, il cervello ordina ai muscoli di contrarsi e questo origina il brivido, che crea calore)

muscolo

Energia meccanica

Page 3: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Le fibre muscolari scheletriche appaiono striate emultinucleate. Controllano i movimenti del corpo.Sono volontari, si contraggono in rispostaa stimoli che provengono da motoneuroni.

Le fibre muscolari cardiache sono uninucleate e striate.Si connettono tra loro attraverso dischi intercalari.Sono involontarie, si contraggono spontaneamentesenza stimoli esterni. L’attività è modulata dalsenza stimoli esterni. L’attività è modulata dalsistema nervoso viscerale e anche dal sistemaendocrino.

Muscolo liscio è il tipo principale di muscolo degli organiinterni e cavi, come stomaco, vescica, vasi sanguigni.Cellule uninucleate senza evidenti striature.

Page 4: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Muscolo scheletrico

ConnettivoFibre

muscolariVasi sanguigni Nervi

muscolari

Sarcolemma

Tubuli TSarcoplasmaNuclei

Reticolo

sarcoplasmatico

Miofibrille

Mitocondri

Glicogeno

Page 5: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Nucleo

Tubuli TReticolo

sarcoplasmatico Sarcolemma Mitocondri

Filamento spesso

Fibra (cellula) muscolare

Filamento sottile

Miofibrilla

Page 6: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Miosina:

proteina oligomerica

p.m. 450.000

2 catene pesanti (heavy chains)

p.m. 200.000

Miosina:

proteina oligomerica

p.m. 450.000

Miosina:

proteina oligomerica

p.m. 450.000

Miosina:

proteina oligomerica

p.m. 450.000

Miosina:

proteina oligomerica

p.m. 450.000

FILAMENTI SPESSI

2 coppie di catene leggere

(light chains) non identiche

p.m.16.000 e 20.000

Nel muscolo scheletrico circa 250 molecole di miosina si uniscono a formare un

filamento spesso, il quale è sistemato in modo che le teste di miosina si raggruppano

all’estremità, mentre la regione centrale è un fascio di code di miosina

Page 7: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Dominio C-terminale: α-elicoidale

lunghezza 134 nm, diametro 2 nm

(coda della miosina)

Dominio N-terminale: globulare

(testa della miosina)

Ciascuna catena pesante

Ogni coppia di catene leggere è legata al dominio globulare di ciascuna

catena pesante

Coda

Page 8: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Snodo

Testa

Page 9: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 10: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

linea M

I filamenti spessi e sottili sono connessi da ponti trasversali, detti anche ponti crociati, costituiti dalle

teste di miosina che si legano lassamente ai filamenti di actina. Ogni molecola di G-atina ha un

singolo sito di legame per una testa di miosina.

Dischi Z: strutture proteiche a zig zag, che fungono da sito di attacco per i filamenti sottili. Un

sarcomero è composto da due dischi Z e dai filamenti tra essi compresi

Linea M: questa banda rappresenta il sito di attacco dei filamenti spessi

linea M

disco Z disco Z

SARCOMERO

Page 11: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 12: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Tropomiosina: dimero a forma di bacchetta (pm = 70.000).

Le due subunità sono avvolte l’una intorno all’altra a formare un’elica.

Ogni molecola è lunga circa 40 nm.

I dimeri di tropomiosina si dispongono in sequenza con disposizione

testa-coda, formando un filamento elicoidale.

Due filamenti elicoidali si estendono per l’intera lunghezza del polimero

actina F.

Actina G

monomero di actina

pm: 42.000

Page 13: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

TnI

Legame

Tn-tropomiosina

Legame

Actina-TnC

Legame

Ioni Ca++

Troponina

TnT

TnC

Page 14: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

La titina è una enorme proteina elastica che occupa tutta la distanza tra disco Z e linea

M. Ha la funzione di agevolare il ritorno del sarcomero allungato alla sua lunghezza di

riposo; inoltre stabilizza la disposizione dei filamenti all’interno del sarcomero con l’aiuto

della proteina non elastica nebulina. La nebulina si trova di fianco ai filamenti sottili e si

attacca ai dischi Z. Garantisce l’allineamento dei filamenti di actina del sarcomero.

Page 15: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

TEORIA DELLO SCORRIMENTO DEI FILAMENTI

Quando un sarcomero si contrae, i filamenti sottili e spessi non cambiano in lunghezza. Il

filamento sottile di actina scivola sul filamento spesso di miosina, spostandosi verso la linea M al

centro del sarcomero. La banda A non si modifica in lunghezza, ma sia la zona H che la banda I si

accorciano mentre i filamenti si sovrappongono.

Page 16: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

La forza che spinge il filamento di actina è il movimento dei ponti crociati di miosina che legano actina emiosina. La miosina è una proteina motrice che converte il legame chimico dell’ATP in energia meccanica.

Page 17: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Da cosa è regolato questo processo? Nello stato rilassato la tropomiosina blocca parzialmente i siti di legame dell’actina per la miosina.

