B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy...

16
Appl Categor Struct (2008) 16:389–419 DOI 10.1007/s10485-008-9127-6 Subobject Transformation Systems Andrea Corradini · Frank Hermann · Paweł Soboci ´ nski Received: 13 October 2006 / Accepted: 22 January 2008 / Published online: 20 February 2008 © Springer Science + Business Media B.V. 2008 Abstract Subobject transformation systems (STS) are proposed as a novel formal framework for the analysis of derivations of transformation systems based on the algebraic, double-pushout (DPO) approach. They can be considered as a simplified variant of DPO rewriting, acting in the distributive lattice of subobjects of a given object of an adhesive category. This setting allows a direct analysis of all possible notions of dependency between any two productions without requiring an explicit match. In particular, several equivalent characterizations of independence of pro- ductions are proposed, as well as a local Church–Rosser theorem in the setting of STS. Finally, we show how any derivation tree in an ordinary DPO grammar leads to an STS via a suitable construction and show that relational reasoning in the resulting STS is sound and complete with respect to the independence in the original derivation tree. Keywords Graph transformation systems · Adhesive categories · Occurrence grammars Mathematics Subject Classifications (2000) 18B35 · 68Q10 · 68Q42 Research partially supported by EU IST-2004-16004 SEnSOria and MIUR PRIN 2005015824 ART. The third author acknowledges the support of EPSRC grant EP/D066565/1. A. Corradini ( B ) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: [email protected] F. Hermann Department of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany P. Soboci ´ nski ECS, University of Southampton, Southampton, UK 390 A. Corradini et al. 1 Introduction Graph transformation systems (GTSs) [21] are a powerful specification formalism for concurrent and distributed systems, generalising another classical model of concurrency, namely Place/Transition Petri nets [19]. The concurrent behaviour of GTSs has been thoroughly studied and a consolidated theory of concurrency is now available. In particular, several constructions associated with the concurrent semantics of nets, such as processes and unfoldings, have been extended to GTSs. Intuitively, a deterministic process of a Petri net is a partial-order representation of a concurrent computation of the net, while the unfolding represents a branching and acyclic structure of all its possible concurrent computations. Interestingly, the processes and the unfolding of a net are themselves Petri nets of a particular kind, called occurrence nets. The generalization of these notions to GTSs (see, e.g., [1, 3, 7, 20]) follows a similar pattern, introducing occurrence grammars as a partial-order representation of GTSs computations. Recently, several constructions and results of the classical theory of the algebraic double-pushout (DPO) approach to graph transformation have been extended to rewriting in arbitrary adhesive categories [10, 16]. In a joint effort with other re- searchers, the authors are working on the generalization of the concurrent semantics of nets and GTS to this more abstract setting: first results concerning deterministic processes appeared in [2]. It turns out that a key ingredient in the definition of processes and unfoldings for a given transformation system, is the analysis of the relationships that arise between the occurrences of rules in the possible computations of the system. Such relations include the parallel and sequential independence, deeply studied in the classical theory of the algebraic approaches to graph rewriting [8, 11]; the standard causality and conflict relations; the asymmetric conflict, studied for formalisms able to model read-only operations; and the less known co-causality, disabling and co- disabling, introduced in [2]. Actually, such relations are meaningful for restricted classes of transformation systems only, including the occurrence systems (nets and grammars) mentioned above. Even if the possible ways in which the rules of an occurrence system can be related are quite well understood, to our knowledge a systematic study of this topic is still missing: This is the main goal of the present paper. To this aim, we introduce the notion of a Subobject Transformation System (STS), which can be understood, intuitively, as a DPO rewriting system in the category of subobjects of a given object of an adhesive category (corresponding to the type graph in the typed approaches to DPO rewriting [7]). In this framework, the usual pushout and pullback constructions are replaced by union and intersection of subobjects. Thus, in general, one can work with a set-theoretical syntax rather than with a categorical one. Known examples of STSs in the area of DPO graph transformation systems are the graph processes as defined in [3, 7], and the unfolding presented in [1], but STSs are more general, because no acyclicity constraint is enforced in their definition. Interestingly, it turns out that STSs in category Set with rules having empty interfaces correspond precisely to Elementary Net Systems [22], a class of Petri nets widely studied in the literature. However, the present paper focuses on the core of the new theory only, while the precise relationships among STSs and the mentioned

Transcript of B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy...

Page 1: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

App

lCat

egor

Stru

ct(2

008)

16:3

89–4

19D

OI

10.1

007/

s104

85-0

08-9

127-

6

Subo

bjec

tTra

nsfo

rmat

ion

Syst

ems

And

rea

Cor

radi

ni·F

rank

Her

man

n·P

aweł

Sobo

cins

ki

Rec

eive

d:13

Oct

ober

2006

/Acc

epte

d:22

Janu

ary

2008

/Pub

lishe

don

line:

20F

ebru

ary

2008

©Sp

ring

erSc

ienc

e+

Bus

ines

sM

edia

B.V

.200

8

Abs

trac

tSu

bobj

ect

tran

sfor

mat

ion

syst

ems

(ST

S)ar

epr

opos

edas

ano

vel

form

alfr

amew

ork

for

the

anal

ysis

ofde

riva

tion

sof

tran

sfor

mat

ion

syst

ems

base

don

the

alge

brai

c,do

uble

-pus

hout

(DP

O)

appr

oach

.The

yca

nbe

cons

ider

edas

asi

mpl

ified

vari

ant

ofD

PO

rew

riti

ng,a

ctin

gin

the

dist

ribu

tive

latt

ice

ofsu

bobj

ects

ofa

give

nob

ject

ofan

adhe

sive

cate

gory

.T

his

sett

ing

allo

ws

adi

rect

anal

ysis

ofal

lpo

ssib

leno

tion

sof

depe

nden

cybe

twee

nan

ytw

opr

oduc

tion

sw

itho

utre

quir

ing

anex

plic

itm

atch

.In

part

icul

ar,

seve

ral

equi

vale

ntch

arac

teri

zati

ons

ofin

depe

nden

ceof

pro-

duct

ions

are

prop

osed

,as

wel

las

alo

cal

Chu

rch–

Ros

ser

theo

rem

inth

ese

ttin

gof

STS.

Fin

ally

,w

esh

owho

wan

yde

riva

tion

tree

inan

ordi

nary

DP

Ogr

amm

arle

ads

toan

STS

via

asu

itab

leco

nstr

ucti

onan

dsh

owth

atre

lati

onal

reas

onin

gin

the

resu

ltin

gST

Sis

soun

dan

dco

mpl

ete

wit

hre

spec

tto

the

inde

pend

ence

inth

eor

igin

alde

riva

tion

tree

.

Key

wor

dsG

raph

tran

sfor

mat

ion

syst

ems·

Adh

esiv

eca

tego

ries

·O

ccur

renc

egr

amm

ars

Mat

hem

atic

sSu

bjec

tCla

ssifi

cati

ons

(200

0)18

B35

·68Q

10·6

8Q42

Res

earc

hpa

rtia

llysu

ppor

ted

byE

UIS

T-2

004-

1600

4SE

nSO

ria

and

MIU

RP

RIN

2005

0158

24A

RT

.The

thir

dau

thor

ackn

owle

dges

the

supp

orto

fEP

SRC

gran

tEP

/D06

6565

/1.

A.C

orra

dini

( B)

Dip

arti

men

todi

Info

rmat

ica,

Uni

vers

ità

diP

isa,

Pis

a,It

aly

e-m

ail:

andr

ea@

di.u

nipi

.it

F.H

erm

ann

Dep

artm

ento

fEle

ctri

calE

ngin

eeri

ngan

dC

ompu

ter

Scie

nce,

Tec

hnic

alU

nive

rsit

yof

Ber

lin,B

erlin

,Ger

man

y

P.S

oboc

insk

iE

CS,

Uni

vers

ity

ofSo

utha

mpt

on,S

outh

ampt

on,U

K

390

A.C

orra

dini

etal

.

1In

trod

ucti

on

Gra

phtr

ansf

orm

atio

nsy

stem

s(G

TSs

)[2

1]ar

ea

pow

erfu

lsp

ecifi

cati

onfo

rmal

ism

for

conc

urre

ntan

ddi

stri

bute

dsy

stem

s,ge

nera

lisin

gan

othe

rcl

assi

cal

mod

elof

conc

urre

ncy,

nam

ely

Pla

ce/T

rans

itio

nP

etri

nets

[19]

.The

conc

urre

ntbe

havi

our

ofG

TSs

has

been

thor

ough

lyst

udie

dan

da

cons

olid

ated

theo

ryof

conc

urre

ncy

isno

wav

aila

ble.

Inpa

rtic

ular

,se

vera

lco

nstr

ucti

ons

asso

ciat

edw

ith

the

conc

urre

ntse

man

tics

ofne

ts,

such

aspr

oces

ses

and

unfo

ldin

gs,

have

been

exte

nded

toG

TSs

.In

tuit

ivel

y,a

dete

rmin

isti

cpr

oces

sof

aP

etri

net

isa

part

ial-

orde

rre

pres

enta

tion

ofa

conc

urre

ntco

mpu

tati

onof

the

net,

whi

leth

eun

fold

ing

repr

esen

tsa

bran

chin

gan

dac

yclic

stru

ctur

eof

all

its

poss

ible

conc

urre

ntco

mpu

tati

ons.

Inte

rest

ingl

y,th

epr

oces

ses

and

the

unfo

ldin

gof

ane

tar

eth

emse

lves

Pet

rine

tsof

apa

rtic

ular

kind

,ca

lled

occu

rren

cene

ts.

The

gene

raliz

atio

nof

thes

eno

tion

sto

GT

Ss(s

ee,

e.g.

,[1

,3,

7,20

])fo

llow

sa

sim

ilar

patt

ern,

intr

oduc

ing

occu

rren

cegr

amm

ars

asa

part

ial-

orde

rre

pres

enta

tion

ofG

TSs

com

puta

tion

s.R

ecen

tly,

seve

ralc

onst

ruct

ions

and

resu

lts

ofth

ecl

assi

calt

heor

yof

the

alge

brai

cdo

uble

-pus

hout

(DP

O)

appr

oach

togr

aph

tran

sfor

mat

ion

have

been

exte

nded

tore

wri

ting

inar

bitr

ary

adhe

sive

cate

gori

es[1

0,16

].In

ajo

int

effo

rtw

ith

othe

rre

-se

arch

ers,

the

auth

ors

are

wor

king

onth

ege

nera

lizat

ion

ofth

eco

ncur

rent

sem

anti

csof

nets

and

GT

Sto

this

mor

eab

stra

ctse

ttin

g:fir

stre

sult

sco

ncer

ning

dete

rmin

isti

cpr

oces

ses

appe

ared

in[2

].It

turn

sou

tth

ata

key

ingr

edie

ntin

the

defin

itio

nof

proc

esse

san

dun

fold

ings

for

agi

ven

tran

sfor

mat

ion

syst

em,

isth

ean

alys

isof

the

rela

tion

ship

sth

atar

ise

betw

een

the

occu

rren

ces

ofru

les

inth

epo

ssib

leco

mpu

tati

ons

ofth

esy

stem

.Suc

hre

lati

ons

incl

ude

the

para

llel

and

sequ

entia

lin

depe

nden

ce,

deep

lyst

udie

din

the

clas

sica

lthe

ory

ofth

eal

gebr

aic

appr

oach

esto

grap

hre

wri

ting

[8,1

1];t

hest

anda

rdca

usal

ityan

dco

nflic

tre

lati

ons;

the

asym

met

ric

confl

ict,

stud

ied

for

form

alis

ms

able

tom

odel

read

-onl

yop

erat

ions

;an

dth

ele

sskn

own

co-c

ausa

lity,

disa

blin

gan

dco

-di

sabl

ing,

intr

oduc

edin

[2].

Act

ually

,su

chre

lati

ons

are

mea

ning

ful

for

rest

rict

edcl

asse

sof

tran

sfor

mat

ion

syst

ems

only

,in

clud

ing

the

occu

rren

cesy

stem

s(n

ets

and

gram

mar

s)m

enti

oned

abov

e.E

ven

ifth

epo

ssib

lew

ays

inw

hich

the

rule

sof

anoc

curr

ence

syst

emca

nbe

rela

ted

are

quit

ew

ellu

nder

stoo

d,to

our

know

ledg

ea

syst

emat

icst

udy

ofth

isto

pic

isst

illm

issi

ng:T

his

isth

em

ain

goal

ofth

epr

esen

tpa

per.

To

this

aim

,we

intr

oduc

eth

eno

tion

ofa

Subo

bjec

tT

rans

form

atio

nSy

stem

(ST

S),w

hich

can

beun

ders

tood

,in

tuit

ivel

y,as

aD

PO

rew

riti

ngsy

stem

inth

eca

tego

ryof

subo

bjec

tsof

agi

ven

obje

ctof

anad

hesi

veca

tego

ry(c

orre

spon

ding

toth

ety

pegr

aph

inth

ety

ped

appr

oach

esto

DP

Ore

wri

ting

[7])

.In

this

fram

ewor

k,th

eus

ualp

usho

utan

dpu

llbac

kco

nstr

ucti

ons

are

repl

aced

byun

ion

and

inte

rsec

tion

ofsu

bobj

ects

.Thu

s,in

gene

ral,

one

can

wor

kw

ith

ase

t-th

eore

tica

lsyn

tax

rath

erth

anw

ith

aca

tego

rica

lone

.K

now

nex

ampl

esof

STSs

inth

ear

eaof

DP

Ogr

aph

tran

sfor

mat

ion

syst

ems

are

the

grap

hpr

oces

ses

asde

fined

in[3

,7],

and

the

unfo

ldin

gpr

esen

ted

in[1

],bu

tST

Ssar

em

ore

gene

ral,

beca

use

noac

yclic

ity

cons

trai

ntis

enfo

rced

inth

eir

defin

itio

n.In

tere

stin

gly,

ittu

rns

outt

hatS

TSs

inca

tego

rySe

twit

hru

les

havi

ngem

pty

inte

rfac

esco

rres

pond

prec

isel

yto

Ele

men

tary

Net

Syst

ems

[22]

,a

clas

sof

Pet

rine

tsw

idel

yst

udie

din

the

liter

atur

e.H

owev

er,

the

pres

ent

pape

rfo

cuse

son

the

core

ofth

ene

wth

eory

only

,w

hile

the

prec

ise

rela

tion

ship

sam

ong

STSs

and

the

men

tion

ed

Page 2: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

391

com

puta

tion

alm

odel

sal

read

ypr

opos

edin

the

liter

atur

eis

left

asa

topi

cof

futu

rein

vest

igat

ion.

Aft

erin

trod

ucin

gST

Ssin

Sect

ion

2,w

eex

ploi

tth

emin

Sect

ion

3in

orde

rto

iden

tify

the

poss

ible

basi

cre

lati

ons

amon

gru

les,

and

we

use

thes

eto

defin

eot

her

deri

ved

rela

tion

sw

hich

are

show

nto

coin

cide

wit

hth

ose

intr

oduc

edin

the

liter

atur

efo

rST

Ssar

isin

gas

proc

esse

sof

DP

Ore

wri

ting

syst

ems.

Her

ew

esh

allr

ely

ona

usef

ulau

xilia

rygr

aphi

cal

“Ven

n-di

agra

m”

like

nota

tion

for

reas

onin

gab

out

depe

nden

cyre

lati

ons.

The

zone

sof

the

diag

ram

sar

eno

tin

gene

rals

ubob

ject

san

din

orde

rto

reas

onab

out

them

form

ally

we

intr

oduc

eth

eno

tion

ofre

gion

whi

chis

,ro

ughl

y,a

com

plem

ent

ofa

subo

bjec

t.T

heba

sic

theo

ryof

regi

ons

allo

ws

usto

show

that

reas

onin

gw

ith

the

aid

ofth

eV

enn-

diag

ram

sis

soun

d.N

ext,

inSe

ctio

n4,

we

disc

uss

the

cond

itio

nsun

der

whi

chtw

opr

oduc

tion

sof

anST

Sha

veto

beco

nsid

ered

asin

depe

nden

t,an

dw

ech

arac

teri

zeth

isre

lati

onin

seve

ral

equi

vale

ntw

ays;

alo

cal

Chu

rch–

Ros

ser

theo

rem

clos

esth

ese

ctio

n.In

Sect

ion

5w

epr

esen

ta

colim

itco

nstr

ucti

onth

atbu

ilds

anST

Sfr

oma

give

nde

riva

tion

tree

ofa

DP

Osy

stem

,gen

eral

izin

gth

eco

nstr

ucti

onof

the

proc

ess

ofa

linea

rde

riva

tion

prop

osed

in[3

,7]

.F

inal

lyin

Sect

ion

6w

esh

owth

atth

ean

alys

isof

the

rela

tion

ship

sam

ong

rule

occu

rren

ces

inth

ede

riva

tion

tree

can

bere

duce

dfa

ithf

ully

toth

ean

alys

isof

such

rela

tion

ship

sin

the

gene

rate

dST

S.In

the

conc

ludi

ngse

ctio

nw

elis

tsom

eto

pics

offu

ture

rese

arch

.

2Su

bobj

ectT

rans

form

atio

nSy

stem

s

As

men

tion

edab

ove,

Subo

bjec

tT

rans

form

atio

nSy

stem

sca

nbe

cons

ider

ed,

con-

cept

ually

,as

tran

sfor

mat

ion

syst

ems

base

don

the

DP

Oap

proa

chin

the

cate

gory

ofsu

bobj

ects

Sub(

T)

ofso

me

obje

ctT

ofa

cate

gory

C.W

esh

all

assu

me

that

Cis

anad

hesi

veca

tego

ry:t

his

ensu

res

that

Sub(

T)

isa

dist

ribu

tive

latt

ice.

The

choi

ceis

just

ified

byth

ein

tend

edus

eof

STSs

asa

form

alfr

amew

ork

for

anal

ysin

gde

riva

tion

sof

DP

Osy

stem

s(a

sde

taile

din

Sect

ions

5an

d6)

,whi

chth

emse

lves

are

defin

edov

erad

hesi

veca

tego

ries

in[1

6].

