Alessandro Bertelli – Mariano Zanchi

273
Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna 1 Dipartimento di elettronica Istituto Tecnico Statale “Luigi Einaudi” - Montebelluna Reti elettriche lineari Capitolo I – Metodi per la soluzione delle reti elettriche Alessandro Bertelli – Mariano Zanchi Riedizione a cura di Massimo Ballon

Transcript of Alessandro Bertelli – Mariano Zanchi

Page 1: Alessandro Bertelli – Mariano Zanchi

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

1

Dipartimento di elettronica Istituto Tecnico Statale “Luigi Einaudi” - Montebelluna

Reti elettriche lineari Capitolo I – Metodi per la soluzione delle reti elettriche

Alessandro Bertelli – Mariano Zanchi

Riedizione a cura di Massimo Ballon

Page 2: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

2

Sommario 1 Metodi per la soluzione delle reti elettriche .................................................................................. 4

1.1 Premessa ........................................................................................................................................ 5 1.2 I resistori e la legge di Ohm.......................................................................................................... 5

Esempio 1...................................................................................................................................... 6 1.3 Bipoli .............................................................................................................................................. 7

Esempio 2...................................................................................................................................... 8 1.4 Le leggi di Kirchhoff ..................................................................................................................... 8

Esempio 3...................................................................................................................................... 8 Prima legge di Kirchhoff................................................................................................................... 9

Esempio 4...................................................................................................................................... 9 Seconda legge di Kirchhoff............................................................................................................. 10

Esempio 5.................................................................................................................................... 10 Esempio 6.................................................................................................................................... 11

1.5 Connessioni tra resistori............................................................................................................. 11 Resistori in serie.............................................................................................................................. 11

Esempio 7.................................................................................................................................... 12 Partitore di tensione ........................................................................................................................ 13 Resistori in parallelo ....................................................................................................................... 14

Esempio 8.................................................................................................................................... 14 Partitore (o derivatore) di corrente.................................................................................................. 15

Esempio 9.................................................................................................................................... 16 1.6 Generatori ideali e reali .............................................................................................................. 17

Generatori di tensione ..................................................................................................................... 17 Esempio 10.................................................................................................................................. 18

Generatori di corrente ..................................................................................................................... 19 Esempio 11.................................................................................................................................. 20

1.7 Metodi per la soluzione delle reti elettriche.............................................................................. 20 Metodo di Kirchhoff ....................................................................................................................... 20

Esempio 12.................................................................................................................................. 21 Esempio 13.................................................................................................................................. 22

Metodo di sovrapposizione degli effetti.......................................................................................... 23 Esempio 14.................................................................................................................................. 23 Esempio 15.................................................................................................................................. 24

Metodo di Thevenin ........................................................................................................................ 25 Esempio 16.................................................................................................................................. 26 Esempio 17.................................................................................................................................. 26

1.8 Potenza elettrica .......................................................................................................................... 27 Bilancio energetico ......................................................................................................................... 27

Esempio 18.................................................................................................................................. 27 1.9 Caratteristiche elettriche dei resistori e cenni costruttivi ....................................................... 28

Esempio 19.................................................................................................................................. 29 Esempio 20.................................................................................................................................. 30

Tipologie ......................................................................................................................................... 30 Reti di resistenze ............................................................................................................................. 30

Page 3: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

3

Potenziometri .................................................................................................................................. 30 1.10 I segnali ...................................................................................................................................... 32

Esempio 21.................................................................................................................................. 33 Segnali periodici significativi ......................................................................................................... 34

APPENDICE 1 .................................................................................................................................. 38 A.1 I quadripoli e i generatori dipendenti.................................................................................. 38

Esempio 1.................................................................................................................................... 39 APPENDICE 2 .................................................................................................................................. 41

A.2 Altri metodi per la soluzione delle reti elettriche..................................................................... 41 Metodo di Norton............................................................................................................................ 41

Esempio 2.................................................................................................................................... 41 Esempio 3.................................................................................................................................... 42

Metodo di Millman ......................................................................................................................... 44 Esempio 4.................................................................................................................................... 45

