Attività di ricerca dell’Università di Genova sulle prestazioni dei … · 2018. 5. 7. ·...

22
1 Attività di ricerca dell’Università di Genova sulle prestazioni dei componenti di aspirazione e scarico di MCI automotive e sulle emissioni dei veicoli stradali in condizione di reale utilizzazione Massimo Capobianco, Silvia Marelli, Giorgio Zamboni Internal Combustion Engines Group (ICEG) Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME) Università di Genova Coordinamento Nazionale dei Professori di Macchine a Fluido e Sistemi per l’Energia e l’Ambiente Giornata di Studio sui Motori a Combustione Interna Modena, 25 Maggio 2016

Transcript of Attività di ricerca dell’Università di Genova sulle prestazioni dei … · 2018. 5. 7. ·...

  • 1

    Attività di ricerca dell’Università di Genova sulle

    prestazioni dei componenti di aspirazione e

    scarico di MCI automotive e sulle emissioni dei veicoli

    stradali in condizione di reale utilizzazione

    Massimo Capobianco, Silvia Marelli, Giorgio Zamboni

    Internal Combustion Engines Group (ICEG)

    Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME)

    Università di Genova

    Coordinamento Nazionale dei Professori

    di Macchine a Fluido e Sistemi per l’Energia e l’Ambiente

    Giornata di Studio sui Motori a Combustione Interna

    Modena, 25 Maggio 2016

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 2

    Intake and Exhaust Components

    Research Activity

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 3

    Intake and Exhaust Components Research Activity

    A dedicated test facility allows to study the behaviour of different automotive I/E components and subsystems both under steady and unsteady flow operation, with special reference to exhaust turbochargers

    Experimental tests can be addressed to:

    define the steady flow characteristics of I/E components in a wide operating range through suitable investigation techniques

    investigate the behaviour of I/E components under pulsating flow conditions, highlighting the influence of the main flow parameters on components performance

    study the transient response of I/E components and subsystems in order to optimize the relevant control strategies

    Information provided by experimental research activity are used to define empirical correlations and to improve theoretical models within engine simulation codes (GT Power environment, …)

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 4

    “Cold” (about 400 K) and “hot” (max 1000 K) air

    tests on I/E components and subassemblies

    Maximum available air flow rate 0.65 kg/s at 8 bar

    Particularly suitable to test automotive

    turbochargers: two independent feeding lines

    available for the TC turbine and compressor

    Electrical air heating modular system (max power

    320 kW)

    In the case of turbine investigations the

    turbocharger compressor acts as a dynamometer

    and proper experimental techniques are used to

    extend the definition of turbine characteristics

    Turbine and compressor performance can also be

    investigated under unsteady flow by using two

    different pulse generator systems:

    Rotating valves pulse generator

    Cylinder head pulse generator

    I/E Components Test Facility

    AF Air Filter LM Laminar Flow Meter AH Air Heater PC Pressure Control AR Air Reservoir PG Pulse Generator System APH Air Pre-Heater SC Screw Compressor C Compressor T Turbine LC Lubricating Circuit TM Thermal Mass Flow Meter

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 5

    Turbocharger

    Compressor air supply

    Flow distributor

    Turbine air supply

    TurbochargerT C

    Rotating valves

    Compressor air supply

    Turbine air supplya)Plenum

    Manifold

    Engine head

    T C

    Plenum

    b)

    Designed to perform parametric studies

    (effect of unsteady flow parameters on

    component performance)

    Tests on single and two-entry devices

    allowed

    Pulsating flow generated by diametral

    slot rotating valves

    Easy control of pressure pulse

    parameters (amplitude, mean value) at

    each device entry by controlling the

    upstream plenum pressure and by

    properly mixing a steady and a

    pulsating flow component

    Pulse frequency can be adjusted in the

    typical range of automotive I/E circuits

    (10-200 Hz)

