Analisi del rischio per la sicurezza nelle gallerie stradali.

1
Analisi del rischio per la sicurezza nelle gallerie stradali - ID191 Di Santo, C. 1 , Gkoumas, K. 2 e Bontempi, F. 3 1 Ingegnere,Via delle Benedettine 71, Roma (RM) 01010, [email protected] 2 StroNGER srl, Incubatore ITech, via Giacomo Peroni 442-444, TecnopoloTiburtino - 00131 Roma, [email protected] 3 Facoltà di Ingegneria Civile e industriale, Sapienza Università di Roma,Via Eudossiana 18 - 00184 Roma, [email protected] VALUTAZIONE E GESTIONE DEL RISCHIO NEGLI INSEDIAMENTI CIVILI ED INDUSTRIALI VGR 2016 Roma, 13 - 15 Settembre 2016 Istituto Superiore Antincendi Via del Commercio, 13 THE ISSUE OF SAFETY IN TUNNELS (1) THE ISSUE OF SAFETY IN TUNNELS (2) PIARC/OECD QRAM OUTPUTS TUNNEL RISK ASSESSMENT PROCEDURE SOCIETAL RISK ACCEPTABILITY CRITERIA 1) DANGEROUS GOODS AND ACCIDENT SCENARIOS 2) SCENARIO PHYSICAL EFFECTS 3) PHYSIOLOGICAL EFFECTS 4) PROBABILITY OF OCCURRENCE OF THE SCENARIOS 5) SOCIETAL RISK INDICATORS 6) SOCIETAL RISK INDICATORS THE ST. DEMETRIO TUNNEL TUNNEL ST. DEMETRIO: EQUIPMENT & TRAFFIC DATA TUNNEL ST. DEMETRIO: EQUIPMENT & TRAFFIC DATA TUNNEL ST. DEMETRIO: F-N CURVE IN THE SOUTH DIRECTION TUNNEL ST. DEMETRIO: SENSITIVITY ANALYSIS RESULTS TUNNEL ST. DEMETRIO F-N CURVES CONCLUSIONS: QRAM AND FLUID D./EVAC. MODELS 1,00E-03 1,00E-02 1,00E-01 initial curve Bus ratio = 0 Bus Coaches Ratio = HGV Ratio LPG in Bulk =LPG in Cylinder = 0.15 LPG in Cylinder = 0.30 People in a Light Vehicle = 1 People in a Light Vehicle = 1.5 People in a Light Vehicle = 2.5 People in a Light Vehicle = 3 People in a HGV = 1.5 People in a HGV =2 People in a HGV = 3 facc x 10 facc x 10-1 DG-HGV correction factor * 10-1 DG-HGV transport correction factor * 10 Camber = 2.5 Camber = 4.12 Ground (Bad Rock): 1 Ground Type (Fragmented): 2 Segment Gradient = 0 Segment Gradient = 3 Segment Gradient (SOUTH) = -0.32 Segment Gradient (NORTH) = -0.32 Segment Gradient = -3 Number of Lanes 1 Number of Lanes 3 Construction 2 (Rectangualar cross-section) Normal Longitudinal Ventilation 105 Normal Longitudinal Ventilation 210 Open Area of discrete Drains = 0 Open Area of discrete Drains * 2 Emergency Coms = 1 (bell/siren) Emergency Coms = 2 (Public Address system) Emergency Longitudinal Ventilation 200 Emergency Longitudinal Ventilation 300 Emergency Longitudinal Ventilation → Reverse Flow Average Spacing between Emergency Exits = 200 Average Spacing between Emergency Exits = 400 Delay for Stopping Traffic = 1 min Delay for Stopping Traffic = 2 min Delayfor Stopping Traffic = 3 min Delay for Stopping Traffic = 4 min Delay for Stopping Traffic = 5 min Delay for Stopping Traffic = 10 min EVs in Direction South Traffic Frequency of accidents Structure details Safety equipment Number of Lanes f acc x 10 DG-HGV factor x 10 Delay for stopping approaching traffic BUS ratio Data Collection Data Preparation Risk Calculation Using QRAM Is Risk acceptable? NO Additional risk reduction measures START YES End Idintification of Critical Scenarios Single Scenario Simulation CFD Simulation (Fire, Ventilation) Evacuation Model (Evacuation, Rescue) Qualitative Risk Estimation Measures Included in the model? YES NO An operating method to follow can be to identify the critical scenarios that give the most significant contribution to the overall risk through the QRAM, and then to simulate those scenarios in detail in order to define risk reduction measures (Petelin S. 2009) See also: Gkoumas, K., Di Santo, C., Bontempi, F. (2016) “Risk analysis for severe traffic accidents in long road tunnels”, International Journal of Forensic Engineering,Vol. 3, No. 1-2, pp. 106-126

Transcript of Analisi del rischio per la sicurezza nelle gallerie stradali.

Page 1: Analisi del rischio per la sicurezza nelle gallerie stradali.