Metodo di Miller ............................................................................................................................. 45 Esempio 5.................................................................................................................................... 46

ESERCIZI GUIDATI ....................................................................................................................... 47 ESERCIZI PROPOSTI .................................................................................................................... 67 LABORATORIO .............................................................................................................................. 73

ESPERIENZA 1 Misura di resistenze ........................................................................................ 73 ESPERIENZA 2 Misura delle resistenze equivalenti di due reti ............................................... 74 ESPERIENZA 3 Misure di correnti e di tensioni ...................................................................... 74 ESPERIENZA 4 Misura di tensioni e correnti in una rete con due alimentatori........................ 75 ESPERIENZA 5 Verifica dei metodo di Thevenin .................................................................... 76

QUADRO RIASSUNTIVO .............................................................................................................. 79 Leggi e metodi per la soluzione delle reti elettriche ....................................................................... 79 Potenza elettrica e bilancio energetico........................................................................................... 79 Connessioni di resistenze e partitori............................................................................................... 80

Page 4: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

4

1 Metodi per la soluzione delle reti elettriche

In questa Unità di Apprendimento vogliamo offrire una panoramica sui principali metodi di soluzione delle reti elettriche lineari, cioè sulle migliori strategie che consentano di calcolare le grandezze elettriche incognite di una rete. Ci occuperemo quasi esclusivamente di circuiti in regime continuo. Partiamo dalla legge di Ohm, seppur tale principio, unitamente alla conoscenza dei resistori e del metodo di Kirchhoff, sia stato già proposto nel corso di Fisica; questo per poter svolgere in modo più omogeneo e sicuro la trattazione dei vari metodi. Vengono dati per assimilati però i concetti relativi al significato fisico delle grandezze elettriche tensione e corrente.

OBIETTIVI

Conoscere e saper trasformare le unità di misura delle grandezze elettriche

Conoscere il componente resistore e saper effettuare l'equivalenza di gruppi di resistori connessi in serie e/o in parallelo

Conoscere la differenza tra bipoli attivi e passivi

Conoscere, comprendere e saper applicare le leggi di Ohm e di Kirchhoff e i metodi di sovrapposizione degli effetti e di Thevenin per la soluzione delle reti

Conoscere, comprendere e saper applicare i metodi di Norton, Millman e Miller

Conoscere i generatori di tensione e di corrente e comprendere la differenza tra elementi ideali e reali

Saper effettuare il bilancio energetico in una rete elettrica con componenti passivi resistivi

Conoscere la tipologia dei segnali elettrici più importanti

Saper risolvere esercizi di soluzione di reti elettriche

Saper utilizzare gli strumenti di laboratorio per sperimentare le varie metodologie e per effettuare le misure delle grandezze elettriche

Page 5: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

5

1.1 Premessa Dando per acquisiti i concetti di tensione e corrente ricordiamo le unità di misura di queste due

grandezze elettriche. La tensione si misura in volt [V], mentre la corrente in ampere [A]. In buona parte degli argomenti che verranno affrontati i valori delle correnti in gioco nei vari circuiti

sono al di sotto dell'ampere. Pertanto si ricorrerà ai suoi sottomultipli: il milliampere [mA] fl 1 mA = 10-3 A il microampere [µA] fl 1 mA = 10-6 A

Per la rappresentazione dei valori di tensione e di corrente si ricorrerà a caratteri maiuscoli nel caso di regime continuo (tensioni e correnti costanti) o nelle occasioni in cui si vogliano indicare valori istantanei particolari.

Per grandezze variabili nel tempo invece si utilizzeranno caratteri minuscoli. Dal momento che questa Unità di Apprendimento è dedicata allo studio delle reti lineari in regime

continuo, per comodità di trattazione descriveremo le varie relazioni con lettere maiuscole; le leggi rappresentate da tali relazioni sono comunque estendibili ai valori istantanei di tensioni e correnti variabili nel tempo.