    Unequal admission and not-phased

    pulsating flow conditions can be

    reproduced when testing two-entry

    devices

    Rotating Valves Pulse Generator System

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 6

    CT Turbocharger

    Plenum

    Flow distributorEngine head

    Manifold Compressor air supply

    Turbine air supply

    Designed to investigate engine intake and exhaust subsystem behaviour under unsteady flow conditions, including the effect of:

    circuit geometry

    valve actuation strategies

    The system is based on a motor-driven cylinder head connected to a device designed to reproduce the engine cylinder block

    The cylinder head can be fitted with a fully flexible VVA system

    Cylinder Head Pulse Generator System

    Application to the turbine circuit

    Application to the compressor circuit

  • 7 M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016

    Experimental definition of TC maps

    Measurement of turbocharger steady flow maps over an extended range to improve simulation models results

    Experimental techniques to extend turbocharger steady flow curves

    Turbine performance defined considering the effect of waste-gate valve or VGT

    Turbine efficiency decreases when the waste-gate valve is open (if isentropic power is referred to the total mass flowing through the system)

  • 8 M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016

    Turbine unsteady performance

    At typical pulsating flow frequencies occurring in the exhaust system of automotive engines the pulse is so rapid that mass flow does not have enough time to incrementally fill the volute volume with pressure hysteresis loop

    Deviation of unsteady efficiency from the steady state values

    Loop area variation by changing pulse frequency and waste-gate valve opening

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Tota

    l-to-

    stat

    ic e

    ffic

    ienc

    y

    αWG = 0100 HzSteady state

    0.00.20.40.60.81.0

    Tota

    l-to-

    stat

    ic e

    ffic

    ienc

    y

    αWG = 8

    0.00.20.40.60.81.0

    Tota

    l-to-

    stat

    ic e

    ffic

    ienc

    y

    αWG = 20

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

    Tota

    l-to-

    stat

    ic e

    ffic

    ienc

    y

    Blade speed ratio

    nt/√TT3 = 6000 rpm/√KpS3mean = 1.8 bar

    αWG = 63

  • 9 M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    0.00 0.02 0.04 0.06 0.08 0.10

    Pre

    ssu

    re

    ra

    tio

    to

    tal-

    to-to

    tal

    Corrected mass flowrate [kg/s]

    Strategy A - unsteady average levels

    Strategy B - unsteady average levels

    Strategy C - unsteady average levels

    Steady state

    Strategy A - instantaneous levels

    Strategy B - instantaneous levels

    Strategy C - instantaneous levels

    100000 rpm

    80000 rpm

    120000 rpm

    140000 rpm

    a

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    0.00 0.02 0.04 0.06 0.08 0.10

    Pre

    ssu

    re

    ra

    tio

    to

    tal-

    to-to

    tal

    Corrected mass flowrate [kg/s]

    100000 rpm

    80000 rpm

    120000 rpm

    140000 rpm

    b

    2-cylinder configuration

    Significant deviation from steady state resulting in a hysteresis loop surrounding the steady state

    Surge line shifting towards lower mass flow rate levels

    Compressor stable zone enlarged under heavier unsteady flow conditions

    Compressor unsteady performance

  • 10 M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016

    Heat transfer effects

    At low nTC, compressor is strongly affected by heat transfer from turbine and oil casing compressor outlet temperature (TT2) results overestimated

    Significant impact of heat transfer on both compressor and turbine (termo-mechanical) efficiency

    Development of a specific model to correct TC maps for heat transfer

    sttot

    cTCm

    sttot

    tTCmTStt

    TT

    TsTc

    hM

    P

    hM

    P

    TT

    TT

    '

    12

    12

  • 11 M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016

    Characteristic curves extension

    Improvement of variable geometry and waste-gate turbine modelling

    Extrapolation of compressor curves on the left side of the surge line

    Modelling activities in GT-Power

    Specific studies on turbocharging systems aimed at deepening and improving GT-Power interpolation and extrapolation procedure of turbocharger performance maps and engine-turbocharger matching

  • 12 M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016

    Characteristic curves extension

    Improvement of variable geometry and waste-gate turbine modelling

    Extrapolation of compressor curves on the left side of the surge line

    Modelling activities in GT-Power

    Specific studies on turbocharging systems aimed at deepening and improving GT-Power interpolation and extrapolation procedure of turbocharger performance maps and engine-turbocharger matching