Page 18: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

La contrazione viene iniziata quando il Ca2+ si lega alla troponina C. Il legame col Ca2+ cambia laconformazione della molecola di tropomiosina e scopre il resto del sito di legame per la miosina, così chequesta può completare la propria flessione.

Page 19: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 20: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei

motoneuroni. L’acetlcolina proveniente dal motoneurone innesca un potenziale d’azione nella fibra

muscolare che a sua volta scatena una contrazione. Questa combinazione di eventi elettrici e meccanici

viene definito accoppiamento eccitazione-contrazione.

Page 21: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 22: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 23: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Il reticolo sarcoplasmatico avvolge ogni singola miofibrilla. Il sistema dei tubuli T è strettamente

associato al reticolo sarcoplasmatico ed è in continuità con la membrana di superficie della fibra

muscolare. I tubuli T permettono ai potenziali d’azione che originano sulla superficie cellulare a

livello della giunzione neuromuscolare di passare velocemente all’interno della fibra. Senza tubuli

T, il potenziale d’azione potrebbe raggiungere il centro della fibra solo per diffusione di cariche

positive nel citosol, processo più lento che ritarderebbe il tempo di risposta della fibra muscolare.

Page 24: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 25: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 26: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Quando il potenziale d’azione raggiunge un recettore diidropiridina (DHP), la connessionemeccanica fra il recettore e il reticolo sarcoplasmatico apre i canali per il Ca2+ .L’apertura di questi canali rilascia Ca2+ nel citoplasma, dove gli ioni si possono combinare con la troponinae permettere di iniziare la contrazione.Il rilasciamento muscolare si ha quando il reticolo sarcoplasmatico riassorbe Ca2+ per mezzo di una Ca2+-ATPasi. Quando la concentrazione citoplasmatica di Ca2+ scende, lo ione si stacca dalla troponina, latropomiosina scivola all’indietro per bloccare il sito legante la miosina, e la fibra si rilascia.

Page 27: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

1. 1. Il potenziale d’azione nel motoneurone somatico raggiunge il terminale assonale.

2. I canali del Ca2+ voltaggio-dipendente si aprono. L’ingresso di Ca2+ innesca l’esocitosi delle vescicolesinaptiche contenenti ACh.

3. L’ACh diffonde nello spazio sinaptico e si lega ai recettori nicotinici sulla placca motrice del muscolo.4. Il legame dell’ACh apre un canale cationico non specifico. Sia l’Na+ che il K+ si muovono attraverso il

canale secondo il loro gradiente elettrochimico. L’ingresso netto di cariche positive depolarizza lamembrana muscolare, generando un potenziale di placca.

5. Il potenziale di placca è sempre sovrasoglia e determina un potenziale di azione nella fibra muscolare.6. Il potenziale di azione generato alla giunzione neuromuscolare diffonde lungo la membrana della fibra

muscolare, muovendosi verso l’interno della fibra tramite i tubuli T.

7. Il potenziale di azione nei tubuli T attiva i recettori diidropiridina. I recettori DHP aprono i canali del7. Il potenziale di azione nei tubuli T attiva i recettori diidropiridina. I recettori DHP aprono i canali delCa2+ nella membrana del reticolo sarcoplasmatico.

8. Il Ca2+ diffonde fuori dal reticolo sarcoplasmatico e si lega alla troponina, allontanando latropomiosina dal sito di legame per la miosina. Questa azione permette alle teste della miosina dirilasciare il fosfato inorganico dall’idrolisi dell’ATP e di completare la loro flessione.

9. Al termine della flessione, il ponte trasversale della miosina rilascia ADP e resta legato fortementeall’actina. La miosina deve legarsi a una molecola di ATP per uscire da questo stato di rigor.

10. La fibra muscolare si rilassa quando il Ca2+ viene rilasciato dalla troponina e la tropomiosina torna abloccare il sito di legame della miosina. Il Calcio viene ritrasportato dentro al reticolosarcoplasmatico tramite una Ca2+-ATPasi.

11. L’ATPasi della miosina idrolizza l’ATP in ADP e P, che restano legati alla testa della miosina. Lamiosina torna indietro e si lega ad una nuova molecola di actina, pronta a eseguire la successivaflessione.

Page 28: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 29: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

I grafici a destra mostrano i potenziali d’azione nel terminale assonale e nella fibra muscolare, seguitidalla curva di tensione della scossa muscolare. Il periodo di latenza rappresenta il tempo necessarioperché il Ca2+ venga rilasciato dal reticolo sarcoplasmatico e diffonda verso i filamenti della miofibrilla.

Un singolo potenziale d’azione evoca unasingola scossa muscolare.Le scosse sono diverse da fibra a fibraper la velocità con cui sviluppano tensione(fase ascendente della curva della scossa),la tensione massima raggiunta (altezza della curva)e durata della scossa (ampiezza della curva).