Defi

niti

on1

(Adh

esiv

eca

tego

ries

)A

cate

gory

isca

lled

adhe

sive

if

–It

has

push

outs

alon

gm

onos

;–

Itha

spu

llbac

ks;

–P

usho

uts

alon

gm

onos

are

Van

Kam

pen

(VK

)sq

uare

s.

Ref

erri

ngto

Fig

.1,

aV

Ksq

uare

isa

push

out

(1)

whi

chsa

tisfi

esth

efo

llow

ing

prop

erty

:if

we

draw

aco

mm

utat

ive

cube

(2)

whi

chha

s(1

)as

its

bott

omfa

cean

dw

hose

back

face

sar

epu

llbac

ksth

enth

efr

ont

face

sof

the

cube

are

pullb

acks

ifan

don

lyif

its

top

face

isa

push

out.

Rec

all

that

give

na

cate

gory

Can

dan

obje

ctT

∈C,

the

cate

gory

ofsu

bobj

ects

Sub(

T)

isde

fined

tobe

the

full

subc

ateg

ory

ofth

esl

ice

cate

gory

C/

Tw

ith

obje

cts

the

mon

omor

phis

ms

into

T.

We

deno

tean

obje

cta

:A�

Tof

Sub(

T)

sim

ply

asA

,lea

ving

the

mon

omor

phis

mim

plic

it.N

otic

eth

atSu

b(T

)is

apr

eord

er;t

here

isat

392

A.C

orra

dini

etal

.

Fig

.1A

push

outs

quar

e(1

)an

da

com

mut

ativ

ecu

be(2

)

mos

ton

ear

row

betw

een

any

two

obje

cts

Aan

dB

,de

note

dA

⊆B

.In

part

icul

ar,

this

impl

ies

that

alld

iagr

ams

(in

Sub(

T))

are

com

mut

ativ

e.If

Cha

spu

llbac

ksth

enSu

b(T

)ha

sbi

nary

prod

ucts

(als

oca

lled

inte

rsec

tions

):th

epr

oduc

tof

two

subo

bjec

tsis

give

nby

the

diag

onal

ofth

epu

llbac

ksq

uare

ofth

etw

om

orph

ism

sin

C.

IfC

isad

hesi

ve,

then

Sub(

T)

also

has

bina

ryco

prod

ucts

(uni

ons)

:the

copr

oduc

tof

two

subo

bjec

tsis

give

nby

the

med

iati

ngm

orph

ism

from

the

push

out

inC

ofth

epr

ojec

tion

sof

thei

rin

ters

ecti

on[1

6].

Fur

ther

mor

e,in

this

case

Sub(

T)

isa

dist

ribu

tive

latt

ice,

i.e.p

rodu

cts

dist

ribu

teov

erco

prod

ucts

,and

vice

-ve

rsa.

We

shal

lden

ote

the

prod

ucta

ndco

prod

ucti

nSu

b(T

)by

∩and

∪,re

spec

tive

ly.

Thr

ough

out

the

pape

rw

esh

all

ofte

nus

eV

enn

diag

ram

sto

depi

ctsu

bobj

ects

,re

pres

enti

ngun

ion

and

inte

rsec

tion

inth

eus

ual

way

.F

orex

ampl

e,in

Fig

.2a

subo

bjec

tA

isre

pres

ente

dby

the

area

delim

ited

byth

ele

ftro

unde

dsq

uare

(mad

eof

“zon

es”

aan

dc)

,B

isre

pres

ente

dby

ban

dc,

A∩

Bby

c,an

dA

∪B

bya,

can

db

.It

isw

orth

stre

ssin

gth

atth

isgr

aphi

calr

epre

sent

atio

nof

subo

bjec

tsis

soun

dbe

caus

eSu

b(T

)is

dist

ribu

tive

.In

fact

,for

exam

ple,

inF

ig. 2

bsu

bobj

ects

A∩(

B∪C

)

and

(A

∩B

)∪(

A∩C

),w

hich

are

equa

lby

dist

ribu

tivi

ty,

are

both

repr

esen

ted

byth

ear

eam

ade

ofd,

e,an

df;

sim

ilarl

y,A

∪(B

∩C)

(=(A

∪B

)∩(

A∪C

))is

repr

esen

ted

bya,

d,e,

fan

dg.

Not

ice

that

cate

gory

Sub(

T)

inge

nera

lis

not

adhe

sive

,ev

enif

Cis

.In

fact

,le

tA

⊆B

bean

arro

win

Sub(

T)

whi

chis

not

anis

omor

phis

m;t

hen

the

push

out

obje

ctof

the

span

B⊇

A⊆

Bis

easi

lysh

own

tobe

Bit

self

,but

the

resu

ltin

gsq

uare

isno

ta

pullb

ack,

cont

radi

ctin

gth

efa

ctth

atpu

shou

tsal

ong

mon

osin

anad

hesi

veca

tego

ryar

epu

llbac

ks[1

6]. a

b

Fig

.2V

enn

diag

ram

sre

pres

enti

ngtw

o(a

)an

dth

ree

(b)

subo

bjec

ts,t

heir

unio

nsan

din

ters

ecti

ons

Page 3: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

393

Defi

niti

on2

(Sub

obje

cttr

ansf

orm

atio

nsy

stem

s)A

Subo

bjec

tT

rans

form

atio

nSy

s-te

m(S

TS)

over

anad

hesi

veca

tego

ryC

isa

trip

leS

=〈 T

,P,π

〉 ,w

here

T∈C

isa

type

obje

ct,

Pis

ase

tof

prod

uctio

nna

mes

,π:P

→Su

b(T

)·←·→

· map

sa

prod

ucti

onna

me

pto

apr

oduc

tion

Lp

⊇K

p⊆

Rp,i

.e.,

asp

anin

Sub(

T),

whe

reL

p,K

pan

dR

p

are

calle

d,re

spec

tive

ly,t

hele

ft-h

and

side

,the

inte

rfac

ean

dth

eri

ght-

hand

side

ofp.

Apr

oduc

tion

will

ofte

nbe

deno

ted

sim

ply

asa

trip

le⟨ L

p,

Kp,

Rp⟩ ,

impl

icit

lyas

sum

ing

that

Kp

⊆L

p∩

Rp.

Defi

niti

on3

(Dir

ect

deri

vati

ons)

Let

S=

〈 T,

P,π

〉 be

aSu

bobj

ect

Tra

nsfo

rmat

ion

Syst

em,π

(q)=

〈 L,

K,

R〉 b

ea

prod

ucti

on,a

ndle

tG

bean

obje

ctof

Sub(

T).

The

nth

ere

isa

dire

ctde

riva

tion

from

Gto

G′ u

sing

q,w

ritt

enG

⇒q

G′ ,

ifG

′ ∈Su

b(T

)an

dth

ere

exis

tsan

obje

ctD

∈Sub

(T)

such

that

:

(a)

L∪

D∼ =

G;

(c)

D∪

R∼ =

G′ ;

(b)

L∩

D∼ =

K;

(d)

D∩

R∼ =

K.

Ifsu

chan

obje

ctD

exis

ts,w

esh

all

refe

rto

itas

the

cont

ext

ofG

w.r

.t.q

oras

the

cont

exto

fthe

dire

ctde

riva

tion

G⇒

qG

′ .A

sw

esh

alls

eela

ter

inP

ropo

siti

on7,

give

na

prod

ucti

onq

and

asu

bobj

ectG

,aco

ntex

tofG

w.r

.t.q

isun

ique

upto

isom

orph

ism

,if

itex

ists

.G

iven

subo

bjec

tsL

and

R,c

onsi

dere

das

left

-an

dri

ght-

hand

side

sof

apr

oduc

-ti

on,t

here

isa

cano

nica

lcho

ice

for

the

inte

rfac

eK

,nam

ely

K=

L∩

R.

Defi

niti

on4

(Pur

eST

S)W

esh

alls

ayth

atan

STS

ispu

rew

hen

K=

L∩

Rin

allo

fit

spr

oduc

tion

s.

Intu

itiv

ely,

ina

pure

STS

nopr

oduc

tion

dele

tes

and

prod

uces

agai

nth

esa

me

part

ofa

subo

bjec

t:th

iste

rmin

olog

yis

adap

ted

from

the

theo

ryof

Ele

men

tary

Net

Syst

ems,

whe

rea

syst

emw

hich

does

not

cont

ain

tran

siti

ons

wit

ha

self

-loo

pis

calle

d“p

ure”

.T

hene

xtte

chni

call

emm

aw

illbe

used

seve

ralt

imes

alon

gth

epa

per:

Itpr

ovid

esa

sim

ple

set-

theo

reti

cals

ynta

xfo

rex

pres

sing

the

fact

that

aco

mm

utat

ive

squa

rein

Sub(

T)

isa

push

outi

nC

.

Lem

ma

5A

ssum

eth

atC

isan

adhe

sive

cate

gory

,tha

tT∈C

,and

that

(†)

isa

squa

rein

Sub(

T)

(equ

ival

ently

,it

isa

com

mut

ativ

esq

uare

ofm

onos

inC

and

ther

eis

am

onom

orph

ism

D→

T).

The

nth

efo

llow

ing

are

equi

vale

nt:

(1)(†

)is

apu

shou

tin

C(2

)B

∩C∼ =

Aan

dD

∼ =B

∪C(3

)B

∩C⊆

Aan

dD

⊆B

∪C.

A��

��

�� ��(†

)

B �� ��C

����

D

Pro

of

(1⇒

2)T

hesq

uare

(†)

isa

push

out

inC

alon

ga

mon

o,th

eref

ore

apu

llbac

k[1

6].

Sinc

eB

∩Cis

also

apu

llbac

kof

C→

Dan

dB

→D

(giv

enth

atth

ere

isa

mor

phis

mD

→T

),w

eha

veB

∩C∼ =

Aan

dth

usD

∼ =B

∪C.

394

A.C

orra

dini

etal

.

(2⇔

3)T

heis

omor

phis

ms

impl

yth

ein

clus

ions

.F

orth

eot

her

impl

icat

ion,

itis

suffi

cien

tto

obse

rve

that

,giv

en(†

),A

⊆B

∩Can

dB

∪C⊆

Dho

ldby

the

univ

ersa

lpro

pert

ies

of∩a

nd∪,

resp

ecti

vely

.(1

⇐2)

Dia

gram

(†)i

sa

push

outi

nC

byth

ech

arac

teri

sati

onof

unio

nsof

subo

bjec

tsin

adhe

sive

cate

gori

es.

��

Itis

inst

ruct

ive

toco

nsid

erth

ere

lati

onsh

ipbe

twee

na

dire

ctde

riva

tion

inan

STS

and

the

usua

lnot

ion

ofa

DP

Odi

rect

deri

vati

onin

anad

hesi

veca

tego

ry.I

tis

poss

ible

tom

ake

this

com

pari

son,

sinc

eon

eca

nco

nsid

era

prod

ucti

onL

p⊇

Kp

⊆R

pas

the

unde

rlyi

ngsp

anof

mon

omor

phis

ms

inC

.W

esh

all

say

that

ther

eis

aco

ntac

tsi

tuat

ion

for

apr

oduc

tion

〈 L,

K,

R〉 a

ta

subo

bjec

tG

⊇L

∈Sub

(T)

ifG

∩R

�⊆L

.In

tuit

ivel

yth

ism

eans

that

part

ofth

esu

bobj

ect

Gis

crea

ted

but

not

dele

ted

byth

epr

oduc

tion

:if

we

wer

eal

low

edto

appl

yth

epr

oduc

tion

atth

ism

atch

via

aD

PO

dire

ctde

riva

tion

,the

resu

ltin

gob

ject

wou

ldco

ntai

nth

eco

mm

onpa

rttw

ice

and

cons

eque

ntly

the

resu

ltin

gm

orph

ism

toT

wou

ldno

tbe

am

onom

orph

ism

;i.e

.,th

ere

sult

wou

ldno

tbe

asu

bobj

ect

ofT

.T

hene

xtre

sult

clar

ifies

the

rela

tion

ship

betw

een

the

defin

itio

nof

dire

ctde

riva

tion

inSu

b(T

)an

dth

est

anda

rdde

finit

ion

used

inth

eD

PO

appr

oach

[8]:

esse

ntia

lly,t

hetw

ode

riva

tion

sco

inci

deif

ther

eis

noco

ntac

t.

Pro

posi

tion

6(S

TS

deri

vati

ons

are

cont

act-

free

doub

lepu

shou

ts)

LetS

=〈 T

,P,π

〉be

anST

Sov

eran

adhe

sive

cate

gory

C,π

(q)=

〈 L,

K,

R〉 b

ea

prod

uctio

n,an

dG

bean

obje

ctof

Sub(

T).

The

nG

⇒q

G′ i

ffL

⊆G

,G∩

R⊆

L,a

ndth

ere

isan

obje

ctD

inC

such

that

the

follo

win

gdi

agra

mco

nsis

tsof

two

push

outs

inC

.

L ��m

��(1

)

K��

l��

��r

��

��k

��(2

)

R ��n

��G

D��

f

����

g��

G′

Pro

of

(⇒)

Supp

ose

that

G⇒

qG

′ .T

hen

byD

efini

tion

3th

ere

exis

tsan

obje

ctD

∈Sub

(T)

such

that

(a)

L∪

D∼ =

Gan

d(b

)L

∩D

∼ =K

,so

clea

rly

L⊆

Gan

dby

the

conc

lusi

onof

Lem

ma

5,th

ele

ftsq

uare

(1)

isa

push

out

inC

.Fur

ther

mor

e,(c

)D

∪R

∼ =G

′ and

(d)

D∩

R∼ =

K,a

ndth

us(2

)is

apu

shou

tin

Cas

wel

l.T

hefa

ctth

atG

∩R

⊆L

can

besh

own

asfo

llow

s,us

ing

(a)

and

(d):

G∩

R(a

) ∼ =(L

∪D

)∩

R(∗) ∼ =

(L∩

R)∪(

D∩

R)

(d) ∼ =(L

∩R

)∪

K⊆

L

whe

re(∗)

hold

sby

dist

ribu

tivi

tyof

Sub(

T).

(⇐)

Supp

ose

that

the

squa

res(1

)an

d(2

)ar

epu

shou

tsin

C,L

⊆G

(3)

and

G∩

R⊆

L(4

).Si

nce

G∈S

ub(T

)an

d(3

),al

larr

ows

of(1

)ar

ein

Sub(

T)

and

byL

emm

a5

we

have

(b)

L∩

D∼ =

Kan

d(a

)L

∪D

∼ =G

.

Cle

arly

K⊆

D∩

R.N

owD

∩R

∼ =D

∩G∩

R⊆ (

4)D

∩L

∼ =K

and

thus

we

con-

clud

eth

atco

ndit

ion

(d):

K∼ =

D∩

Rho

lds.

Bec

ause

squa

re(2

)is

apu

shou

titf

ollo

ws

that

(c):

D∪

R∼ =

G′ .

��

Page 4: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

395

The

follo

win

gex

ampl

esh

ows

that

inth

epr

esen

ceof

aco

ntac

tsit

uati

on,a

doub

le-

push

out

diag

ram

inC

does

not

corr

espo

ndin

gene

ral

toa

dire

ctde

riva

tion

inth

eST

S.M

ore

prec

isel

y,le

tC

beth

e(a

dhes

ive)

cate

gory

ofse

tsan

dfu

ncti

ons,

and

let

T=

{•}be

asi

ngle

ton

set.

The

nth

eto

psp

anis

apr

oduc

tion

inSu

b(T

),an

dar

row

mis

inSu

b(T

)as

wel

l,bu

tco

ndit

ion

G∩

R⊆

Lis

not

sati

sfied

.The

doub

le-

push

out

diag

ram

can

beco

mpl

eted

inSe

tas

show

n,bu

tth

ere

sult

ing

set

G′ i

sno

ta

subo

bjec

tof

T.

L=

∅��

m��

(1)

K=

∅��

l��

��r

��

��k

��(2

)

R=

{•} ��n

��G

={•}

D=

{•}��

f

����

g��

G′ =

{•,•}

As

aco

nseq

uenc

eof

the

fact

that

adi

rect

deri

vati

onin

anST

Sim

plie

sa

dire

ctde

riva

tion

inth

est

anda

rdD

PO

appr

oach

,we

can

imm

edia

tely

deri

vese

vera

lpr

oper

ties

ofa

deri

vati

on;i

npa

rtic

ular

,we

prov

eit

sde

term

inac

ybe

low

.

Pro

posi

tion

7(D

eter

min

acy

ofST

Sde

riva

tion

s)Su

ppos

eth

atS

=〈 T

,P,π

〉 is

anST

Sov

eran

adhe

sive

cate

gory

,qis

apr

oduc

tion,

and

Gis

anob

ject

ofSu

b(T

).T

hen

the

cont

ext

ofG

w.r

.t.q

isun

ique

upto

isom

orph

ism

,if

itex

ists

.A

sa

cons

eque

nce

the

targ

etof

adi

rect

deri

vatio

nis

dete

rmin

edun

ique

lyup

tois

omor

phis

m:i

fG

⇒q

G′

and

G⇒

qG

′′th

enG

′ ∼ =G

′′ .

Pro

ofIf

Dis

aco

ntex

tof

Gw

.r.t.

q,by

Pro

posi

tion

6it

isa

push

out

com

plem

ent

ofK

⊆L

and

L⊆

Gin

C.

The

stat

emen

tfo

llow

sfr

omth

eun

ique

ness

upto

isom

orph

ism

ofpu

shou

tcom

plem

ents

alon

gm

onos

inad

hesi

veca

tego

ries

[16]

.