    Experimental data

    Modelled data

  • 13 M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016

    Investigation topics for efficient engine turbocharging

    • Correlation between hot and cold turbine maps • Direct measurement of turbine isentropic efficiency • Heat transfer phenomena within the turbocharger (air-oil-water-exhaust gases) • Evaluation of turbocharger mechanical losses • Optimization of TC regulating device control (waste-gate, VGT) under unsteady flow

    conditions

    • Effect of unsteady flow and transient operation on compressor and turbine performance

    • Compressor surge detection and active control • Interactions between EGR and turbocharging circuits • Effect of aftertreatement device position on turbocharger performance • E-boosting systems • Subassembly characterization (TC + engine I/E circuit) • …..

    Improvement of turbocharger simulation models within commercial codes (GT Power, etc)

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 14

    Some ICEG References on I/E Components

    M. Capobianco, A. Gambarotta, "Unsteady flow performance of turbocharger radial turbine", 4th International Conference on Turbocharging and Turbochargers, 1990.

    M. Capobianco, A. Gambarotta, "Variable geometry and waste-gated automotive turbochargers: measurements and comparison of turbine performance", ASME Transactions, Journal of Engineering for Gas Turbine and Power, 1992.

    M. Capobianco, A. Gambarotta, “Performance of a twin-entry automotive turbocharger turbine”, ASME Energy-Sources Technology Conference and Exhibition, 1993.

    M. Capobianco, S. Marelli, “Turbocharger turbine performance under steady and unsteady flow: test bed analysis and correlation criteria”, 8th International Conference on Turbochargers and Turbocharging, 2006.

    M. Capobianco, S. Marelli, “Waste-gate turbocharging control in automotive SI engines: effect on steady and unsteady turbine performance”, SAE paper 2007-01-3543, 2007.

    F. Piscaglia, A. Onorati, S. Marelli, M. Capobianco “Unsteady Behavior In Turbocharger Turbines: Experimental Analysis And Numerical Simulation”, SAE Paper 2007-24-0081, 2007.

    S. Marelli, M. Capobianco, “Steady and pulsating flow efficiency of a waste-gated turbocharger radial flow turbine for automotive application”, Energy 36, pages 459-465, doi: 10.1016/j.energy.2010.10.019, 2011.

    F. Bozza, V. De Bellis, S. Marelli, M. Capobianco, “1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions”, SAE Paper 2011-01-1147, 2014.

    S. Marelli, M. Capobianco, G. Zamboni, “Pulsating Flow Performance of a Turbocharger Compressor for Automotive Application”, Int. J. of Heat and Fluid Flow 45, pages 158-165, doi: 10.1016/j.ijheatfluidflow.2013.11.001, 2014.

    S. Marelli, C. Carraro, G. Marmorato, G. Zamboni, M. Capobianco , “Experimental Analysis on Steady Flow Performance under Unstable Operating Conditions and on Surge Limit of a Turbocharger Compressor”, Experimental Thermal and Fluid Science 53, pages 154-160, doi: 10.1016/j.expthermflusci.2013.11.025, 2014.

    S. Marelli, G.Marmorato, M. Capobianco, A. Rinaldi, Heat transfer effects on performance map of a turbocharger compressor for automotive application, SAE Technical paper no. 2015-01-1287, 2015.

    S. Marelli, S. Gandolfi, M. Capobianco, Experimental and Numerical Analysis of Mechanical Friction Losses in Automotive Turbochargers, SAE Technical paper no. 2016-01-1026, 2016.