Page 30: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Contrazione fibre muscolari

scheletriche Forza (Tensione)

MovimentoResistenza ad un

carico Movimento

carico

La tensione generata da un muscolo è direttamente proporzionale

all’interazione tra filamenti spessi e filamenti sottili.

Page 31: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

La tensione sviluppata dalla contrazione riflette direttamente la lunghezza dei sarcomeri prima che lacontrazione inizi. Ogni sarcomero si contrarrà con il massimo della forza se è alla lunghezza ottimale,né troppo lungo né troppo corto.

La teoria dello scorrimento dei filamenti prevede che la tensione che la fibra muscolare può generaresia direttamente proporzionale al numero di ponti trasversali che si formano tra filamenti spessi efilamenti sottili. Se la fibra comincia la contrazione quando il sarcomero è troppo lungo,i filamentisottili e spessi sono scarsamente sovrapposti e formano pochi ponti trasversali quindi non possonogenerare molta forza. Viceversa se il sarcomero è più corto della sua lunghezza ottimale, i filamentisaranno troppo sovrapposti per cui i filamenti spessi possono spostare i filamenti sottili per una brevedistanza prima che questi, da opposte estremità del sarcomero, cominciano a sovrapporsi impedendo laformazione dei ponti trasversali. Inoltre, i filamenti spessi finiscono a contatto coi dischi Z e nonpossono formare ponti trasversali per cui la tensione cala rapidamente.

Page 32: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Ribosio

Adenina

Adenosintrifosfato (ATP)

Fosfato

Legame ricco

d’energia

La contrazione del muscolo scheletrico dipende dal rifornimento continuo di ATP. Laquantità di ATP presente nel muscolo è sufficiente per otto contrazioni circa. Comefonte di energia di riserva, il muscolo contiene fosfocreatina, una molecola i cui legamifosfato ad alta energia vengono generati a partire da creatina e ATP quando i muscolisono a riposo

Page 33: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 34: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 35: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.
Page 36: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

ANAEROBIOSI

Page 37: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Metabolismo Glicidico e Produzione di Energia

Glicolisi:

2 ATP 2 ATP

2 NADH* (citoplasmatico) x 1.5-2.5 ATP/NADH 3-5 ATP

Metabolismo aerobio:

2 NADH (mitocondriale) x 2.5 ATP/NADH 5 ATP

2 ATP 2 ATP2 ATP 2 ATP

6 NADH (mitocondriale) x 2.5 ATP/NADH 15 ATP

2 FADH2 (mitocondriale) x 2 ATP/FADH2 4 ATP Totale: 31-33 ATP

Page 38: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

CARATTERISTICHE DEI VARI TIPI DI FIBRE MUSCOLARI

Ossidative lente

muscolo rosso

Ossidative rapide

muscolo rosso

Glicolitiche rapide

muscolo bianco

Velocità molto lenta intermedia molto rapida

contrazione

Attività lenta rapida molto rapida

ATPasica ATPasica

Diametro piccolo medio grande

Durata molto lunga lunga breve

contrazione

Metabolismo ossidativo glicolitico/ossidativo glicolitico

Colore rosso scuro rosso pallido

Page 39: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Fibre muscolari

ossidative lente

Fibre muscolari

glicolitiche rapide glicolitiche rapide

La grande quantità di mioglobina , numerosi mitocondri(M) e un’estesa

rete di capillari sanguigni (cap) distinguono il muscolo ossiodativo a lenta

contrazione (R) dal muscolo glicolitico a contrazione rapida (W).

Page 40: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

La forza della contrazione aumenta con la sommazione delle scosse muscolari.

Una fibra muscolare risponde ad uno stimolo (▲) con una scossa. Se gli stimoli sono separati nel tempo, il muscolo si rilassa completamente tra le scosse.

La durata della scossa è inferiore al tempo intercorrente tra

due stimolazioni successive.

Page 41: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Quando gli stimoli sono ravvicinati nel tempo, la fibra muscolare non ha il tempodi rilassarsi e le contrazioni si sommano, generando una contrazione con unatensione maggiore.

La tensione generata da un muscolo aumenta se

si sommano più scosse singole ravvicinate

Page 42: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Se gli stimoli arrivano molto rapidamente, il muscolo raggiunge la sua massimatensione. Se il muscolo ha ancora la possibilità di rilassarsi tra gli stimoli, sirealizza il tetano incompleto.

Page 43: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

Tetano completo

Se il muscolo raggiunge una tensione costante, è nella condizione di tetano completo.

E’ quindi possibile aumentare la tensione sviluppata da una singola fibra muscolarevariando la frequenza dei potenziali d’azione nella fibra, che sono scatenati dalrilascio di acetilcolina da parte dei motoneuroni.

Page 44: Energia chimica - sunhope.it muscolare.pdf · I segnali per la contrazione muscolare arrivano dal SNC ai muscoli scheletrici per mezzo dei motoneuroni.

AFFATICAMENTO MUSCOLARE