3R

elat

ions

amon

gP

rodu

ctio

ns

The

theo

ryof

the

DP

Oap

proa

chto

the

tran

sfor

mat

ion

ofgr

aphs

incl

udes

seve

ral

resu

lts

and

cons

truc

tion

sw

hich

aim

ata

high

erle

vel

ofab

stra

ctio

nin

the

anal

ysis

ofth

eco

mpu

tati

ons

(con

cret

ely,

linea

rse

quen

ces

ofdo

uble

-pus

hout

diag

ram

s)of

asy

stem

.F

orex

ampl

e,ty

pica

llyon

edo

esno

tw

ant

toco

nsid

eras

dist

inct

two

deri

vati

ons

whi

chdi

ffer

only

inth

eor

der

inw

hich

“ind

epen

dent

”pr

oduc

tion

sar

eap

plie

d:th

isle

dto

the

defin

itio

nof

shif

teq

uiva

lenc

e[1

5],

and

mor

ere

cent

lyto

noti

ons

and

cons

truc

tion

sbo

rrow

edfr

omth

eth

eory

ofP

etri

nets

,in

clud

ing

the

defin

itio

nof

proc

esse

s[7

]for

DP

Osy

stem

san

dth

eun

fold

ing

cons

truc

tion

[1,2

0].

Ake

yin

gred

ient

inth

ede

finit

ions

ofeq

uiva

lenc

eson

deri

vati

ons

and

inth

eaf

orem

enti

oned

cons

truc

tion

ssu

chas

proc

esse

san

dun

fold

ings

isth

ean

alys

isof

the

rela

tion

ship

sw

hich

hold

amon

gth

eoc

curr

ence

sof

rule

sin

the

poss

ible

com

puta

tion

sof

the

give

nsy

stem

.Su

chre

lati

ons

incl

ude

for

exam

ple

the

clas

sica

lpa

ralle

lan

dse

quen

tial

inde

pend

ence

,ca

usal

ityan

dco

nflic

t,as

ymm

etri

cco

nflic

t,an

dth

ele

sskn

own

co-c

ausa

lity,

disa

blin

gan

dco

-dis

ablin

g,re

cent

lyin

trod

uced

in[2

].T

ypic

ally

,the

sere

lati

onsh

ips

are

defin

edov

erpr

oduc

tion

occu

rren

ces

ofth

eor

ig-

inal

syst

emw

ith

resp

ectt

oei

ther

agi

ven

deri

vati

on(a

sfo

rse

quen

tial

inde

pend

ence

orca

usal

ity)

,or

abr

anch

ing

stru

ctur

eof

deri

vati

ons

(lik

eco

nflic

tan

das

ymm

etri

c

396

A.C

orra

dini

etal

.

confl

ict)

,and

they

are

dete

rmin

edby

look

ing

atth

ew

ayth

epr

oduc

tion

occu

rren

ces

over

lap.

Con

side

ra

sim

ple

exam

ple:

ifan

item

xin

anoc

curr

ence

grap

hgr

amm

aris

gene

rate

dby

prod

ucti

onq 1

(i.e

.,x

∈R

1\K

1)

and

itis

cons

umed

byq 2

(x∈

L2\K

2),

then

q 1(d

irec

tly)

caus

esq 2

.In

this

sect

ion

we

pres

ent

aco

mpl

ete

anal

ysis

ofth

ere

lati

onsh

ips

that

may

hold

amon

gth

epr

oduc

tion

sof

aSu

bobj

ect

Tra

nsfo

rmat

ion

Syst

em.

For

the

rest

ofth

epa

per,

we

shal

las

sum

eev

ery

STS

tobe

pure

,i.e

.,su

chth

atK

=L

∩R

for

each

prod

ucti

on,l

eavi

nga

deep

erst

udy

ofno

n-pu

resy

stem

sas

ato

pic

offu

ture

wor

k.F

orth

ego

als

ofth

epr

esen

tpa

per

this

assu

mpt

ion

isno

ta

limit

atio

n,be

caus

eth

eST

Ssar

isin

gas

repr

esen

tati

onof

com

puta

tion

sof

aD

PO

syst

em,i

nclu

ding

proc

esse

san

dun

fold

ings

,are

alw

ays

pure

:thi

sis

prov

edex

plic

itly

inSe

ctio

n6

for

the

STS

obta

ined

from

ade

riva

tion

tree

ofa

DP

Osy

stem

,as

desc

ribe

din

Sect

ion

5.R

ecal

lth

atgi

ven

apu

reST

SS

=〈 T

,P,π

〉 eac

hpr

oduc

tion

nam

eq

∈P

isas

soci

ated

wit

ha

prod

ucti

on,

whi

chis

atr

iple

ofsu

bobj

ects

π(q

)=

⟨ Lq,

Kq,

Rq⟩

wit

hK

q=

Lq

∩R

q.

The

Ven

ndi

agra

mof

Fig

.3

show

sth

ew

aytw

opr

oduc

tion

sq 1

=〈 L

1,

K1,

R1〉 a

ndq 2

=〈 L

2,

K2,

R2〉 c

anov

erla

p.In

gene

ral,

the

inte

rsec

tion

ofq 1

and

q 2,i

.e.,

the

subo

bjec

t(L

1∪

R1)∩(

L2∪

R2)

mar

ked

wit

ha

doub

lebo

rder

inth

edi

agra

m,i

sco

mpo

sed

ofni

nezo

nes,

deno

ted

XY

for

X,Y

∈{L

,K,R

}.P

rodu

ctio

nsq 1

and

q 2ca

nbe

cons

ider

edas

com

plet

ely

inde

-pe

nden

tift

heir

inte

rsec

tion

ispr

eser

ved

bybo

thpr

oduc

tion

s,i.e

.,if

itis

cont

aine

din

subo

bjec

tKK

=K

1∩

K2:t

hisn

otio

nof

inde

pend

ence

will

befo

rmal

ized

inSe

ctio

n4.

Eac

hzo

ne(b

utfo

rK

K)

dete

rmin

esa

basi

cre

latio

nbe

twee

nth

etw

opr

oduc

tion

s,w

hich

hold

siff

“the

zone

isno

tem

pty”

;for

exam

ple,

the

non-

empt

ines

sof

RL

wou

ldw

itne

ssth

atq 1

caus

esq 2

.Not

ice

how

ever

that

butf

orK

K,t

here

mai

ning

zone

sin

the

inte

rsec

tion

ofq 1

and

q 2ar

eno

tsub

obje

cts

inge

nera

l,be

caus

eSu

b(T

)m

ight

notb

e

Fig

.3In

ters

ecti

onof

two

pure

prod

ucti

ons

Page 5: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

397

abo

olea

nla

ttic

e.A

sa

cons

eque

nce

we

intr

oduc

ere

gion

s,w

hich

corr

espo

ndin

Ven

ndi

agra

ms

toth

ezo

nes

whi

char

e“c

ompl

emen

ts”

ofsu

bobj

ects

.

Defi

niti

on8

(Reg

ion)

Let

≡be

the

smal

lest

equi

vale

nce

rela

tion

onSu

b(T

Sub(

T)

whi

chco

ntai

nsth

efo

llow

ing,

for

alls

ubob

ject

sU

,V,W

such

that

W∩U

⊆V

,and

Zsu

chth

atZ

⊆U

∪V∪W

:

(U,

V)≡

(U∪

Z,

V∪W

)

Are

gion

isan

equi

vale

nce

clas

sof

pair

sof

subo

bjec

ts(U

,V

)w

ith

resp

ect

to≡;

we

shal

lwri

teU

\Vfo

rth

ere

gion

cont

aini

ng(U

,V

).

Ina

Ven

ndi

agra

mw

eca

nid

enti

fya

zone

a(w

hich

may

not

bea

subo

bjec

t)w

ith

are

gion

inth

efo

llow

ing

way

.We

first

iden

tify

asu

bobj

ect

Aw

hich

incl

udes

asu

chth

atth

eco

mpl

emen

tof

ain

A,i

nth

ege

omet

rica

lsen

se,c

orre

spon

dsto

asu

bobj

ect

C;i

fsuc

han

Aex

ists

,nex

twe

take

any

subo

bjec

tB

such

that

its

inte

rsec

tion

wit

hA

isC

.The

nw

esa

yth

ata

corr

espo

nds

tore

gion

A\B

.For

exam

ple,

inF

ig.2

a,zo

nea

repr

esen

tsre

gion

A\B

and

bre

pres

ents

B\A

.B

yex

ploi

ting

the

equi

vale

nce

rela

tion

ofD

efini

tion

8it

can

besh

own

that

the

regi

onid

enti

fied

inth

ew

ayde

scri

bed

abov

eis

uniq

ue:

for

exam

ple,

inF

ig.

3,ap

plyi

ngth

eco

nstr

ucti

onto

zone

RL

we

wou

ldge

tre

gion

R1∩

L2\K

1∪

K2,

but

also

regi

onR

1∩

L2\L

1∪

R2,

whi

char

epr

ovab

lyth

esa

me.

We

will

call

basi

cre

gion

sth

ose

repr

esen

ted,

inF

ig.

3,by

XY

for

X,

Y∈{

L,K

,R

},exc

ludi

ngK

Kw

hich

isno

ta

regi

on.N

on-b

asic

regi

ons

are

for

exam

ple

RL

+R

Kan

dK

L+

RK

,co

rres

pond

ing

toR

1∩

L2\K

1an

d(K

1∩

L2)∪(

K2∩

R1)\K

1∩

K2,

resp

ecti

vely

.Ins

tead

,for

exam

ple

RL

+K

Kdo

esno

tre

pres

ent

are

gion

,bec

ause

itis

nott

heco

mpl

emen

tofa

subo

bjec

t.

Defi

niti

on9

(Bas

icre

gion

sofi

nter

sect

ion

ofpr

oduc

tion

s)L

etq 1

=〈 L

1,

K1,

R1〉 a

ndq 2

=〈 L

2,

K2,

R2〉 b

etw

opr

oduc

tion

sof

anST

S.T

hen

the

basi

cre

gion

sof

thei

rin

ters

ecti

on(s

eeF

ig.3

)ar

eth

efo

llow

ing,

wit

hX

,Y

∈{L

,R

}:–

XY

=X

1∩Y

2\K

1∪

K2,

–K

X=

K1∩

X2\K

2,a

nd–

XK

=X

1∩

K2\K

1.

Our

mai

nto

olfo

rth

ean

alys

isof

regi

ons

isa

sim

ple

noti

onof

empt

ines

s;si

nce

regi

ons

are

equi

vale

nce

clas

ses

we

mus

tsh

owth

atth

isno

tion

ofem

ptin

ess

isin

depe

nden

tfro

mth

ech

osen

elem

ento

facl

ass.

Defi

niti

on10

(Em

ptin

ess)

Are

gion

U\V

issa

idto

beem

pty

whe

nU

⊆V

.

Lem

ma

11T

heno

tion

ofem

ptin

ess

isw

ell-

defin

ed.

Pro

ofW

esh

owth

at

U⊆

V⇔

U∪

Z⊆

V∪W

assu

min

gth

at(1

)W

∩U⊆

Van

d(2

)Z

⊆U

∪V∪W

.In

fact

,if

U⊆

V,

then

U∪

Z⊆

[by(2

)]U

∪V∪W

⊆[by

assu

mpt

ion]

V∪W

.Vic

e-ve

rsa,

U∼ =

U∩(

U∪

398

A.C

orra

dini

etal

.

Z)⊆

[byas

sum

ptio

n]U

∩(V

∪W)∼ =

[bydi

stri

buti

vity

](U

∩V)∪(

U∩W

)⊆

[by(1

)]V

.��

Inge

nera

l,“u

nion

”of

regi

ons

isdi

fficu

ltto

defin

e—ho

wev

er,

ifw

eca

nfin

dre

pres

enta

tive

sof

regi

ons

ina

part

icul

arfo

rmat

then

we

can

easi

lysh

owth

atth

eir

com

posi

tion

(int

uiti

vely

,di

sjoi

ntun

ion)

beha

ves

asex

pect

edw

ith

resp

ect

toem

ptin

ess.

For

exam

ple,

supp

ose

that

U1

⊇U

2⊇

U3

are

subo

bjec

ts.

The

nre

gion

R=

U1\U

3is

the

com

posi

tion

ofre

gion

sR

1=

U1\U

2an

dR

2=

U2\U

3:t

hene

xtre

sult

show

sth

at,a

sex

pect

ed,r

egio

nR

isem

pty

ifan

don

lyif

both

R1

and

R2

are

empt

y.

Lem

ma

12(R

egio

nco

mpo

siti

on)

Giv

ena

sequ

ence

ofsu

bobj

ects

U1

⊇U

2⊇

···⊇

Un

with

n≥

2,re

gion

U1\U

nis

empt

yif

and

only

ifre

gion

Uk\U

k+1

isem

pty

for

all

k∈{

1,..

.,n

−1}.

Pro

ofL

et(1

):U

1⊇

U2

⊇···

⊇U

nbe

subo

bjec

ts.

U1\U

nis

empt

y⇔

U1

⊆U

n⇔

[(1)]

U1

=U

n⇔

[(1)]

U1=

U2

=···

=U

n⇔

[(1)]

U1⊆

U2

⊆..

.⊆

Un

⇔U

k\U

k+1

isem

pty

for

allk

∈{1,

...,

n−

1}.��

We

shal

lnow

intr

oduc

eth

eba

sic

rela

tion

sam

ong

prod

ucti

ons

form

ally

,pro

vidi

nga

nota

tion

and

two

equi

vale

ntch

arac

teri

zati

ons

for

each

ofth

em.B

efor

eth

at,n

otic

eth

atth

ree

basi

cre

gion

s(L

K,

LR

,K

R)

dono

tin

trod

uce

new

depe

nden

cies

,as

they

are

obta

ined

bysw

itch

ing

the

role

sof

q 1an

dq 2

:th

usth

ere

rem

ain

five

basi

cre

lati

onsh

ips.

Defi

niti

on13

(Bas

icre

lati

ons)

Let

confl

ict

( �),

deac

tivat

ion

(<d),

wri

teca

usal

ity(<

wc)

,rea

dca

usal

ity(<

rc),

and

back

war

dsco

nflic

t(�

),be

defin

edas

show

nin

Fig

.4.

For

each

rela

tion

,we

give

thre

ede

finit

ions

:in

term

sof

apa

rtic

ular

non-

incl

usio

nof

subo

bjec

ts,i

nte

rms

ofa

cert

ain

com

mut

ativ

edi

agra

min

Cno

tbei

nga

push

out

and

byth

eno

n-em

ptin

ess

ofa

basi

cre

gion

.

For

each

rela

tion

the

thre

ede

finit

ions

are

easi

lysh

own

tobe

equi

vale

nt.C

onsi

der

for

exam

ple

q 1�

q 2:

the

area

LL

repr

esen

ts,

acco

rdin

gto

Defi

niti

on9,

regi

onL

1∩

L2\K

1∪

K2.

Thu

sby

Defi

niti

on10

itis

not

empt

yiff

L1∩

L2

�K

1∪

K2.

Fur

ther

mor

e,by

Lem

ma

5,th

isho

lds

ifan

don

lyif

the

diag

ram

inth

efo

urth

colu

mn

isno

ta

push

out,

beca

use

clea

rly

L1∪

L2

∼ =(L

1∪

K2)∪(

K1∪

L2).

As

indi

cate

dby

our

nota

tion

and

easi

lyse

enfr

omth

ede

finit

ion,

the

two

confl

icts

are

sym

met

ric,

whi

leth

eth

ree

form

sof

caus

alit

yar

eno

t.It

isin

stru

ctiv

eto

cons

ider

wha

tth

efiv

ere

lati

ons

mea

nin

part

icul

arse

ttin

gs,s

ayfo

rin

stan

cein

Gra

ph.

Fix

ing

anam

bien

tgr

aph

T,

the

obje

cts

ofSu

b(T

)ar

eth

esu

bgra

phs

ofT

.In

the

follo

win

g,w

ere

fer

toth

ein

divi

dual

vert

ices

ored

ges

ofT

asel

emen

ts.I

nth

isse

ttin

g,th

eba

sic

rela

tion

sca

nbe

char

acte

rise

das

follo

ws:

Con

flict

:q 1

�q 2

prec

isel

yw

hen

q 1co

nsum

esan

elem

ent,

whi

chis

also

cons

umed

byq 2

.B

oth

prod

ucti

ons

are

then

com

peti

ngw

ith

each

othe

rfo

rth

eir

appl

icat

ion.

Page 6: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

399

fl fl

Fig

.4R

elat

ions

betw

een

prod

ucti

ons

inST

S;π

(qi)

=〈 L

i,K

i,R

i〉 for

i∈{1,

2}

Dea

ctiv

atio

n:q 1

<d

q 2pr

ecis

ely

whe

nq 1

pres

erve

san

elem

ent,

whi

chis

cons

umed

byq 2

.The

refo

req 2

“dea

ctiv

ates

”q 1

mea

ning

that

q 1is

nota

pplic

able

afte

rwar

d.W

rite

caus

ality

:q 1

<w

cq 2

prec

isel

yw

hen

q 1pr

oduc

esan

elem

ent,

whi

chis

cons

umed

byq 2

.R

ead

caus

ality

:q 1

<rc

q 2pr

ecis

ely

whe

nq 1

prod

uces

anel

emen

t,w

hich

isus

edbu

tnot

cons

umed

byq 2

.B

ackw

ards

confl

ict:

q 1�

q 2pr

ecis

ely

whe

nq 1

prod

uces

anel

emen

t,w

hich

isal

sopr

oduc

edby

q 2.

Giv

ena

prod

ucti

onq

wit

(q)=

〈 L,

K,

R〉 ,w

ew

rite

qopfo

rth

ein

vers

epr

oduc

tion

〈 R,

K,

L〉 :n

otic

eth

atit

follo

ws

imm

edia

tely

from

Defi

niti

on3

that

G⇒

qG

′ if

and

only

ifG

′ ⇒qop

G.

Usi

ngth

is“s

wap

ping

”of

the

left

-an

dri

ght-

hand

side

sof

the

prod

ucti

on,w

eca

nde

rive

anu

mbe

rof

usef

uleq

uiva

lenc

esam

ong

the

basi

cre

lati

ons.

Lem

ma

14(L

aws

for

rela

tion

s)

<rc

and

<d

(a)

q 1<

rcq 2

(b)

⇔q 1

<rc

qop 2

(c)

⇔q 2

<d

qop 1

(d)

⇔qop 2

<d

qop 1;

<w

c,�

,and

(e)

q 1<

wc

q 2(f

)⇔

qop 2<

wc

qop 1

(g)

⇔qop 1

�q 2

(h)

⇔q 1

�qop 2

;

400

A.C

orra

dini

etal

.