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 15

    Assessment of road vehicles

    environmental impact

    in real-world conditions

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 16

    Road vehicles emissions in real-world conditions

    The main investigations developed in this field are focused on:

    • Definition of hot and cold exhaust emission factors for pollutants (CO, HC, NOX, NO2, CO2 and PM) referred to different vehicle categories (passenger cars, light and heavy

    duty vehicles, buses, motorcycles, mopeds, waste collection vehicles)

    • Development of experimental and/or statistical methodologies for the assessment of the real circulating fleet and mileage and the definition of typical trips with the relevant

    driving characteristics

    • Development and application of a dedicated theoretical model (PROGRESS code) to predict the environmental impact of road vehicles in urban areas

    Next step:

    • Vehicles modeling in GT-Suite environment to compare emissive and energy behavior on different driving cycles

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 17

    Motorcycles and mopeds behavior in cold start and hot conditions (in co-operation with Istituto Motori-CNR)

    • Analysis of the influence of driving cycles and real world speed patterns on hot and cold emission factors

    • Effects of engine and catalyst operation on exhaust emissions in the cold transient phase

    Genoa experimental speed patterns Measured levels of speed above UDC and

    comparable to WMTC

    RPA levels (that is, cycle dynamics) significantly

    higher in real conditions

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 18

    CO cumulative emissions, relative air/fuel ratio and catalyst temperature during a real world driving cycle

    Cold contribution as percentage of the

    total emission and fuel consumption on

    different driving cycles – Euro 2 moped

    225 s

    115 s

    Hot phase linear regression

    y = 0,0348x + 16,598

    R2 = 0,9989

    0

    15

    30

    45

    60

    75

    90

    0 200 400 600 800 1000 1200 1400 1600 1800 2000

    Time [s]

    CO

    cu

    mu

    lati

    ve

    em

    iss

    ion

    [g

    ]

    CO total emission

    Hot phase extrapolation

    Hot phase linear regression

    Cold

    transient Scooter A - IRC

    225 s115 s

    0,7

    0,8

    0,9

    1

    1,1

    1,2

    1,3

    1,4

    1,5

    0 50 100 150 200 250 300 350 400 450 500

    Time [s]

    Rela

    tiv

    e a

    ir/f

    uel

    rati

    o

    0

    100

    200

    300

    400

    500

    600

    700

    800

    Cata

    lys

    t in

    let

    tem

    pera

    ture

    [°C

    ]

    Scooter A - IRC

    l

    t cat in

    Driving cycle/speed pattern

    CO HC NOx Fuel

    consumption

    ECE 47 68.8 72.9 - 6.5 IUFC (real world) 32.3 53.5 27.8 6.9 24-slow (Genoa speed pattern) 39.5 52.3 26.2 9.3 3-slow (Genoa speed pattern) 35.6 48.4 6.9 7.6

    Motorcycles and mopeds behavior in cold start and hot conditions (in co-operation with Istituto Motori-CNR)

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 19

    HDV Activities in Genoa Port Area (in co-operation with Lab. Transports et Environnement – IFSTTAR)

    Definition of HDV daily flows

    through highway exits and share of

    vehicles entering port terminals

    Classification of vehicles involved in

    port activities referring to type,

    mass range and number of axles

    44,9%42,6% 44,0% 42,0%

    57,2% 57,8%

    83,4%

    79,0%75,6%

    72,2%

    94,6% 95,6%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0

    1000

    2000

    3000

    4000

    5000

    6000

    2002 2005 2008 2010 2014 2015

    Num

    ber o

    f veh

    icle

    s/da

    y (c

    lass

    es 3

    , 4 a

    nd 5

    )

    Total (Exits 1 - 7) Exits 1 and 4 Vehicles with O-D = portPort / Exits 1-7 Port / Exits 1 and 4

    0

    5

    10

    15

    20

    25

    30

    35

    40

    RT 1 RT 2 RT 3 TT/AT 1 TT/AT 2 TT/AT 3 TT/AT 4 TT/AT 5

    Vehi

    cle

    shar

    e in

    por

    t are

    a [%

    ]

    Rigid truck (RT)- RT 1 = 2 axles, < 14 t- RT 2 = 3-4 axles, 14 28 t - RT 3 = 4-5 axles, > 28 t

    Truck trailer (TT)Articulated truck (AT)- TT/AT 1 = 3 axles, > 14 20 t- TT/AT 2 = 3-4 axles, > 20 28 t- TT/AT 3 = 4-5 axles, > 28 34 t- TT/AT 4 = 5 axles, > 34 40 t- TT/AT 5 = 5 axles, > 40 t