Analisi del rischio per la sicurezza nelle gallerie stradali - ID191 Di Santo, C.1, Gkoumas, K.2 e Bontempi, F.3

1 Ingegnere, Via delle Benedettine 71, Roma (RM) 01010, [email protected]

2 StroNGER srl, Incubatore ITech, via Giacomo Peroni 442-444, Tecnopolo Tiburtino - 00131

Roma, [email protected]

3 Facoltà di Ingegneria Civile e industriale, Sapienza Università di Roma, Via Eudossiana 18 -

00184 Roma, [email protected]

VALUTAZIONE E GESTIONE

DEL RISCHIO NEGLI INSEDIAMENTI

CIVILI ED INDUSTRIALI

VGR 2016

Roma, 13 - 15 Settembre 2016

Istituto Superiore Antincendi

Via del Commercio, 13

THE ISSUE OF SAFETY IN TUNNELS (1) THE ISSUE OF SAFETY IN TUNNELS (2) PIARC/OECD QRAM OUTPUTS

TUNNEL RISK ASSESSMENT PROCEDURE SOCIETAL RISK ACCEPTABILITY CRITERIA 1) DANGEROUS GOODS AND ACCIDENT SCENARIOS

2) SCENARIO PHYSICAL EFFECTS 3) PHYSIOLOGICAL EFFECTS 4) PROBABILITY OF OCCURRENCE OF THE SCENARIOS

5) SOCIETAL RISK INDICATORS 6) SOCIETAL RISK INDICATORS THE ST. DEMETRIO TUNNEL

TUNNEL ST. DEMETRIO: EQUIPMENT & TRAFFIC DATA TUNNEL ST. DEMETRIO: EQUIPMENT & TRAFFIC DATA TUNNEL ST. DEMETRIO: F-N CURVE IN THE SOUTH DIRECTION

TUNNEL ST. DEMETRIO: SENSITIVITY ANALYSIS RESULTS TUNNEL ST. DEMETRIO F-N CURVES CONCLUSIONS: QRAM AND FLUID D./EVAC. MODELS

1,00E-03

1,00E-02

1,00E-01

initia

l curv

e

Bus r

atio =

0

Bu

s C

oa

ch

es R

atio

= H

GV

Ra

tio

LP

G in B

ulk

=LP

G in C

ylin

der

= 0

.15

LP

G in C

ylin

der

= 0

.30

Pe

op

le in

a L

igh

t V

eh

icle

= 1

People

in a

Lig

ht V

ehic

le =

1.5

People

in a

Lig

ht V

ehic

le =

2.5

Pe

op

le in

a L

igh

t V

eh

icle

= 3

Pe

op

le in

a H

GV

= 1

.5

People

in a

HG

V =

2

People

in a

HG

V =

3

facc x

10

facc x

10-1

DG

-HG

V

corr

ectio

n fa

cto

r *

10

-1

DG

-HG

V t

ransp

ort

corr

ection f

acto

r *

10

Ca

mb

er

= 2

.5

Ca

mb

er

= 4

.12

Gro

un

d (

Ba

d R

ock):

1

Gro

und T

ype (

Fra

gm

ente

d):

2

Segm

ent G

radie

nt =

0

Segm

ent G

radie

nt =

3

Segm

ent G

radie

nt (

SO

UT

H)

= -

0.3

2

Segm

ent G

radie

nt (N

OR

TH

) =

-0.3

2

Segm

ent G

radie

nt =

-3

Nu

mb

er

of L

an

es 1

Nu

mb

er

of L

an

es

3

Constr

uction 2

(R

ecta

nguala

r cro

ss-s

ection)

No

rma

l L

ong

itu

din

al V

en

tila

tio

n 1

05

No

rma

l L

ong

itu

din

al V

en

tila

tio

n 2

10

Open A

rea o

f dis

cre

te D

rain

s =

0

Open A

rea o

f dis

cre

te D

rain

s *

2

Em

erg

ency C

om

s =

1 (

bell/

sir

en)

Em

erg

ency C

om

s =

2 (

Public

Addre

ss s

yste

m)

Em

erg

ency L

ongitudin

al V

entila

tion 2

00

Em

erg

ency L

ongitudin

al V

entila

tion 3

00

Em

erg

en

cy L

on

gitu

din

al V

en

tila

tio

n →

Re

ve

rse

Flo

w

Avera

ge S

pacin

g b

etw

een E

merg

ency E

xits =

200

Avera

ge S

pacin

g b

etw

een E

merg

ency E

xits =

400

De

lay f

or

Sto

ppin

g T

raffic

= 1

min

De

lay f

or

Sto

ppin

g T

raffic

= 2

min

De

layfo

r S

top

pin

g T

raff

ic =

3 m

in

Dela

y for

Sto

ppin

g T

raffic

= 4

min

De

lay f

or

Sto

ppin

g T

raffic

= 5

min

De

lay f

or

Sto

pp

ing

Tra

ffic

= 1

0 m

in

EVs in Direction South

TUNNEL ST. DEMETRIO: SENSITIVITY ANALYSIS RESULTS

Traffic

Frequency

of accidents

Structure

details

Safety

equipment

Number

of Lanes

facc x

10

DG-HGV

factor x 10

Delay for stopping

approaching trafficBUS ratio

CONCLUSIONS: QRAM AND FLUID DYNAMICS/EVACUATION MODELS

Data Collection

Data Preparation

Risk Calculation

Using QRAM

Is Risk

acceptable?

NO

Additional

risk reduction

measures

START

YES

End

Idintification of

Critical Scenarios

Single Scenario

Simulation

CFD Simulation

(Fire, Ventilation)

Evacuation Model

(Evacuation, Rescue)

Qualitative Risk

Estimation

Measures

Included

in the model?

YES NO

An operating method to follow can be to

identify the critical scenarios that give the most

significant contribution to the overall risk

through the QRAM, and then to simulate those

scenarios in detail in order to define risk

reduction measures (Petelin S. 2009)

See also: Gkoumas, K., Di Santo, C., Bontempi, F. (2016) “Risk analysis for severe traffic accidents in long road tunnels”, International Journal of Forensic

Engineering, Vol. 3, No. 1-2, pp. 106-126