Pro

ofT

heeq

uiva

lenc

esfo

llow

imm

edia

tely

from

the

defin

itio

ns.

��

The

equi

vale

nces

just

liste

dsh

owth

atus

ing

the

_opop

erat

oron

prod

ucti

ons,

rela

tion

s�

,�an

d<

wc

are

mut

ually

defin

able

,and

soar

e<

rcan

d<

d.

Pro

posi

tion

15(C

ompl

eten

ess)

The

inve

rse

prod

uctio

nop

erat

or_op

toge

ther

with

any

pair

ofre

latio

nsin

{ �,�

,<

wc}

×{<

rc,<

d}f

orm

aco

mpl

ete

basi

sto

mod

elal

lpo

ssib

lere

latio

nsof

Fig

.4.

Itis

wor

thm

enti

onin

ghe

reth

atco

nsid

erin

gpo

ssib

lyno

n-pu

reST

Ss,

the

set

ofba

sic

rela

tion

sw

ould

bela

rger

.In

fact

,in

this

case

Ki

coul

dbe

apr

oper

subo

bjec

tof

Li∩

Ri,

for

i∈{1,

2},as

depi

cted

inth

eV

enn

diag

ram

belo

w,a

ndth

eref

ore

seve

nne

wre

gion

sw

ould

aris

ein

the

inte

rsec

tion

oftw

opr

oduc

tion

s,de

note

dIX

orX

Ifo

rX

∈{L

,K,R

}.For

exam

ple,

the

regi

onm

arke

dIL

isno

tem

pty

ifpr

oduc

tion

q 1co

nsum

esan

dpr

oduc

esag

ain

anit

emth

atis

cons

umed

byq 2

.How

ever

,as

disc

usse

din

the

conc

ludi

ngse

ctio

n,th

ere

leva

nce

ofsu

chne

wde

pend

ency

rela

tion

sisn

otcl

ear,

and

thei

rst

udy

goes

beyo

ndth

ego

alof

the

pres

entp

aper

.

����

���

L1

����

���R

1�� ����K

1

����

���

L2 ��

����

�R

2��

����

K2

LL

KL

ILR

L

LK

KK

IKR

K

LI

KI

IIR

I

LR

KR

IRR

R

Let

usco

nsid

erno

wa

few

mor

eco

mpl

exre

lati

ons

amon

gpr

oduc

tion

sth

atha

vebe

enin

trod

uced

in[2

].W

esh

owth

at,

asex

pect

ed,

they

can

bede

fined

easi

lyby

expl

oiti

ngth

eba

sic

rela

tion

ship

sof

Defi

niti

on13

.F

orex

ampl

e,th

e(c

ompo

und)

caus

ality

rela

tion

isbu

iltup

byta

king

the

unio

nof

the

read

caus

ality

and

the

wri

teca

usal

ityre

lati

ons.

Defi

niti

on16

(Com

poun

dre

lati

ons)

Let

caus

ality

(<),

disa

blin

g(�

),co

-cau

salit

y(<

co)

and

co-d

isab

ling

(�co

)be

defin

edas

show

nin

Fig

.5.

For

each

rela

tion

,th

eeq

uati

onal

defin

itio

nin

the

thir

dco

lum

nis

the

one

intr

oduc

edin

[2],

whi

leth

edi

agra

mm

atic

alon

ein

the

four

thco

lum

nan

dth

eno

n-em

ptin

ess

requ

irem

ent

for

the

non-

basi

cre

gion

inth

efif

thco

lum

nar

eeq

uiva

lent

byth

eco

nsid

erat

ions

afte

rD

efini

tion

13.

Page 7: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

401

Fig

.5C

ompo

und

rela

tion

s;π

(qi)

=〈 L

i,K

i,R

i〉 for

i∈{0,

1}

Lem

ma

17(C

hara

cter

izat

ion

ofco

mpo

und

rela

tion

s)E

ach

one

ofth

eco

mpo

und

rela

tions

ofF

ig.5

can

beob

tain

edas

the

disj

unct

ion

oftw

oba

sic

rela

tions

ofF

ig.4

,as

follo

ws:

–(C

ausa

lity)

q 1<

q 2⇔

q 1<

rcq 2

∨q 1

<w

cq 2

;–

(Dis

ablin

g)q 1

�q 2

⇔q 1

<d

q 2∨

q 2�

q 1;

–(C

o-ca

usal

ity)

q 1<

coq 2

⇔q 1

<d

q 2∨

q 2<

wc

q 1;

–(C

o-di

sabl

ing)

q 1�

coq 2

⇔q 1

<w

cq 2

∨q 1

�q 2

.

Pro

ofW

esh

all

prov

eth

est

atem

ent

for

caus

ality

:T

heot

her

case

sof

com

poun

dre

lati

ons

are

sim

ilar.

Inte

rms

ofre

gion

s,th

est

atem

ent

can

bere

adeq

uiva

lent

lyas

regi

onR

L+

RK

isno

tem

pty

iffei

ther

RL

orR

Kis

not

empt

y,an

dth

usre

gion

RL

+R

Kis

empt

yiff

RL

and

RK

are

empt

y.N

owle

tU

1=

R1∩

L2,

U2

=(K

1∩

L2)∪(

R1∩

K2)

and

U3

=K

1∩

L2.I

tis

stra

ight

forw

ard

toch

eck

that

RL

repr

esen

tsU

1\U

2,R

Kre

pres

ents

U2\U

3,a

ndR

L+

RK

repr

esen

tsU

1\U

3;f

urth

erm

ore

sinc

eU

1⊇

U2

⊇U

3,w

eca

nco

nclu

deby

Lem

ma

12.

Itis

inst

ruct

ive

toco

mpa

reth

egi

ven

proo

fwit

hth

efo

llow

ing

one,

whi

chus

esth

eeq

uiva

lent

defin

itio

nsgi

ven

bydi

agra

ms

inC

notb

eing

push

outs

.

(⇒)

By

cont

rapo

siti

onth

isdi

rect

ion

iseq

uiva

lent

to

q 1≮

rcq 2

and

q 1≮

wc

q 2im

plie

sq 1

≮q 2

.

402

A.C

orra

dini

etal

.

Sinc

eq 1

≮rc

q 2an

dq 1

≮w

cq 2

mea

nth

atth

etw

oco

rres

pond

ing

diag

ram

sof

Fig

.4ar

epu

shou

ts,t

hey

can

beco

mpo

sed

tofo

rmth

epu

shou

tin

Fig

.5,a

sill

ustr

ated

.

K1 �� ��

����

(1)

R1 �� ��

K1∪

K2

����

�� ��(2

)

R1∪

K2

�� ��K

1∪

L2

����

R1∪

L2

(⇐)

Aga

inus

ing

cont

rapo

siti

on,

let

the

diag

ram

(1+

2)be

apu

shou

t;w

eha

veto

show

that

both

diag

ram

s(1

)an

d(2

)ar

epu

shou

ts.S

ince

(1+

2)is

apu

shou

t,us

ing

Lem

ma

5fo

rth

efir

stst

epan

ddi

stri

buti

vity

for

the

seco

nd,w

eha

ve:

(†)

K1

∼ =(K

1∪

L2)∩

R1

∼ =(R

1∩

K1)∪(

R1∩

L2)∼ =

K1∪(

R1∩

L2).

Now

,co

ncer

ning

diag

ram

(1):

(K1∪

K2)∪

R1

∼ =R

1∪

K2

and

usin

g(†

)fo

rth

ela

stst

ep:(

K1∪

K2)∩

R1

=K

1∪(

R1∩

K2)⊆

K1∪(

R1∩

L2)∼ =

K1.U

sing

Lem

ma

5(1

)

isa

push

outi

nC

.A

nalo

gous

lyfo

rdi

agra

m(2

):(K

1∪

L2)∪(

R1∪

K2)∼ =

R1∪

L2

and

wit

h(†

)fo

rth

ela

stst

ep:(

K1∪

L2)∩(

R1∪

K2)∼ =

K1∪(

K1∩

K2)∪(

R1∩

L2)∪

K2

∼ =K

1∪

K2,

thus

wit

hL

emm

a5

also

(2)

isa

push

outi

nC

.��

4In

depe

nden

cein

Subo

bjec

tTra

nsfo

rmat

ion

Syst

ems

Bas

edon

the

rela

tion

sam

ong

prod

ucti

ons

intr

oduc

edab

ove,

we

deve

lop

here

ath

eory

ofin

depe

nden

cefo

rST

Ssw

hich

follo

ws

the

outl

ine

ofth

ecl

assi

calt

heor

yof

the

DP

Oap

proa

ch.I

nter

esti

ngly

,in

our

form

alfr

amew

ork

ther

eis

asi

ngle

noti

onof

inde

pend

ence

amon

gpr

oduc

tion

s,w

hich

corr

espo

nds

tobo

thpa

ralle

land

sequ

entia

lin

depe

nden

ceof

the

DP

Oap

proa

ch,a

sm

ade

prec

ise

inSe

ctio

n6.

Tw

opr

oduc

tion

sof

anST

Sar

ein

depe

nden

tif

thei

rre

spec

tive

appl

icat

ions

dono

tin

terf

ere:

from

the

disc

ussi

onbe

fore

Defi

niti

on13

this

hold

sif

thei

rin

ters

ecti

onis

cont

aine

din

K1∩

K2.

All

alon

gth

isse

ctio

n,w

eas

sum

eth

atS

=〈 T

,P,π

〉 is

anar

bitr

ary

but

fixed

pure

STS,

and

that

for

each

prod

ucti

onna

me

q i∈

P,

the

corr

espo

ndin

gpr

oduc

tion

isπ

(qi)

=〈 L

i,K

i,R

i〉 .

Defi

niti

on18

(Ind

epen

denc

eof

prod

ucti

ons

inST

S)T

wo

prod

ucti

ons

q 1an

dq 2

ofS

are

inde

pend

ent,

deno

ted

q 1♦

q 2,i

f

(L1∪

R1)∩(

L2∪

R2)⊆

(K1∩

K2)

The

refo

re,b

yde

finit

ion,

two

prod

ucti

ons

are

inde

pend

enti

fthe

com

poun

dre

gion

LL

+K

L+

RL

+L

K+

RK

+L

R+

KR

+R

Ris

empt

y.B

yex

ploi

ting

Lem

ma

12w

esh

owth

atth

isho

lds

ifan

don

lyif

allt

heba

sic

regi

ons

are

empt

y,i.e

.,iff

the

prod

ucti

ons

are

not

rela

ted

via

any

ofth

eba

sic

caus

alit

yor

confl

ict

rela

tion

slis

ted

inF

ig.4

,nor

byan

yof

the

sym

met

ric

vari

atio

ns.

Page 8: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

403

The

orem

19T

wo

prod

uctio

nsq 1

and

q 2of

Sar

ein

depe

nden

tif

and

only

ifal

lbas

icre

gion

sin

(L1∪

R1)∩(

L2∪

R2)

are

empt

y.

Pro

ofL

etq 1

and

q 2be

two

prod

ucti

ons

and

C1

=L

1∪

R1,C

2=

L2∪

R2.C

onsi

der

the

follo

win

gse

quen

ceof

nine

subo

bjec

tsU

1⊇

U2

⊇···

⊇U

9,

whe

refo

rea

chsu

bobj

ectw

elis

tthe

zone

sof

C1∩C

2th

atid

enti

fyit

:

U1

=C

1∩C

2(a

llzo

nes)

,U

2=

(R

1∪

R2)∩U

1(K

L,

RL

,L

K,

KK

,R

K,

LR

,K

R,

RR

),U

3=

(K1∪

R2)∩U

1(K

L,

LK

,K

K,

RK

,L

R,

KR

,R

R),

U4

=(C

1∩

K2)∪(

K1∩C

2)∪(

R1∩

R2)

(KL

,L

K,

KK

,R

K,

KR

,R

R),

U5

=(K

1∪

K2)∩U

1(K

L,

LK

,K

K,

RK

,K

R),

U6

=[(K

1∩

R2)∪

K2]∩

U1

(LK

,K

K,

RK

,K

R),

U7

=(K

1∩

R2)∪(

R1∩

K2)

(KK

,R

K,

KR

),U

8=

(K1∩

R2)

(KK

,K

R),

and

U9

=K

1∩

K2

(KK

).

The

eigh

tba

sic

regi

ons

ofth

eV

enn

diag

ram

,tha

tw

ere

draw

belo

wfo

rth

ere

ader

’sco

nven

ienc

e,ar

eid

enti

fied

asfo

llow

s:

LL

=U

1\U

2,

KL

=U

5\U

6,

RL

=U

2\U

3,

LK

=U

6\U

7,

RK

=U

7\U

8,

LR

=U

3\U

4,

KR

=U

8\U

9,

and

RR

=U

4\U

5.

Itis

easy

toch

eck

that

this

isco

nsis

tent

wit

hD

efini

tion

9.F

orex

ampl

e,co

nsid

erin

gzo

neK

R,

we

have

(U8,U

9)≡

(K1∩

R2,

K2)

acco

rdin

gto

Defi

niti

on8.

Lem

ma

12ap

plie

sto

the

chai

nof

subo

bjec

tsU

1,..

.,U

9.T

here

fore

,U1\U

9=

C1∩C

1\K

1∩

K2

isem

pty

ifan

don

lyif

U1\U

2,..

.,an

dU

8\U

9ar

eem

pty,

whi

char

eth

eba

sic

regi

ons.

��

����

���

L1

����

���R

1K

1=

L1∩

R1

����

���

L2 ��

����

�R

2

K2

=L

2∩

R2

LL

KL

RL

LK

KK

RK

LR

KR

RR

Dia

gram

1

Inte

rsec

tion

oftw

opu

repr

oduc

tion

s

The

next

lem

ma

show

stha

tift

wo

prod

ucti

onso

fan

STS

are

appl

icab

leto

the

sam

esu

bobj

ect,

then

inor

der

toch

eck

that

they

are

inde

pend

ent

itis

enou

ghto

cons

ider

only

asu

bset

ofth

epo

ssib

lere

lati

ons

amon

gth

em.W

eal

sopr

ovid

ean

alte

rnat

ive

404

A.C

orra

dini

etal

.

char

acte

riza

tion

ofin

depe

nden

ce,

whi

chis

anal

ogou

sto

the

clas

sica

lde

finit

ion

ofpa

ralle

lind

epen

denc

ein

the

DP

Oap

proa

ch(s

eeD

efini

tion

31).

Lem

ma

20(C

hara

cter

izat

ion

ofin

depe

nden

cein

STSs

(I))

Supp

ose

that

ther

ear

edi

rect

deri

vatio

nsG

⇒q 1

G1

and

G⇒

q 2G

2in

S.T

hen

the

follo

win

gar

eeq

uiva

lent

:

(1)

q 1♦

q 2(2

)¬(

q 1�

q 2)

∧¬(

q 1�

q 2)

∧q 1

≮d

q 2∧

q 2≮

dq 1

(3)

L1

⊆D

2∧

L2

⊆D

1∧

¬(q 1

�q 2

),w

here

D1

and

D2

are

the

cont

exts

ofth

efir

stan

dof

the

seco

nddi

rect

deri

vatio

ns,r

espe

ctiv

ely.

Pro

of

(1⇒

2)Im

med

iate

byT

heor

em19

.(1

⇒2)

We

have

tosh

owth

atif

(1)

¬(q 1

�q 2

),(2

)¬(

q 1�

q 2),

(3)

q 1≮

dq 2

and

(4)

q 2≮

dq 1

then

(L1∪

R1)∩(

L2∪

R2)⊆

(K1∩

K2).

Con

side

rDia

gram

1an

dth

ere

lati

onso

fFig

.4:(

1)im

plie

stha

treg

ion

LL

isem

pty,

and

sim

ilarl

y(2

)fo

rR

R,(

3)fo

rK

Lan

d(4

)fo

rL

K.F

urth

erm

ore,

sinc

eG

⇒q 1

G1

byhy

poth

esis

,by

Pro

posi

tion

6w

eha

veG

∩R

1⊆

L1,

and

sinc

eG

⇒q 2

G2,

we

know

that

L2

⊆G

;th

usw

ein

fer

L2∩

R1

⊆L

1,

whi

chim

plie

sth

atth

eno

n-ba

sic

regi

onR

L+

RK

isem

pty.

By

Lem

ma

12th

isim

plie

sth

atbo

thR

Lan

dR

Kar

eem

pty;

infa

ct,l

etU

1=

R1∩

L2,U

2=

(K1∪

K2)∩(

R1∩

L2),

and

U3

=K

1∩

L2:w

eha

veth

atU

1⊇

U2

⊇U

3,

RL

=U

1\U

2,

RK

=U

2\U

3,a

ndR

L+

RK

=U

1\U

3.

Asy

mm

etri

car

gum

ent,

swit

chin

gq 1

and

q 2,

show

sth

atL

Ran

dK

Rar

eem

pty

asw

ell.

The

refo

reth

eei

ghtb

asic

regi

ons

ofD

efini

tion

9ar

eal

lem

pty,

and

we

conc

lude

byT

heor

em19

.

(1⇒

3)B

yhy

poth

esis

and

Defi

niti

on3

we

know

that

G∼ =

L1∪

D1

and

G∼ =

L2∪

D2,

and

that

Li∩

Di∼ =

Ki

for

i∈{1,

2}.T

hus

obje

ctG

can

bese

enas

com

pose

dof

nine

zone

sas

draw

nin

Dia

gram

2,w

here

,for

exam

ple,

L1

ism

ade

ofth

efir

sttw

oco

lum

ns,D

1of

the

seco

ndan

dth

ird

ones

,and

K1,t

heir

inte

rsec

tion

,oft

hem

idco

lum

n.F

rom

q 1♦

q 2it

follo

ws

L1∩

L2

⊆K

1∩

K2,

thus

regi

onL

L+

LK

+K

Lis

empt

y.N

owle

tU

1=

L1∩

L2,

U2

=L

1∩

K2,

and

U3

=K

1∩

K2. D

ecom

posi

tion

ofob

ject

G

Page 9: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

405

Sinc

eU

1⊇

U2

⊇U

3,

LK

+L

L+

KL

=U

1\U

3,

LL

+K

L=

U1\U

2,

and

LK

=U

2\U

3,

byL

emm

a12

we

conc

lude

that

LL

+K

Lis

empt

y,an

dth

usL

1⊆

D2.