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 20

    Acquisition and processing of instantaneous

    speed related to the typical trips in urban zones

    (highway exit – port gates) and within the port

    area

    Application of PHEM to the experimental speed

    profiles to estimate fuel consumption and

    emission factors for selected HDV classes

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 1000 2000 3000 4000 5000

    Spe

    ed [k

    m/h

    ]

    Time [s]

    GI

    P1

    P2 LM1 T1 LM2 P3

    P4

    GO(a)

    Average speed in port area = 4.4 km/h, idling

    time = 74%, travelled distance = 6.6 km

    0

    10

    20

    30

    40

    50

    Euro 3 Euro 5SCR

    Euro 5EGR

    Euro 3 Euro 5SCR

    Euro 5EGR

    Euro 3 Euro 5SCR

    Euro 5EGR

    NO

    Xem

    issi

    on fa

    ctor

    [g/k

    m]

    GT1 GT3 Urban driving mode

    Truck trailer/Articulated track 14 20 t

    Truck trailer/Articulated track 28.1 34 t

    Truck trailer/Articulated track > 40 t

    HDV Activities in Genoa Port Area (in co-operation with Lab. Transports et Environnement – IFSTTAR)

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 21

    Recent papers from ICEG on road vehicle emissions

    G. Zamboni, M. Capobianco, E. Daminelli, Estimation of road vehicle exhaust emissions from 1992 to 2010 and comparison with air quality measurements in Genoa, Italy. Atmospheric Environment 43, pages 1086-1092, 2009, doi:10.1016/j.atmosenv.2008.11.014.

    G. Zamboni, C. Carraro, M. Capobianco, On-road instantaneous speed measurements on powered two-wheelers for exhaust emissions and fuel consumption evaluation. Energy 36, pages 1039-1047, 2011, doi: 10.1016/j.energy.2010.12.004.

    M.V. Prati, G. Zamboni, M.A. Costagliola, G. Meccariello, C. Carraro, M. Capobianco, Influence of driving cycles on Euro 3 scooter emissions and fuel consumption. Energy Conversion and Management, 52, pages 3327-3336, 2011, doi: 10.1016/j.enconman.2011.06.004.

    G. Zamboni, M.V. Prati, C. Carraro, S. Malfettani, M.A. Costagliola, G. Meccariello, S. Marelli, M. Capobianco, Influence of Driving Cycles on Powered Two-Wheelers Emissions, Fuel Consumption and Cold Start Behavior. SAE Technical Paper 2013-01-1048, doi:10.4271/2013-01-1048.

    G. Zamboni, S. Malfettani, M. André, C. Carraro, S. Marelli, M. Capobianco, Assessment of heavy-duty vehicle activities, fuel consumption and exhaust emissions in port areas. Applied Energy, vol. 111, pp. 921-929, 2013, doi: 10.1016/j.apenergy.2013.06.037.

    G. Zamboni, M. André, A. Roveda, M. Capobianco, Experimental evaluation of Heavy Duty Vehicle speed patterns in urban and port areas and estimation of their fuel consumption and exhaust emissions. Transportation Research Part D: Transport and Environment, vol.35, pp.1-10, 2015, doi: 10.1016/j.trd.2014.11.024.

    G. Zamboni, M. André, Evaluation of emissions and fuel consumption of Heavy-Duty Vehicles in urban areas, 21st Transport and Air Pollution Conference, Lyon, 24-26 May 2016.

  • M. Capobianco, S. Marelli, G. Zamboni – Giornata di Studio sui MCI, Modena, 25.05.2016 22

    Thank you for the attention!

    Contacts

    Massimo Capobianco phone +39.010.353.2446 mobile +39.328.1004793 e-mail [email protected]

    Silvia Marelli phone +39.010.353.2443 mobile +39.335.8726110 e-mail [email protected]

    Giorgio Zamboni phone +39.010.353.2457 mobile +39.320.4320003 e-mail [email protected]

    Università di Genova – DIME Via Montallegro 1 - 16145 Genova – Italy

    www.iceg.unige.it