Asi

mila

rar

gum

ents

how

sth

atL

2⊆

D1.

(3⇒

2)Si

nce

L1

⊆D

2an

dL

2⊆

D1,

we

have

L1∩

L2

⊆D

1∩

D2.

Thu

sin

Dia

-gr

am2

regi

onL

L+

KL

+L

Kis

empt

y,an

dso

are

regi

ons

LL

,KL

and

LK

byan

easy

appl

icat

ion

ofL

emm

a12

.Thi

sim

plie

s(s

eeF

ig.4

)th

at¬(

q 1�

q 2),

q 1≮

dq 2

and

q 2≮

dq 1

.��

Sim

ilar

char

acte

riza

tion

sof

inde

pend

ence

can

bepr

ovid

edif

the

two

prod

ucti

ons

can

beap

plie

din

sequ

ence

:By

usin

gth

ein

vers

eof

apr

oduc

tion

,the

proo

fis

redu

ced

toth

atof

the

prev

ious

lem

ma.

Lem

ma

21(C

hara

cter

izat

ion

ofin

depe

nden

cein

STSs

(II)

)Su

ppos

eth

atth

ere

are

dire

ctde

riva

tions

G⇒

q 1G

1⇒

q 2G

2in

S.T

hen

the

follo

win

gar

eeq

uiva

lent

:

(1)

q 1♦

q 2(2

)q 1

≮rc

q 2∧

q 1≮

wc

q 2∧

q 2≮

wc

q 1∧

q 1≮

dq 2

(3)

R1

⊆D

2∧

L2

⊆D

1∧

q 2≮

wc

q 1,w

here

D1

and

D2

are

the

cont

exts

ofth

efir

stan

dof

the

seco

nddi

rect

deri

vatio

ns,r

espe

ctiv

ely.

Pro

ofO

bser

veth

atG

⇒q 1

G1

iffG

1⇒

qop 1G

.Fur

ther

mor

e,by

Lem

ma

14w

eha

ve

q 1≮

rcq 2

⇔q 2

≮d

qop 1us

ing

(a)⇔

(c)

q 1≮

wc

q 2⇔

¬(qop 1

�q 2

)us

ing

(e)⇔

(g)

q 2≮

wc

q 1⇔

¬(qop 1

�q 2

)us

ing

(e)⇔

(h)

q 1≮

dq 2

⇔qop 1

≮d

q 2.

usin

g(c

)⇔

(d).

The

nth

est

atem

ent

follo

ws

byL

emm

a20

,ob

serv

ing

that

qop 1♦

q 2ho

lds,

byde

finit

ion,

ifan

don

lyif

q 1♦

q 2.

��

The

next

resu

ltre

phra

ses

inth

ese

ttin

gof

Subo

bjec

tT

rans

form

atio

nSy

stem

sth

ew

ell-

know

nlo

calC

hurc

h–R

osse

rth

eore

mof

the

DP

Oap

proa

ch.

The

orem

22(L

ocal

Chu

rch–

Ros

ser

for

STSs

)L

etq 1

and

q 2be

two

inde

pend

ent

prod

uctio

nsof

S.T

hen:

(1)

The

rear

edi

rect

deri

vatio

nsas

indi

agra

m(†

)be

low

.(2

)If

ther

ear

edi

rect

deri

vatio

nsG

⇒q 1

G1

and

G⇒

q 2G

2,

then

ther

eis

anob

ject

Hin

Sub(

T)

and

dire

ctde

riva

tions

G1

⇒q 2

Han

dG

2⇒

q 1H

,as

indi

agra

m(‡

)

belo

w.

(3)

Ifth

ere

are

dire

ctde

riva

tions

G⇒

q 1G

1⇒

q 2H

,th

enth

ere

isan

obje

ctG

2in

Sub(

T)

and

dire

ctde

riva

tions

G⇒

q 2G

2an

dG

2⇒

q 1H

,as

indi

agra

m(‡

).

L1∪

L2

q 1 �����

���

����

��q 2

��������

������

(†)

R1∪

L2

q 2��

������

������L

1∪

R2

q 1���

����

���

����

R1∪

R2

Gq 1

�����

���

��q 2 ������

����

(‡)

G1

q 2������

����G

2

q 1���

���

����

H

406

A.C

orra

dini

etal

.

Pro

of

(1)

Itis

easy

toch

eck

that

(L1∪

L2)⇒

q 1(R

1∪

L2)

wit

hco

ntex

tD

1de

f =L

2∪

K1.I

nfa

ct,t

heco

ndit

ions

(a–

d)of

Defi

niti

on3

redu

ceto

(a)

L1∪(

L2∪

K1)∼ =

L1∪

L2,o

bvio

usbe

caus

eK

1⊆

L1;

(b)

L1∩(

L2∪

K1)∼ =

(L1∩

L2)∪(

L1∩

K1)∼ =

K1,

bydi

stri

buti

vity

and

inde

pend

ence

;(c

)(L

2∪

K1)∪

R1

∼ =R

1∪

L2,o

bvio

usbe

caus

eK

1⊆

R1;

(d)

(L2∪

K1)∩

R1

∼ =(L

2∩

R1)∪(

K1∩

R1)∼ =

K1,

bydi

stri

buti

vity

and

inde

pend

ence

.

The

othe

rdi

rect

deri

vati

ons

are

sim

ilar,

usin

gas

cont

exts

(clo

ckw

ise)

L1∪

K2,K

1∪

R2,a

ndR

1∪

K2.

(2)

Let

Hde

f =(D

1∩

D2)∪

R1∪

R2,w

here

D1

and

D2

are

the

cont

exts

ofth

efir

stan

dof

the

seco

nddi

rect

deri

vati

ons,

resp

ecti

vely

.

Let

ussh

owth

atG

1⇒

q 2H

:th

epr

oof

that

G2

⇒q 1

His

anal

ogou

s.L

etD

′ 2de

f =(D

1∩

D2)∪

R1:w

esh

owth

atco

ndit

ions

(a–

d)of

Defi

niti

on3

hold

for

cont

ext

D′ 2.

(a)

[L2∪

D′ 2

∼ =G

1]:

We

have

L2∪

D′ 2

=L

2∪(

(D

1∩

D2)∪

R1)

byde

finit

ion,

and

(∗)

L2∪(

D1∩

D2)∼ =

D1

byin

spec

ting

Dia

gram

2(u

sing

L2

⊆D

1,

whi

chfo

llow

sby

Lem

ma

20);

thus

we

get

L2∪

D′ 2

∼ =D

1∪

R1,

but

D1∪

R1

∼ =G

1by

(c)

ofG

⇒q 1

G1,

sow

ear

edo

ne.

Mor

eex

plic

itly

,(∗

)fo

llow

sfr

omL

2∪(

D1∩

D2)∼ =

(L2∪

D1)∩(

L2∪

D2)∼ = {

byL

2⊆D

1}

D1∩G

∼ =D

1.

(b)

[L2∩

D′ 2

∼ =K

2]:

Exp

andi

ngD

′ 2an

ddi

stri

buti

ngw

ege

tL

2∩

D′ 2

=L

2∩(

(D

1∩

D2)∪

R1)∼ =

(L2∩

D1∩

D2)∪(

L2∩

R1);

the

stat

emen

tfo

l-lo

ws

obse

rvin

gth

at(†

)L2∩

D1∩

D2

∼ = {by

(b)

ofG

⇒q 2

G2}

K2∩

D1

∼ = {by

L2⊆D

1}

K2,a

ndth

atby

inde

pend

ence

we

have

L2∩

R1

⊆K

1∩

K2

⊆K

2.

(c)

[D′ 2∪

R2

∼ =H

]:Obv

ious

,by

expa

ndin

gth

ede

finit

ions

ofH

and

D′ 2.

(d)

[D′ 2∩

R2

∼ =K

2]:

Exp

andi

ngD

′ 2an

ddi

stri

buti

ngw

ege

tD

′ 2∩

R2

∼ =(D

1∩

D2∩

R2)∪(

R1∩

R2);

anal

ogou

sto

(†),

the

first

argu

men

tof

the

unio

nis

K2,

and

byin

depe

nden

ceth

ese

cond

one

isin

clud

edin

K2,

allo

win

gus

toco

nclu

de.

(3)

Thi

spo

intr

educ

esto

the

prev

ious

one

byob

serv

ing

that

G⇒

q 1G

1if

and

only

ifG

1⇒

q 1op

G,a

ndq 1

♦q 2

ifan

don

lyif

qop 1♦

q 2.

��

5F

rom

Der

ivat

ion

Tre

esto

Subo

bjec

tTra

nsfo

rmat

ion

Syst

ems

Her

ew

esh

allo

utlin

ean

appl

icat

ion

ofth

eth

eory

ofST

Sde

velo

ped

inth

epr

evio

usse

ctio

ns.I

npa

rtic

ular

,in

this

sect

ion

we

show

that

star

ting

wit

ha

deri

vati

ontr

eein

anar

bitr

ary

adhe

sive

gram

mar

G,w

eob

tain

anST

Svi

aa

fam

iliar

colim

itco

nstr

ucti

on,

that

can

beco

nsid

ered

asa

gene

raliz

atio

nto

the

non-

dete

rmin

isti

cca

seof

the

synt

hesi

sof

apr

oces

sfr

oma

linea

rde

riva

tion

[7].

As

show

nin

the

next

sect

ion,

we

are

then

able

toap

ply

the

loca

lana

lysi

sus

ing

rela

tion

sbe

twee

npr

oduc

tion

sin

the

resu

ltin

gST

Sin

orde

rto

com

plet

ely

char

acte

rise

allt

hein

depe

nden

cein

the

orig

inal

deri

vati

ontr

ee.

Page 10: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

407

Inor

der

toill

ustr

ate

how

the

tran

sfor

mat

ion

from

ade

riva

tion

tree

forG

toan

STS

wor

ks,i

tis

help

fult

oco

nsid

era

conc

rete

exam

ple.

Supp

ose

thatG

isan

adhe

sive

gram

mar

cont

aini

ngpr

oduc

tion

sq 1

,q 2

and

q 3,a

ndth

atw

eha

vea

deri

vati

ontr

eeas

illus

trat

edin

Fig

.6.

Eac

hst

ep(d

irec

tde

riva

tion

)in

the

orig

inal

deri

vati

ontr

eeα

lead

sto

ane

wpr

oduc

tion

inth

eST

SP

rc(α

).T

hety

pegr

aph

Tof

Prc

(α)

isob

tain

edfr

omth

ede

riva

tion

byco

mpu

ting

ace

rtai

nco

limit

—fo

rfin

ite

tree

s,th

isty

peof

colim

itex

ists

inad

hesi

veca

tego

ries

asit

can

beob

tain

edby

cons

truc

ting

succ

essi

vepu

shou

ts.T

heob

ject

sG

i∈C

can

now

beco

nsid

ered

assu

bobj

ects

ofT

.A

ssh

own

inth

ene

xtse

ctio

n,th

eST

SP

rc(α

)de

rive

dfr

oma

deri

vati

ontr

eeα

sati

sfies

seve

ral

prop

erti

es,

whi

chco

rres

pond

clos

ely

toth

ose

ofoc

curr

ence

gram

mar

s,as

intr

oduc

edin

the

trad

itio

nald

efini

tion

ofpr

oces

ses

for

tran

sfor

mat

ion

syst

ems

like

Pet

rine

tsan

dgr

aph

gram

mar

s[3

,12]

.W

ebe

gin

byin

trod

ucin

gth

eca

tego

ryD

erT

ree(G)

ofde

riva

tion

tree

sof

anad

hesi

vegr

amm

arG

.T

heob

ject

sof

this

cate

gory

are

wor

dsof

obje

cts

ofC

and

arro

ws

are

fore

sts

ofde

riva

tion

tree

s.G

iven

anar

bitr

ary

obje

ctS

∈C,i

tis

poss

ible

tosh

owth

atth

eco

nstr

ucti

onsk

etch

edin

the

prev

ious

para

grap

hgi

ves

rise

toa

func

tor

Prc

:S/D

erT

ree(G)

→ST

S

whe

reST

Sis

the

cate

gory

ofsu

bobj

ectt

rans

form

atio

nsy

stem

san

dth

eir

mor

phis

ms,

defin

edby

suit

ably

rest

rict

ing

the

usua

lnot

ion

ofty

ped

gram

mar

mor

phis

ms.

How

-ev

er,

sinc

eth

efu

ncto

rial

prop

erty

ofth

eco

nstr

ucti

onis

not

rele

vant

for

the

mai

nre

sult

sof

the

next

sect

ion,

we

will

pres

entt

heco

nstr

ucti

onon

obje

cts

only

.T

hede

finit

ion

ofD

erT

ree(G)

uses

the

defin

itio

nof

adhe

sive

gram

mar

s,as

spec

i-fie

din

[2,1

6];h

owev

er,w

edo

not

apr

iori

assu

me

that

our

gram

mar

sar

ety

ped.

An

exte

nsio

nto

type

dgr

amm

ars

isst

raig

htfo

rwar

d.

Defi

niti

on23

(Adh

esiv

egr

amm

ars)

Let

Cbe

anad

hesi

veca

tego

ry.A

prod

uctio

nis

asp

anof

mon

omor

phis

ms

L�

K�

Rin

C.A

nad

hesi

vegr

amm

arov

erC

isa

pair

G=

〈 P,π

〉 ,whe

reP

isa

seto

fpro

duct

ion

nam

es,a

ndπ

isa

func

tion

whi

chm

aps

any

q∈

Pto

apr

oduc

tion

Lq

�K

q�

Rq.

Defi

niti

on24

(Dir

ectd

eriv

atio

n)L

etG

=〈 P

〉 be

agr

amm

ar,l

etq

∈P

,let

G,

G′ ∈

ob(C

),an

dm

:Lq

�G

bea

mon

omor

phis

m,c

alle

da

mat

ch.T

hen

qre

wri

tes

Gto

Fig

.6O

btai

ning

anST

Sfr

oma

deri

vati

ontr

ee

408

A.C

orra

dini

etal

.

G′ a

tm

ifth

ere

exis

tsa

diag

ram

,illu

stra

ted

belo

w,c

onsi

stin

gof

two

push

outs

.We

shal

lwri

teG

=q,m == ⇒

G′ a

ssh

orth

and

for

such

adi

agra

m.

Lq

m��

Kq

l��

r��

k��

Rq

n��

GD

l′��

r′��

G′

The

deri

vati

ontr

ees

ofan

adhe

sive

gram

mar

Gw

illbe

obta

ined

com

posi

tion

ally

bypu

ttin

gto

geth

erbu

ildin

gbl

ocks

calle

dG-

fans

.

Defi

niti

on25

(G-f

an)

Giv

enan

adhe

sive

gram

mar

Gan

dG

,H

1,..

.,H

k(k

≥1)

obje

cts

ofC

,aG-

fan

ϕfr

omG

toH

1..

.H

k,w

ritt

enϕ

:G→

H1..

.H

k,i

sa

diag

ram

cons

isti

ngof

(one

-ste

p)di

rect

deri

vati

onsf

rom

Gto

Hi,

fore

ach

i∈[k]

def ={1,

...,

k}.A

san

exam

ple,

we

illus

trat

ea

fan

ϕ:G

→H

1H

2be

low

:

L1 m

1���

L2

m2

���

K1 k 1

�����

l 1��

r 1

GK

2

k 2

l 2��� �

r 2 �����

R1 n 1

�����E

1l′ 1�� � � �

r′ 1

E2

l′ 2

��� ��

r′ 2

�����R

2

n 2

H1

H2

Insi

mpl

ified

grap

hica

lnot

atio

n,w

esh

alld

enot

esu

cha

fan

assh

own

inth

ele

ftm

ost

diag

ram

ofF

ig.7

.We

shal

lwri

tear

(ϕ)

for

the

num

ber

ofpr

oduc

tion

sap

pear

ing

ina

fan

ϕ.M

oreo

ver,

we

shal

labu

seno

tati

onby

refe

rrin

gto

ϕas

afu

ncti

onϕ

:[ar(

ϕ)]

→P

,whe

reP

isth

ese

tofp

rodu

ctio

nsof

G.T

hus,

ifϕ

cons

ists

oftw

odi

rect

deri

vati

ons

G=q 1

,m1

===⇒

H1

and

G=q 2

,m2

===⇒

H2

from

left

tori

ght,

we

have

ar(ϕ

)=

2,ϕ(1

)=

q 1an

dϕ(2

)=

q 2.

We

shal

lus

eG-

fans

toco

nstr

uct

ast

rict

mon

oida

lca

tego

ryof

deri

vati

ontr

ees,

Der

Tre

e(G)

.W

efir

stne

edto

reca

llth

eno

tion

ofa

tens

orsc

hem

e[1

4]an

dth

eas

soci

ated

noti

onof

afr

eem

onoi

dalc

ateg

ory

ona

tens

orsc

hem

e.1

Ate

nsor

sche

meT

cons

ists

ofa

set

Vof

vert

ices

,ase

tE

ofed

ges,

and

func

tion

ss,

t:E

→V

∗ ,w

here

V∗ i

sthe

free

mon

oid

(the

seto

ffini

tew

ords

)on

V.E

very

tens

orsc

hem

ele

ads

toa

free

stri

ct2

mon

oida

lcat

egor

yC

—se

e[1

4]fo

rde

tails

.Int

uiti

vely

,th

eob

ject

sof

Cca

nbe

seen

asfin

ite

wor

ds(i

.e.,

the

prod

uct

inV

∗is

inte

rpre

ted

as⊗

inC

)in

Van

dth

ear

row

sof

Car

ege

nera

ted

free

lyfr

omth

eba

sic

edge

sin

E.

Con

cret

ely,

the

arro

ws

can

bese

enas

cert

ain

equi

vale

nce

clas

ses

oras

cert

ain

stri

ngdi

agra

ms;

see

also

[23]

.

1 Ten

sor

sche

mes

are

clos

ely

rela

ted

toP

etri

nets

inth

ese

nse

of[1

8],s

ee[9

].2 T

hete

nsor

prod

ucti

sas

soci

ativ

e“o

nth

eno

se”:

(A

⊗B

)⊗

C=

A⊗

(B

⊗C

).

Page 11: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

409

Fig

.7A

G-fa

:G→

H1

H2

and

anar

row

G1

→G

4⊗

G5⊗

G3⊗

G2

⊗G

3⊗

G1

inD

erT

ree(G)

For

the

purp

oses

ofth

efo

llow

ing

defin

itio

n,w

eas

sum

eth

atth

eun

derl

ying

cate

gory

Cof

Gis

asm

all

cate

gory

.Si

zepl

ays

aro

lebe

caus

ew

esh

all

cons

truc

ta

tens

orsc

hem

ew

ith

the

obje

cts

ofC

asit

sse

tofv

erti

ces.

As

usua

l,ho

wev

er,o

neco

uld

rede

fine

the

noti

onof

tens

orsc

hem

eap

prop

riat

ely

(dep

endi

ngon

the

unde

rlyi

ngse

tth

eory

)so

that

the

cons

truc

tion

mak

esse

nse

for

anar

bitr

ary

cate

gory

.

Defi

niti

on26

(Der

Tre

e (G )

)G

iven

anad

hesi

vegr

amm

arG

over

smal

lC

,le

tT G

deno

teth

ete

nsor

sche

me

wit

hse

tof

vert

ices

the

obje

cts

ofC

and

its

edge

sth

eG-

fans

.By

Der

Tre

e(G)

we

deno

teth

efr

eest

rict

mon

oida

lcat

egor

yov

erT G

.

For

exam

ple,

for

afa

:G→

H1H

2se

enas

aned

geof

T Gw

eha

ves(

ϕ)=

Gan

dt(

ϕ)=

H1H

2.

The

obje

cts

ofD

erT

ree(G)

are

finit

ew

ords

ofob

ject

sof

C.

The

arro

ws

G1..

.G

n→

H1..

.H

mar

ete

nsor

prod

ucts

ofar

row

sG

1→

H1..

.H

i 1,

...G

n→

Hi n

−1+1

...

Hi n

whe

rei n

=m

.Suc

hba

sic

ingr

edie

nts

are

cons

truc

ted

out

offa

ns,a

nex

ampl

eis

give

nin

Fig

.7.T

enso

rpr

oduc

tis

here

ofco

urse

just

putt

ing

such

diag

ram

ssi

de-b

y-si

de.

One

can

also

thin

kof

arro

ws

ofD

erT

ree(G)

asco

ncre

tede

riva

tion

tree

s,co

nstr

ucte

dat

each

leve

lfr

omco

ncre

tefa

nde

riva

tion

diag

ram

sas

illus

trat

edin

Defi

niti

on25

.In

deed

,th

isw

illbe

our

usua

lap

proa

ch.

Fin

ally

,al

thou

ghw

eha

vede

fined

Der

Tre

e(G)

asa

stri

ctm

onoi

dalc

ateg

ory,

itw

ould

be,p

erha

ps,m

ore

natu

ral

tode

fine

itas

afr

eem

ulti

cate

gory

,se

e[1

7]fo

ran

intr

oduc

tory

acco

unt.

The

follo

win

gle

mm

are

late

sou

rpr

esen

tati

onof

Der

Tre

e(G)

wit

hco

ncre

tede

riva

tion

diag

ram

sin

C.

Lem

ma

27E

very

arro

inD

erT

ree(G)

give

sri

seto

aca

noni

cald

iagr

amD

er(α

)in

Cw

hich

witn

esse

sth

ede

riva

tion

tree

.

Pro

ofR

ecal

lfro

mD

efini

tion

25th

ataG-

fan

isa

conc

rete

diag

ram

inC

.An

arro

win

Der

Tre

e(G)

isa

form

alco

nstr

ucti

onw

hich

com

bine

sfa

ns.

Usi

ngth

efa

ctth

atD

erT

ree(G)

isfr

eely

cons

truc

ted

from

the

fans

,any

arro

can

bede

cons

truc

ted

(usu

ally

not

uniq

uely

)as

n..

.α1

whe

reea

chα

iis

ofth

efo

rmid

X′ ⊗

ϕi⊗

idX

′′

and

ϕiis

afa

n.Si

nce

the

codo

mai

nof

each

αiag

rees

wit

hth

edo

mai

nof

each

αi+

1,w

eca

nco

nstr

uctt

hedi

agra

mit

erat

ivel

y,st

arti

ngw

ith

the

fan

ϕ1,a

teac

hst

eppa

stin

gth

eco

rres

pond

ing

fan

atth

eco

rrec

tpla

ceac

cord

ing

toth

edo

mai

nan

dth

eco

dom

ain

ofth

s.It

iscl

ear

that

any

deco

mpo

siti

onof

αgi

ves

rise

toth

esa

me

diag

ram

.��

410

A.C

orra

dini

etal

.

Giv

enan

obje

ctS

∈C,

the

slic

eca

tego

ryS/

Der

Tre

e(G)

has

asob

ject

sth

ede

riva

tion

tree

sfr

omS

and

asar

row

sex

tens

ions

ofsu

chtr

ees.

We

shal

lsh

owth

atea

chde

riva

tion

tree

natu

rally

lead

sto

anST

S.

The

orem

28Su

ppos

eth

atD

er(α

)is

the

cano

nica

ldi

agra

mof

ade

riva

tion

tree

α∈

S/D

erT

ree(G)

.Let

Tde

note

Col

im(D

er(α

)).T

hen

the

cano

nica

lmor

phis

mS

→T

ism

ono.

Mor

eove

r,fo

rea

chfa

inα

and

i∈[ar

(ϕ)],

the

cano

nica

lmor

phis

ms

Lϕ(i)→

T,K

ϕ(i)→

Tan

dR

ϕ(i)→

Tar

em

ono.

Pro

ofF

irst

note

that

alla

rrow

sin

Der

(α)

are

mon

o,be

caus

epr

oduc

tion

sar

epa

irs

ofm

onos

,m

atch

esar

em

ono,

and

mon

osar

est

able

unde

rpu

shou

tsin

adhe

sive

cate

gori

es.W

epr

ocee

dby

sim

ple

indu

ctio

non

any

deco

mpo

siti

onα

n..

.α1.T

heba

seca

seis

triv

ial.

For

the

indu

ctiv

est

ep,

supp

ose

that

αi=

idX

′ ⊗ϕ

i⊗

idX

′′an

i:G

→G

1..

.G

k.L

etβ

ibe

the

deri

vati

ondi

agra

mco

rres

pond

ing

toth

ede

riva

tion

tree

atG

i.B

yth

ein

duct

ive

hypo

thes

isth

em

orph

ism

sG

i→

Ti=

Col

im(D

er(β

i))

are

mon

o,an

dth

eca

noni

cal

mor

phis

ms

from

each

prod

ucti

onap

pear

ing

inth

ose

deri

vati

ontr

ees

toT

iar

em

ono.

Giv

enth

eab

ove,

we

shal

lco

nstr

uct

anob

ject

Tw

hich

isth

eco

limit

ofth

edi

agra

mbe

low

left

.

To

calc

ulat

eth

eco

limit

ofsu

cha

diag

ram

itis

enou

ghto

cons

ider

the

solid

mor

phis

ms,

beca

use

all

squa

res

are

push

outs

and

colim

its

com

pose

.Si

nce

the

fan

isof

finit

ear

ity,

we

can

calc

ulat

eth

eco

limit

byco

nstr

ucti

ngsu

cces

sive

push

outs

.In

deed

,fo

rea

chi∈

[k]le

tT

′ ibe

the

push

out

ofl′ i

and

t ir′ i.

We

obta

inth

eso

lidpa

rtof

the

diag

ram

abov

eri

ght,

all

mor

phis

ms

are

mon

osi

nce

mon

osar

est

able

unde

rpu

shou

tsin

adhe

sive

cate

gori

es.F

inal

ly,T

isco

nstr

ucte

dby

taki

ngre

peat

edpu

shou

tsin

the

obvi

ous

way

.C

lear

ly,

G→

Tis

mon

o,an

dsi

nce

each

ofth

em

orph

ism

sT

i→

Tar

em

ono,

the

cano

nica

lm

orph

ism

sfr

omth

epr

oduc

tion

sto

Tob

tain

edby

post

com

posi

tion

wit

hT

i→

Tar

em

ono

asw

ell.

Fin

ally

,it

iscl

ear

that

the

resu

ltin

gob

ject

isth

eco

limit

ofth

eor

igin

aldi

agra

m(a

ndof

the

enti

rede

riva

tion

diag

ram

)be

caus

eco

limit

sco

mm

ute.

��

The

STS

asso

ciat

edw

ith

ade

riva

tion

tree

has

the

colim

itof

the

deri

vati

ondi

agra

mas

type

obje

ct,a

ndon

epr

oduc

tion

for

each

dire

ctde

riva

tion

inth

etr

ee.

Page 12: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

411

Defi

niti

on29

(Der

ived

STS)

Let

Gbe

anad

hesi

vegr

amm

ar.L

etS

∈Cbe

arbi

trar

y.R

ecal

ltha

tth

eob

ject

sof

S/D

erT

ree(G)

are

finit

ede

riva

tion

tree

sfr

omS.

Let

αbe

such

ade

riva

tion

tree

.The

deri

ved

STS

isP

rc(α

)=

〈 T,

P,π

〉 whe

re

–T

=C

olim

(Der

(α))

;–

P=

∑ϕ∈α

ar(ϕ

)—no

teth

atw

efix

the

copr

oduc

tin

Set

and

orde

rth

efa

nsϕ

soth

at〈 i,

j〉∈

Pis

the

ith

prod

ucti

onof

the

jthfa

n.T

heor

deri

ngis

imm

ater

ial;

–π

(i,

j)=

πG(

ϕj(

i));

–T

hety

ping

for

the

prod

ucti

ons

isca

noni

cally

:

L �� ��

K��

����

��

�� ��

R �� ��G

��

��������D

����

����

�� ��

G′

��

�� ����

��

T

Usi

ngth

eco

nclu

sion

ofT

heor

em28

,Prc

(α)

isan

STS.

6A

naly

sing

Der

ivat

ions

inth

eST

S

The

goal

ofth

isse

ctio

nis

tosh

owth

atth

eco

nstr

ucti

onof

the

deri

ved

STS

for

afin

ite

deri

vati

ontr

eein

anad

hesi

vegr

amm

argi

ves

usa

sett

ing

whe

reth

elo

calr

easo

ning

abou

tth

ein

depe

nden

ceof

prod

ucti

ons

usin

gsu

bobj

ect

incl

usio

nan

din

ters

ecti

on,

deve

lope

din

Sect

ion

4,is

fully

abst

ract

wit

hre

spec

tto

corr

espo

ndin

gre

lati

ons

amon

gdi

rect

deri

vati

ons

inth

eor

igin

altr

ee.

We

first

show

how

deri

vati

ons

ofa

give

ndi

agra

mD

er(α

)ar

ere

late

dto

deri

vati

ons

inth

ede

rive

dST

SP

rc(α

).In

part

icul

ar,w

ew

illsh

owth

atal

lpro

duct

ions

inP

rc(α

)

are

pure

,tha

t,as

expe

cted

,eve

ryde

riva

tion

ofD

er(α

)(a

linea

rpa

thin

the

deri

vati

ontr

ee)

isal

soa

deri

vati

onof

Prc

(α),

and

that

ther

ear

eno

back

war

dco

nflic

tsin

Prc

(α).

Thi

sis

show

nin

the

follo

win

gpr

opos

itio

n.

Pro

posi

tion

30(P

rope

rtie

sof

the

deri

ved

STS)

LetG

bean

adhe

sive

gram

mar

,let

α

bea

deri

vatio

ntr

eein

Gw

ithro

otS

(α∈

S/D

erT

ree(G)

),an

dle

tPrc

(α)

beits

deri

ved

STS.

The

n:

(1)

Prc

(α)

ispu

re.

(2)

For

each

dire

ctde

riva

tion

G1

=q,m ==⇒

G2

inα

,let

q′ be

the

corr

espo

ndin

gpr

oduc

tion

inP

rc(α

).T

hen

G1

⇒q′

G2.

(3)

Let

G0

=q 1,m

1==

= ⇒G

1=q 2

,m2

=== ⇒

···G

n−1

=q n,m

n==

= ⇒G

nbe

ade

riva

tion

inα

with

n≥

2,an

dle

tq′ 1,q′ 2

,..

.,q′ n

beth

eco

rres

pond

ing

prod

uctio

nsin

Prc

(α).

The

nq′ n

�< wc

q′ 1.

(4)

Let

q′ 1an

dq′ 2

betw

odi

stin

ctpr

oduc

tions

ofP

rc(α

).T

hen

¬(q′ 1

�q′ 2

).

Pro

ofT

hepr

oofs

ofth

efo

urst

atem

ents

follo

wa

com

mon

patt

ern,

base

don

the

follo

win

gob

serv

atio

ns:

let

�be

the

“bot

tom

part

”of

the

diag

ram

ofde

riva

tion

sD

er(α

);i.e

.,�

isob

tain

edby

dele

ting

from

Der

(α)

all

ofth

edo

uble

-pus

hout

412

A.C

orra

dini

etal

.

diag

ram

s,le

avin

gon

lyth

eir

low

ersp

ans.

Cle

arly

,a

colim

itfo

r�

isal

soa

colim

itfo

rD

er(α

).N

owno

tice

that

�is

sim

ply

conn

ecte

d,an

dit

cons

ists

ofob

ject

sw

hich

are

eith

erth

eso

urce

ofex

actl

ytw

oar

row

s(t

he“D

”s),

orar

eth

eta

rget

ofa

finit

enu

mbe

rof

arro

ws

(the

“G”s

).T

akin

gou

tof

�an

ysi

ngle

“D”

we

obta

intw

osi

mpl

yco

nnec

ted

diag

ram

sen

joyi

ngth

esa

me

prop

erti

esof

�.

Now

cons

ider

any

doub

le-p

usho

utdi

agra

mw

ithi

nD

er(α

),ill

ustr

ated

belo

w:�

cont

ains

only

its

low

ersp

an.

L

(a)

�� ��

K

(b)

����

����

�� ��

R �� ��G

1D

����

����

G2

By

dele

ting

from

�ob

ject

Dan

dth

eou

tgoi

ngar

row

s,w

eob

tain

�1

and

�2:l

etT

1

and

T2

beth

eco

rres

pond

ing

colim

its.

By

The

orem

28th

ere

are

mon

osG

1→

T1

and

G2

→T

2.S

ince

they

are

mon

oan

dsq

uare

s(a

)an

d(b

)ar

epu

llbac

ks,t

hefo

llow

ing

diag

ram

sar

epu

llbac

ksas

wel

l:

L

(1)

�� ��

K��

��

�� ��T

1D

����

K

(2)

�� ��

����

R �� ��D

����

T2

Fur

ther

mor

e,th

eco

limit

Tof

the

orig

inal

diag

ram

�is

obta

ined

byth

efo

llow

ing

push

out,

whi

chis

also

apu

llbac

kas

we

are

inan

adhe

sive

cate

gory

:

T1

(3)

�� ��

D��

��

�� ��T

T2

����

We

can

proc

eed

now

wit

hth

epr

oofo

fthe

four

stat

emen

ts.

(1)

Let

q′ be

apr

oduc

tion

ofP

rc(α

)w

ith

π(q

′ )=

〈 L,

K,

R〉 ,a

ndle

tG

1=q,

m ==⇒G

2be

the

corr

espo

ndin

gdi

rect

deri

vati

onin

Der

(α).

By

the

obse

rvat

ions

abov

e,w

eca

nbu

ildth

edi

agra

mbe

low

.

L

(1)

�� ��

K��

��

�� ��

K��

��

�� ��T

1

(3)

�� ��

D

(2)

����

�� ��

K��

��

�� ��T

T2

����

R��

��

The

uppe

rri

ght

squa

reis

apu

llbac

ksi

nce

K→

Dis

mon

o.Si

nce

all

inte

rior

squa

res

are

pullb

acks

,so

isth

eou

ter

one.

Hen

ceK

∼ =L

∩R

and

thus

the

prod

ucti

onq′ i

spu

re.

Page 13: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

413

(2)

By

Pro

posi

tion

6,w

eha

veto

show

that

ther

eis

noco

ntac

t,i.e

.,th

atG

1∩

R⊆

L.

Con

side

rth

edi

agra

mbe

low

:the

uppe

rle

ftsq

uare

isa

pullb

ack

sinc

eth

edi

agra

mco

mm

utes

and

G1

→T

1is

mon

o.T

heup

per

righ

tsqu

are

istr

ivia

llya

pullb

ack.

G1 �� ��

D��

��

�� ��

K��

��

�� ��T

1

(3)

�� ��

D

(2)

����

�� ��

K��

��

�� ��T

T2

����

R��

��

All

the

inte

rior

squa

res

are

pullb

acks

,thu

sG

1∩

R∼ =

K⊆

L,a

sde

sire

d.(3

)W

esh

owth

at,

give

nth

ehy

poth

eses

,L

1∩

Rn

∼ =K

1∩

Kn

⊆K

1∪

Kn,

and

thus

q′ n�< w

cq′ 1

.B

yth

egi

ven

deri

vati

on,i

ndi

agra

m�

(the

“bot

tom

part

”of

Der

(α))

,we

have

the

follo

win

gch

ain

ofsp

ans:

G0

←D

1→

G1

←D

2→

···G

n−1

←D

n→

Gn

By

dele

ting

D1

and

Dn

we

get

thre

ese

para

ted

sim

ply

conn

ecte

ddi

agra

ms,

wit

hco

limit

sT

1,T

′ and

Tn.I

nth

efo

llow

ing

diag

ram

,the

colim

itT

of�

isco

mpu

ted

via

the

low

erle

ftpu

shou

t,w

hich

isal

soa

pullb

ack

beca

use

ofad

hesi

vity

.T

hefo

urup

per

righ

tsq

uare

sar

eal

lea

sily

seen

tobe

pullb

acks

,si

nce

K1

→D

1,

Kn

→D

nan

dT

′ →T

are

mon

os.

Thu

sal

lth

ein

teri

orsq

uare

sar

epu

llbac

ks,

mea

ning

that

the

enti

resq

uare

isa

pullb

ack

and

L1∩

Rn

∼ =K

1∩

Kn

asde

sire

d.

Rn

(2)

�� ��

Kn

����

�� ��

Kn∩

D1

����

�� ��

Kn∩

K1

����

�� ��T

n

(3)

�� ��

Dn

����

�� ��

Dn∩

D1

����

�� ��

Dn∩

K1

����

�� ��T

′ n �� ��

T′

(3)

����

�� ��

D1

(1)

����

�� ��

K1

����

�� ��T

T′ 1

����

T1

����

L1

����

(4)

The

rear

etw

oca

ses

toco

nsid

er:

(a)

The

two

dire

ctde

riva

tion

sco

rres

pond

ing

toq′ 1

and

q′ 2be

long

todi

ffer

ent

bran

ches

ofD

er(α

),an

d(b

)th

eybe

long

toth

esa

me

linea

rde

riva

tion

.F

orth

efir

stca

se,s

ince

αis

atr

eew

ekn

owth

atin

Der

(α)

ther

ear

etw

om

inim

alde

riva

tion

s

G0

=q 1,m

1==

=⇒G

1···

Gn−

1=q n

,mn

===⇒

Gn

and

G0

=p 1,m

′ 1==

=⇒G

′ 1···

G′ k−

1=p k

,m′ k

===⇒

G′ k

such

that

q′ 1co

rres

pond

sto

Gn−

1=q n

,mn

=== ⇒

Gn,a

ndq′ 2

toG

′ k−1

=p k,m

′ k==

= ⇒G

′ k,r

espe

c-ti

vely

.In

diag

ram

�w

eha

veth

efo

llow

ing

chai

nof

span

s:

G′ k

←D

′ k→

G′ k−

1···

G′ 1

←D

′ 1→

G0

←D

1→

G1···

Gn−

1←

Dn

→G

n

414

A.C

orra

dini

etal

.

By

dele

ting

D′ k

and

Dn

we

get

thre

ese

para

ted

sim

ply

conn

ecte

ddi

agra

ms,

wit

hco

limit

sT

k,

T′ a

ndT

n,

resp

ecti

vely

.T

hefo

llow

ing

diag

ram

,w

here

all

inte

rior

squa

res

are

pullb

acks

,al

low

sus

toco

nclu

deth

atR

q′ 1∩

Rq′ 2

∼ =K

q′ 1∩

Kq′ 2

,th

usR

q′ 1∩

Rq′ 2

⊆K

q′ 1∪

Kq′ 2

,whi

chm

eans

¬(q′ 1

�q′ 2

).

Rq′ 1

=R

n

(2)

�� ��

Kn

����

�� ��

Kn∩

D′ k

����

�� ��

Kn∩

K′ k

=K

q′ 1∩

Kq′ 2

����

�� ��

Tn

(3)

�� ��

Dn

����

�� ��

Dn∩

D′ k

����

�� ��

Dn∩

K′ k

����

�� ��T

′ n �� ��

T′

(3)

����

�� ��

D′ k

(2)

����

�� ��

K′ k

����

�� ��

TT

′ k��

��T

k��

��R

′ k=

Rq′ 2

����

For

case

(b)

supp

ose,

wit

hout

loss

ofge

nera

lity,

that

q′ 1an

dq′ 2

are

the

pro-

duct

ions

ofP

rc(α

)co

rres

pond

ing

toth

efir

stan

dto

the

last

dire

ctde

riva

tion

sof

the

follo

win

gde

riva

tion

:G

0=q 1

,m1

=== ⇒

G1

=q 2,m

2==

= ⇒G

2···

Gn−

1=q n

,mn

=== ⇒

Gn:

thus

Rq′ 1

=R

1an

dR

q′ 2=

Rn.

Now

ifn

=2,

then

we

have

G1∩

R2

∼ =K

2by

the

proo

fof

poin

t(2

),an

dsi

nce

R1

⊆G

1,w

eha

veR

1∩

R2

⊆K

2⊆

K1∪

K2,t

hus¬(

q′ 1�

q′ 2).

Ifin

stea

dn

>2,

cons

ider

the

follo

win

gch

ain

ofsp

ans

in�

:

G0

←D

1→

G1

←D

2→

G2···

Gn−

1←

Dn

→G

n

By

dele

ting

D2

and

Dn

we

get

thre

ese

para

ted

sim

ply

conn

ecte

ddi

agra

ms,

wit

hco

limit

sT

2,T

′ and

Tn.R

easo

ning

asin

poin

t(3)

we

build

the

follo

win

gdi

agra

m,

whe

real

lthe

inte

rior

squa

res

are

pullb

acks

:

T2

(3)

�� ��

D2

����

�� ��

D2∩

Dn

����

�� ��

D2∩

Kn

����

�� ��T

′ 2 �� ��

T′

(3)

����

�� ��

Dn

(2)

����

�� ��

Kn

����

�� ��T

T′ n

����

Tn

����

Rn

����

The

refo

reth

eou

ter

squa

reis

apu

llbac

k,m

eani

ngth

atT

2∩

Rn

∼ =D

2∩

Kn.N

owby

The

orem

28,

we

know

that

R1

map

sin

ject

ivel

yto

the

colim

itT

2,

and

thus

R1∩

Rn

⊆D

2∩

Kn

⊆K

n⊆

K1∪

Kn,a

sde

sire

d.��

Inor

der

tosh

owth

atST

Ssca

nbe

used

for

reas

onin

gab

out

inde

pend

ence

inde

riva

tion

tree

sof

adhe

sive

gram

mar

s,w

esh

all

need

tore

call

the

stan

dard

noti

ons

ofin

depe

nden

cefr

omth

eth

eory

ofD

PO

rew

riti

ng[8

],na

mel

yse

quen

tial

and

para

llel

inde

pend

ence

for

grap

htr

ansf

orm

atio

nsy

stem

s.G

iven

the

cate

gori

cal

natu

reof

the

defin

itio

ns,t

hesa

me

defin

itio

nsar

eus

edin

the

mor

ege

nera

lset

ting

oftr

ansf

orm

atio

nsy

stem

sba

sed

onad

hesi

veca

tego

ries

[16]

.

Page 14: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

415

Defi

niti

on31

(Par

alle

lan

dse

quen

tial

inde

pend

ence

)L

etG

bean

adhe

sive

grap

hgr

amm

aran

dq 1

,q2

betw

oof

its

prod

ucti

ons:

Tw

odi

rect

deri

vati

ons

G=q 1

,m1

=== ⇒

G1

and

G=q 2

,m2

=== ⇒

G2

are

para

lleli

ndep

ende

ntif

ther

eex

ist

mor

phis

ms

i:L

1→

D2

and

j:L

2→

D1

such

that

f 2◦i

=m

1an

df 1

◦j=

m2:

R1

n 1

��

K1

l 1��

r 1��

k 1��

L1

m1��

i��

L2

���

m2

����j

��

K2

l 2��

r 2��

k 2��

R2

n 2

��G

1D

1f 1

��g 1

��G

D2

f 2

��g 2

��G

2

Fur

ther

mor

e,tw

odi

rect

deri

vati

ons

G=q 1

,m1

===⇒

G1

=q 2,m

2==

=⇒H

are

sequ

entia

lin

de-

pend

ent

ifth

ere

exis

tm

orph

ism

si:

R1

→D

2an

dj:

L2

→D

1su

chth

atf 2

◦i=

n 1an

dg 1

◦j=

m2:

L1

m1

��

K1

l 1��

r 1��

k 1��

R1

���

n 1����

i��

L2

m2

�� j

��

K2

l 2��

r 2��

k 2��

R2

n 2

��G

D1

g 1

��f 1

��G

1D

2f 2

��g 2

��H

The

follo

win

gth

eore

mst

ates

that

the

cons

truc

tion

ofa

deri

ved

STS

for

afin

ite

deri

vati

ontr

eein

anad

hesi

vegr

amm

arG,

pres

ente

din

Sect

ion

5,gi

ves

usa

sett

ing

whe

reth

elo

calr

easo

ning

abou

tin

depe

nden

cew

ith

subo

bjec

ts,d

evel

oped

inSe

ctio

n3,

isfu

llyab

stra

ctw

ith

resp

ectt

oth

ein

depe

nden

cein

the

orig

inal

deri

vati

on.

The

orem

32(C

heck

ing

inde

pend

ence

inth

ede

rive

dST

S)Su

ppos

eth

atG

isan

adhe

sive

gram

mar

.Let

αbe

ade

riva

tion

tree

inG

with

root

S(α

∈S/

Der

Tre

e(G)

).

1.L

etG

1=q 1

,m1

===⇒

G2,

G1

=q 2,m

2==

=⇒G

3be

two

deri

vatio

nst

eps

inα

,w

ithq 1

k(i),

q 2=

ϕk(

j)fo

rso

me

fan

ϕk

inα

,an

dle

tq′ 1

=〈 i,

k〉 ,q′ 2

=〈 j,

k〉in

Prc

(α)

beth

eco

rres

pond

ing

prod

uctio

nsin

the

deri

ved

STS.

The

nth

efo

llow

ing

are

equi

vale

nt:

(1)

G1

=q 1,m

1==

=⇒G

2an

dG

1=q 2

,m2

===⇒

G3

are

para

lleli

ndep

ende

nt(2

)q′ 1

♦q′ 2

(3)

¬(q′ 1

�q′ 2

)∧q

′ 1≮

dq′ 2

∧q′ 2

≮d

q′ 1

2.L

etG

1=q 1

,m1

===⇒

G2

=q 2,m

2==

=⇒G

3be

two

deri

vatio

nst

eps

inα

,w

ithq 1

k(i

),q 2

l(j)

for

fans

ϕk,ϕ

lin

αan

dq′ 1

=〈 i,

k〉 ,q′ 2

=〈 j,

l〉 in

Prc

(α),

then

the

follo

win

gar

eeq

uiva

lent

:(1

)G

1=q 1

,m1

=== ⇒

G2

=q 2,m

2==

= ⇒G

3ar

ese

quen

tiali

ndep

ende

nt(2

)q′ 1

♦q′ 2

(3)

q′ 1≮

rcq′ 2

∧q′ 1

≮w

cq′ 2

∧q′ 1

≮d

q′ 2

416

A.C

orra

dini

etal

.

Pro

of

1.(1

)⇒

(2)

By

para

llel

inde

pend

ence

ther

ear

ear

row

si:

L1

→D

2an

dj:

L2

→D

1su

chth

atf 2

◦i=

m1

and

f 1◦j

=m

2;i

and

jare

mon

obe

caus

eso

are

f ian

dm

ifo

ri∈

{1,2}.

Itis

easy

tosh

owth

ati

and

jco

mm

ute

wit

hth

ein

ject

ions

ofth

eir

sour

cean

dta

rget

obje

cts

inth

eco

limit

obje

ctT

,th

usL

1⊆

D2

and

L2

⊆D

1in

Sub(

T).

Fur

ther

mor

e,by

Pro

posi

tion

30(4

)it

hold

s¬(

q′ 1�

q′ 2).

The

nw

eco

nclu

deby

Lem

ma

20((

3)⇒

(1))

.(2

)⇒

(1)

byL

emm

a20

((1)

⇒(3

))w

ekn

owth

atL

1⊆

D2

and

L2

⊆D

1in

Sub(

T).

Thu

sth

ere

are

mon

osi:

L1

→D

2an

dj:

L2

→D

1;

sinc

eSu

b(T

)is

apr

eord

er,i

and

jfor

mco

mm

utin

gtr

iang

les

wit

hth

eco

span

sof

inje

ctio

nsD

2→

G1

←L

1an

dD

1→

G1

←L

2,r

espe

ctiv

ely.

Thu

sth

etw

odi

rect

deri

vati

ons

inG

are

para

lleli

ndep

ende

nt.

(2)⇔

(3)

Obv

ious

byL

emm

a20

((1)

⇔(2

)),

obse

rvin

gth

at¬(

q′ 1�

q′ 2)

byP

ropo

siti

on30

(4).

2.T

hepr

oof

isan

alog

ous

toth

atof

the

prev

ious

poin

t,by

expl

oiti

ngL

emm

a21

inst

ead

ofL

emm

a20

,and

poin

t(3)

ofP

ropo

siti

on30

inst

ead

ofpo

int(

4).

��

The

form

alfr

amew

ork

we

intr

oduc

edal

low

sus

topr

ovid

ea

new

proo

foft

hew

ell-

know

nlo

calC

hurc

h–R

osse

rth

eore

mfo

rtr

ansf

orm

atio

nsw

ith

inje

ctiv

em

atch

es,b

yex

ploi

ting

the

corr

espo

ndin

gth

eore

mfo

rST

Ss.

The

orem

33(L

ocal

Chu

rch–

Ros

ser)

LetG

bean

adhe

sive

gram

mar

.

(1)

IfG

=q 1,m

1==

=⇒G

1an

dG

=q 2,m

2==

=⇒G

2ar

etw

opa

ralle

lind

epen

dent

dire

ctde

riva

tions

,

then

ther

ear

ean

obje

ctH

and

dire

ctde

riva

tions

G1

=q 2,m

′ 2==

=⇒H

and

G2=q 1

,m′ 1

===⇒

H

such

that

G=q 1

,m1

===⇒

G1

=q 2,m

′ 2==

=⇒H

and

G=q 2

,m2

===⇒

G2

=q 1,m

′ 1==

=⇒H

are

sequ

entia

lin

depe

nden

t.

(2)

IfG

=q 1,m

1==

=⇒G

1=q 2

,m′ 2

===⇒

Har

etw

ose

quen

tial

inde

pend

ent

dire

ctde

riva

tions

,the

n

ther

ear

ean

obje

ctG

2an

ddi

rect

deri

vatio

nsG

=q 2,m

2==

= ⇒G

2=q 1

,m′ 1

=== ⇒

Hsu

chth

atG

=q 1,m

1==

= ⇒G

1an

dG

=q 2,m

2==

= ⇒G

2ar

epa

ralle

lind

epen

dent

:

Gq 1

,m1 ���

���

����

q 2,m

2

����������

G1

q 2,m

′ 2������

����G

2

q 1,m

′ 1���

���

����

H

Pro

ofW

epr

ove

only

poin

t(1

),be

caus

epo

int

(2)

isco

mpl

etel

yan

alog

ous.

Giv

enG

=q 1,m

1==

= ⇒G

1an

dG

=q 2,m

2==

= ⇒G

2,

cons

ider

the

deri

vati

ontr

eeα

inG

/D

erT

ree(G)

base

don

this

span

ofdi

rect

deri

vati

ons.

The

deri

ved

STS

ofα

,Prc

(α),

cont

ains

byco

nstr

ucti

onon

lytw

opr

oduc

tion

s,sa

yq′ 1

and

q′ 2,

corr

espo

ndin

gto

the

two

dire

ctde

riva

tion

s,w

ith

G⇒

q′ 1G

1an

dG

⇒q′ 2

G2.

Sinc

eth

eor

igin

aldi

rect

deri

vati

ons

are

para

llel

inde

pend

ent

byhy

poth

esis

,by

The

orem

32.1

we

have

that

q′ 1♦

q′ 2,

and

byT

heor

em22

ther

eis

asu

bobj

ect

Hof

Page 15: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

417

T,t

heco

limit

ofD

er(α

),an

ddi

rect

deri

vati

ons

G1

⇒q′ 2

Han

dG

2⇒

q′ 1H

;fro

mth

epr

oof

ofth

eth

eore

mw

eal

sokn

owth

atth

eco

ntex

tsof

thes

etw

odi

rect

deri

va-

tion

sar

eD

′ 2=

(D

1∩

D2)∪

R1

and

D′ 1

=(D

1∩

D2)∪

R2.

The

refo

reby

Pro

posi

-ti

on6

ther

ear

etw

odo

uble

-pus

hout

diag

ram

sw

itne

ssin

g,up

tois

omor

phis

ms,

that

G1

=q 2,m

′ 2==

= ⇒H

and

G2

=q 1,m

′ 1==

= ⇒H

,for

mat

ches

m′ 2

and

m′ 1

dete

rmin

edby

the

inje

ctio

nsL

2⊆

D1

⊆G

1an

dL

1⊆

D2

⊆G

2,

whi

chho

ldby

hypo

thes

is.

Fin

ally

,no

tice

that

ther

ear

ein

ject

ions

R1

⊆(D

1∩

D2)∪

R1

=D

′ 2an

dL

2⊆

D1,w

hich

mak

eth

ere

sult

-

ing

tria

ngle

sco

mm

ute

beca

use

Sub(

T)

isa

preo

rder

.Thu

sG

=q 1,m

1==

=⇒G

1=q 2

,m′ 2

===⇒

His

sequ

enti

alin

depe

nden

t,an

dso

isG

=q 2,m

2==

=⇒G

2=q 1

,m′ 1

===⇒

Hby

sim

ilar

reas

onin

g.��

7C

oncl

usio

nsan

dF

utur

eW

ork

Inth

ispa

per

we

have

intr

oduc

edsu

bobj

ect

tran

sfor

mat

ion

syst

ems

(ST

S),a

nove

lfo

rmal

fram

ewor

kfo

rth

ean

alys

isof

deri

vati

ons

ofD

PO

tran

sfor

mat

ion

syst

ems.

The

yca

nbe

cons

ider

edas

a“d

isti

lled”

vari

ant

ofD

PO

rew

riti

ng,

acti

ngin

the

dist

ribu

tive

latt

ice

ofsu

bobj

ects

ofa

give

nob

ject

ofan

adhe

sive

cate

gory

.In

this

sett

ing

the

anal

ysis

ofse

vera

lcon

flict

,cau

salit

y,an

din

depe

nden

cere

lati

ons

amon

gpr

oduc

tion

sca

nbe

carr

ied

onus

ing

ase

t-th

eore

tica

lsy

ntax

orsi

mpl

ege

omet

ric

reas

onin

gba

sed

onV

enn

diag

ram

s,th

uspr

ovid

ing

anal

tern

ativ

eto

the

usua

l“d

iagr

amch

asin

g”us

edin

the

alge

brai

cap

proa

ches

tore

wri

ting

.In

part

icul

ar,s

ince

ever

ypr

oduc

tion

inan

STS

has

aun

ique

mat

ch,i

nor

der

toan

alyz

eho

wtw

odi

ffer

ent

prod

ucti

ons

rela

teto

each

othe

r,it

isen

ough

tolo

okat

the

prod

ucti

ons

them

selv

es.

We

have

pres

ente

dse

vera

lch

arac

teri

zati

ons

ofin

depe

nden

ceof

prod

ucti

ons

inpu

reST

Ss,

asw

ell

asa

loca

lC

hurc

h–R

osse

rth

eore

mfo

rth

em,

also

show

ing

how

the

proo

fof

the

loca

lChu

rch–

Ros

ser

theo

rem

for

DP

Otr

ansf

orm

atio

n(w

ith

mon

icm

atch

es)

inan

adhe

sive

cate

gory

can

bere

duce

dto

it.

The

char

acte

risa

tion

can

beco

nsid

ered

com

plet

e,as

we

have

anal

yzed

all

the

poss

ible

way

sin

whi

chca

usal

depe

nden

cyca

nar

ise

betw

een

two

prod

ucti

ons.

Inpa

rtic

ular

,w

eha

vegi

ven

am

inim

alse

tof

basi

cre

lati

ons

and

show

nth

atre

lati

ons

whi

chha

vebe

enpr

evio

usly

cons

ider

edca

nbe

built

upof

the

basi

cse

t.A

sm

enti

oned

inth

ein

trod

ucti

on,S

TSs

over

cate

gory

Set

wit

ha

few

addi

tion

alco

nstr

aint

sar

ein

aon

e-to

-one

corr

espo

nden

cew

ith

apa

rtic

ular

clas

sof

Pet

rine

ts,

calle

dE

lem

enta

ryN

etSy

stem

s(E

NS)

[22]

.3T

hefo

rmal

izat

ion

ofth

epr

ecis

ere

lati

onsh

ipbe

twee

nST

Ssan

dE

NSs

goes

beyo

ndth

ego

alof

the

pres

entp

aper

,and

will

bea

topi

cof

futu

rere

sear

ch.N

ever

thel

ess,

letu

sst

ress

the

met

hodo

logi

calv

alue

ofth

isre

lati

onsh

ip:i

nth

esa

me

way

the

theo

ryof

Pla

ce/T

rans

itio

nne

tsha

sbe

ena

cons

tant

sour

ceof

insp

irat

ion

duri

ngth

ela

stye

ars

for

rese

arch

ers

wor

king

onbo

thth

eore

tica

land

mor

epr

acti

cala

spec

tsof

grap

htr

ansf

orm

atio

nsy

stem

s(a

sw

itne

ssed

for

exam

ple

byth

eva

riou

sco

ncur

rent

sem

anti

cspr

opos

edfo

rG

TSs

,an

dby

thei

rap

plic

atio

nto

the

veri

ficat

ion

ofsu

chsy

stem

s),

we

expe

ctth

atal

soth

eth

eory

ofE

NSs

will

prov

ide

chal

leng

ing

intu

itio

nsth

atco

uld

bege

nera

lized

,atl

east

inpa

rt,t

oth

em

ore

abst

ract

sett

ing

ofST

Ss.

3 Inde

ed,s

ome

term

sw

ein

trod

uced

are

borr

owed

from

the

EN

Ste

rmin

olog

y,lik

epu

rean

dco

ntac

tsi

tuat

ion.

418

A.C

orra

dini

etal

.

Inth

epa

per

we

mai

nly

cons

ider

edpu

resy

stem

s,be

caus

eso

are

the

STSs

aris

ing

asre

pres

enta

tion

ofth

eco

mpu

tati

ons

ofD

PO

syst

ems.

We

show

edin

Sect

ion

3th

atfo

rno

n-pu

resy

stem

sth

ese

tof

basi

cre

lati

ons

wou

ldbe

larg

er.

How

ever

,th

eth

eore

tica

lor

prac

tica

lre

leva

nce

ofsu

chsy

stem

sis

not

clea

r,be

caus

eof

ten

ase

lf-

loop

,mod

ellin

gth

efa

ctth

ata

reso

urce

can

beco

nsum

edan

dpr

oduc

edag

ain,

can

beco

nven

ient

lyre

plac

edw

ith

are

adac

cess

toth

atre

sour

ce.T

his

anal

ysis

isle

ftas

ato

pic

offu

ture

rese

arch

,to

geth

erw

ith

the

stud

yof

som

ena

tura

lge

nera

lizat

ions

ofth

eap

proa

chpr

esen

ted

inth

ispa

per,

incl

udin

gfo

rex

ampl

eth

eha

ndlin

gof

othe

ral

gebr

aic

appr

oach

esto

rew

riti

ng,

like

the

sing

le-p

usho

utan

dth

ese

squi

-pus

hout

appr

oach

es[6

,11]

.In

Sect

ion

5w

epr

esen

ted

aco

nstr

ucti

onth

at,g

iven

afin

itede

riva

tion

tree

ofa

DP

Osy

stem

,bui

lds

anST

S,a

sort

ofno

n-de

term

inis

ticpr

oces

s,w

hich

can

beus

edto

anal

yze

the

depe

nden

cies

amon

gpr

oduc

tion

occu

rren

ces

inth

egi

ven

deri

vati

ontr

ee.

On

the

othe

rha

nd,

the

clas

sica

lun

fold

ing

cons

truc

tion

defin

edfo

rP

etri

nets

and

GT

Ssin

[24]

and

[4,

20],

resp

ecti

vely

,bu

ilds

asp

ecifi

c,us

ually

infin

ite,

non-

dete

rmin

isti

cpr

oces

s,th

atre

pres

ents

all

the

deri

vati

ons

ofth

eor

igin

alsy

stem

and

enjo

ysan

inte

rest

ing

univ

ersa

lpr

oper

ty.

We

plan

toca

ptur

eth

eun

fold

ing

con-

stru

ctio

nw

ithi

nou

rfr

amew

ork:

To

this

aim

,we

inte

ndto

gene

raliz

eth

eun

fold

ing

cons

truc

tion

toan

arbi

trar

yad

hesi

vegr

amm

ar,

poss

ibly

requ

irin

gso

me

furt

her

prop

erti

eson

the

unde

rlyi

ngad

hesi

veca

tego

ry.

Inpr

acti

ce,

ofte

nth

egr

amm

ars

whi

char

ede

sign

edto

mod

ela

give

nsy

stem

are

equi

pped

wit

hap

plic

atio

nco

ndit

ions

,as

defin

edfo

rex

ampl

ein

[10,

13].

The

seco

ndit

ions

allo

wre

stri

ctin

gth

eap

plic

atio

nof

rule

san

dhe

nce,

they

mod

elre

stri

cted

cont

rol

stru

ctur

es.S

ome

prel

imin

ary

resu

lts

show

that

posi

tive

and

nega

tive

appl

i-ca

tion

cond

itio

nsca

nbe

hand

led

byex

tra

rela

tion

sin

anST

S:th

eyco

nsti

tute

afir

stst

epto

war

dsth

ege

nera

lizat

ion

ofth

eth

eory

ofST

Ssto

this

rich

ercl

ass

ofsy

stem

s.O

ccur

renc

egr

amm

ars

and

Pet

rine

tsar

eal

read

ysi

mila

rre

pres

enta

tion

sof

apr

oces

s,as

they

shar

eth

ein

tuit

ion

ofa

caus

alre

lati

onan

dit

ems,

whi

chca

nbe

prod

uced

and

cons

umed

.Pet

rine

tsof

fera

wel

lfou

nded

theo

ryfo

rana

lysi

sand

henc

ea

tran

sfor

mat

ion

ofan

STS

toan

equi

vale

ntP

etri

net

isan

inte

rest

ing

chal

leng

e.T

rans

form

atio

nsfo

rgr

amm

ars

wit

hout

appl

icat

ion

cond

itio

nsw

ere

alre

ady

defin

ed,

e.g.

,in

[1].

The

inte

grat

ion

ofre

stri

cted

nega

tive

appl

icat

ion

cond

itio

nsw

ere

hand

led

byin

[5],

buta

nin

tegr

atio

nof

gene

rala

pplic

atio

nco

ndit

ions

asth

eyar

eus

edin

mos

tpr

acti

cale

xam

ples

wou

ldbe

ofm

uch

mor

eva

lue.

And

inde

ed,t

hegi

ven

defin

itio

nof

anST

San

dit

sre

lati

ons

com

bine

dw

ith

the

men

tion

edex

tens

ion

for

appl

icat

ion

cond

itio

nsse

ems

tobe

adeq

uate

tocr

eate

aneq

uiva

lent

Pet

rine

t.

Ack

now

ledg

emen

tsW

eac

know

ledg

eP

aolo

Bal

dan

and

the

anon

ymou

sre

fere

esfo

rco

nstr

ucti

veco

mm

ents

ona

prel

imin

iary

vers

ion

ofth

epa

per.

Ref

eren

ces

1.B

alda

n,P

.:M

odel

ling

conc

urre

ntco

mpu

tati

ons:

from

cont

extu

alP

etri

nets

togr

aph

gram

mar

s.P

hDdi

sser

tati

on,

Dep

artm

ent

ofC

ompu

ter

Scie

nce,

Uni

vers

ity

ofP

isa,

Mar

ch.

Ava

ilabl

eas

tech

nica

lrep

ortn

o.T

D-1

/00

(200

0)2.

Bal

dan,

P.,

Cor

radi

ni,A

.,H

eind

el,T

.,K

önig

,B.,

Sobo

cins

ki,P

.:P

roce

sses

for

adhe

sive

rew

riti

ngsy

stem

s.In

:Ace

to,L

.,In

gólf

sdót

tir,

A.(

eds.

)F

oSSa

CS,

vol.

3921

ofL

ectu

reN

otes

inC

ompu

ter

Scie

nce,

pp.2

02–2

16.S

prin

ger

Ver

lag

(200

6)

Page 16: B) Dipartimento di Informatica, Università di Pisa, Pisa, Italy ...andrea/Papers/CHS-SubTrasfSys.pdfB) Dipartimento di Informatica, Università di Pisa, Pisa, Italy e-mail: andrea@di.unipi.it

Subo

bjec

ttra

nsfo

rmat

ion

syst

ems

419

3.B

alda

n,P

.,C

orra

dini

,A.,

Mon

tana

ri,U

.:C

onca

tena

ble

grap

hpr

oces

ses:

rela

ting

proc

esse

san

dde

riva

tion

trac

es.

In:

Pro

c.of

ICA

LP

’98,

vol.

1443

ofL

ectu

reN

otes

inC

ompu

ter

Scie

nce,

pp.2

83–2

95.S

prin

ger

Ver

lag

(199

8)4.

Bal

dan,

P.,

Cor

radi

ni,

A.,

Mon

tana

ri,

U.:

Unf

oldi

ngof

doub

le-p

usho

utgr

aph

gram

mar

sis

aco

refle

ctio

n.In

:E

hrig

,G

.,E

ngel

s,G

.,K

reow

ski,

H.J

.,R

ozen

berg

,G

.(e

ds.)

Pro

ceed

ings

ofth

eIn

tern

atio

nal

Wor

ksho

pon

The

ory

and

App

licat

ion

ofG

raph

Tra

nsfo

rmat

ions

,vo

l.17

64of

Lec

ture

Not

esin

Com

pute

rSc

ienc

e,pp

.145

–163

.Spr

inge

rV

erla

g(1

999)

5.B

alda

n,P

.,K

önig

,B

.,St

ürm

er,

I.:

Gen

erat

ing

test

case

sfo

rco

dege

nera

tors

byun

fold

ing

grap

htr

ansf

orm

atio

nsy

stem

s.In

:Ehr

ig,H

.,E

ngel

s,G

.,P

aris

i-P

resi

cce,

F.,

Roz

enbe

rg,G

.(ed

s.)

ICG

T’0

4,vo

l.32

56of

Lec

ture

Not

esin

Com

pute

rSc

ienc

e,pp

.194

–209

.Spr

inge

rV

erla

g(2

004)

6.C

orra

dini

,A.,

Hei

ndel

,T.,

Her

man

n,F

.,K

önig

,B.:

Sesq

ui-p

usho

utre

wri

ting

.In:

Cor

radi

ni,A

.,E

hrig

,H.,

Mon

tana

ri,U

.,R

ibei

ro,L

.,R

ozen

berg

,G.(

eds.

)IC

GT

’06,

vol.

4178

ofL

ectu

reN

otes

inC

ompu

ter

Scie

nce,

pp.3

0–45

.Spr

inge

rV

erla

g(2

006)

7.C

orra

dini

,A.,

Mon

tana

ri,U

.,R

ossi

,F.:

Gra

phpr

oces

ses.

Fun

d.In

form

.26,

241–

265

(199

6)8.

Cor

radi

ni,A

.,M

onta

nari

,U.,

Ros

si,F

.,E

hrig

,H.,

Hec

kel,

R.,

Löw

e,M

.:A

lgeb

raic

appr

oach

esto

grap

htr

ansf

orm

atio

n,P

artI

:bas

icco

ncep

tsan

ddo

uble

push

outa

ppro

ach.

In:R

ozen

berg

[21]

,C

hapt

er3

(199

7)9.

Dan

os,V

.,K

rivi

ne,J

.,So

boci

nski

,P.:

Gen

eral

reve

rsib

ility

.In:

Exp

ress

’06,

Ele

ctro

nic

Not

esin

The

oret

ical

Com

pute

rSc

ienc

e17

5(3)

,pp.

75–8

6.E

lsev

ier

(200

7)10

.E

hrig

,H.,

Ehr

ig,K

.,P

rang

e,U

.,T

aent

zer,

G.:

Fun

dam

enta

lsof

Alg

ebra

icG

raph

Tra

nsfo

rma-

tion

.EA

TC

SM

onog

raph

sin

The

oret

ical

Com

pute

rSc

ienc

e.Sp

ring

erV

erla

g(2

006)

11.

Ehr

ig,

H.,

Hec

kel,

R.,

Kor

ff,

M.,

Löw

e,M

.,R

ibei

ro,

L.,

Wag

ner,

A.,

Cor

radi

ni,

A.:

Alg

ebra

icap

proa

ches

togr

aph

tran

sfor

mat

ion

II:

sing

lepu

shou

tap

proa

chan

dco

mpa

riso

nw

ith

doub

lepu

shou

tapp

roac

h.In

:Roz

enbe

rg[2

1],C

hapt

er4

(199

7)12

.G

olz,

U.,

Rei

sig,

W.:

The

non-

sequ

enti

albe

havi

our

ofP

etri

nets

.Inf

.Con

trol

57,1

25–1

47(1

983)

13.

Hab

el,

A.,

Hec

kel,

R.,

Tae

ntze

r,G

.:G

raph

gram

mar

sw

ith

nega

tive

appl

icat

ion

cond

itio

ns.

Spec

iali

ssue

ofF

und.

Info

rm.2

6(3,

4),2

87–3

13(1

996)

14.

Joya

l,A

.,St

reet

,R.:

The

geom

etry

ofte

nsor

calc

ulus

.I.A

dv.M

ath.

88,5

5–11

2(1

991)

15.

Kre

owsk

i,H

.-J.:

Man

ipul

atio

nvo

nG

raph

man

ipul

atio

nen.

PhD

thes

is,

Tec

hnis

che

Uni

vers

ität

Ber

lin(1

977)

16.

Lac

k,S.

,Sob

ocin

ski,

P.:

Adh

esiv

ean

dqu

asia

dhes

ive

cate

gori

es.T

heor

.Inf

.App

l.39

(2),

511–

546

(200

5)17

.L

eins

ter,

T.:

Hig

her

Ope

rads

,H

ighe

rC

ateg

orie

s.L

ondo

nM

athe

mat

ical

Lec

ture

Not

es.

Cam

brid

geU

nive

rsit

yP

ress

(200

3)18

.M

eseg

uer,

J.,M

onta

nari

,U.:

Pet

rine

tsar

em

onoi

ds.I

nfor

m.a

ndC

ompu

t.88

,105

–155

(199

0)19

.R

eisi

g,W

.:P

etri

Net

s:A

nIn

trod

ucti

on.E

AC

TS

Mon

ogra

phs

onT

heor

etic

alC

ompu

ter

Scie

nce.

Spri

nger

Ver

lag

(198

5)20

.R

ibei

ro,

L.:

Par

alle

lC

ompo

siti

onan

dU

nfol

ding

Sem

anti

csof

Gra

phG

ram

mar

s.P

hDth

esis

,T

echn

isch

eU

nive

rsit

ätB

erlin

(199

6)21

.R

ozen

berg

,G.(

ed.)

Han

dboo

kof

Gra

phG

ram

mar

san

dC

ompu

ting

byG

raph

Tra

nsfo

rmat

ion,

Vol

.1:F

ound

atio

ns.W

orld

Scie

ntifi

c(1

997)

22.

Roz

enbe

rg,

G.,

Eng

elfr

iet,

J.:

Ele

men

tary

net

syst

ems.

In:

Rei

sig,

W.,

Roz

enbe

rg,

G.

(eds

.)L

ectu

res

onP

etri

Net

sI:

Bas

icM

odel

s,vo

l.14

91of

Lec

ture

Not

esin

Com

pute

rSc

ienc

e,pp

.12–

121.

Spri

nger

Ver

lag

(199

6)23

.St

reet

,R.:

Hig

her

cate

gori

es,s

trin

gs,c

ubes

and

sim

plex

equa

tion

s.A

ppl.

Cat

eg.S

truc

ture

s.3,

29–7

7(1

995)

24.

Win

skel

,G.:

Eve

ntst

ruct

ures

.In:

Pet

riN

ets:

App

licat

ions

and

Rel

atio

nshi

psto

Oth

erM

odel

sof

Con

curr

ency

,vol

.255

ofL

ectu

reN

otes

inC

ompu

ter

Scie

nce,

pp.3

25–3

92.S

prin

ger

Ver

lag

(198

7)