1.2 I resistori e la legge di Ohm Il resistore è un elemento di circuito provvisto di due terminali (fig. 1) è pertanto un bipolo ed è inoltre un componente passivo e lineare.

Per passivo intendiamo semplicemente dire che non ‘amplifica’ il segnale che lo attraversa; esso inoltre dissipa potenza e la trasforma in calore per effetto Joule.

Con il termine lineare vogliamo invece evidenziare l'indipendenza del parametro R dal valore di tensione applicata al resistore che identifica la relazione tra la corrente e la tensione.

Tale parametro è definito resistenza ed indica l'opposizione che il materiale conduttore offre al passaggio di corrente.

La resistenza si misura in ohm [W], i cui multipli più usati sono

il chiloohm [kW] fl 1 kW = 103 W il megaohm [MW] fl 1 MW = 106 W

Fig. 1 Simbolo elettrico del resistore

Fig. 2 Fig. 3 Caratteristica voltamperometrica del resistore

R RV

I

RVI =

a

V

I

0

Rtg 1

Page 6: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

6

La legge di Ohm

L'unità di misura della resistenza trova una diretta giustificazione nell'omonima legge e cioè la legge di Ohm, la quale afferma che (fig. 2)

in un componente di resistenza R, al quale viene applicata una tensione (o differenza di potenziale) V, circola una corrente di valore direttamente proporzionale a V ed inversamente proporzionale ad R.

Tradotta in equazione, la legge di Ohm viene così descritta

RVI = (1.1)

Dalla (1.1) appare evidente quindi che 1W corrisponde alla resistenza di un conduttore sul quale circola la corrente di 1A quando ai suoi terminali viene applicata la tensione di 1V.

L'equazione (1.1) può essere inoltre rappresentata su un diagramma cartesiano da una retta passante per l'origine e di coefficiente angolare 1/R (fig. 3). Tale retta individua la caratteristica voltamperometrica del resistore di valore resistivo R.

Possiamo pertanto affermare che

quanto maggiore è il valore della resistenza, tanto minore risulta la pendenza della retta che ne rappresenta la caratteristica voltamperometrica.

Esempio 1

In figura 4 sono disegnate le caratteristiche voltamperometriche di due resistori. Individuarne i valori di resistenza.

Fig. 4

A tal proposito, per ciascuna caratteristica, basta individuare le coordinate (tensione e corrente) di un punto e poi applicare la legge di Ohm.

10

20

30

40 I(mA)

V(V) 0

R1

R2

1 2 3 4

Page 7: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

7

Per determinare la resistenza R1, associata alla retta con pendenza maggiore, possiamo ad esempio scrivere

Ω=⋅

=−

5010201

31R

Per R2 (identificata dalla retta con coefficiente angolare più basso) invece si ottiene

Ω=⋅

=−

20010102

32R

1.3 Bipoli Nel paragrafo precedente abbiamo definito il resistore un bipolo passivo, in quanto non in grado di

amplificare un segnale elettrico e quindi non in condizione di fornire ad esso energia. Bipoli in grado di erogare potenza sono i generatori, che vengono considerati pertanto bipoli attivi. In figura 5 sono schematizzati i simboli elettrici più comuni con i quali vengono rappresentati i

generatori ideali di tensione e di corrente. Il primo a sinistra dei simboli di figura 5a rappresenta un elemento di batteria, cioè un generatore di

tensione continua, e sarà quello che con maggior frequenza troveremo in questa Unità Didattica. L'elemento (elettrodo) più lungo rappresenta il terminale positivo. Negli schemi successivi faremo quindi a meno di inserire il simbolo +.

Nei bipoli attivi (fig. 6) la corrente ‘esce’ dal terminale positivo, mentre nei bipoli passivi vi ‘entra’. E’ possibile identificare la tensione anche con una freccia,

a) b) Fig. 5 Simboli elettrici di generatori: a) di tensione; b) di corrente.

in alternativa ai segni + e -; la sua punta indica il terminale positivo. In un resistore, e generalmente in un bipolo passivo, le frecce di tensione e corrente sono in opposizione (fig. 7).

Può capitare anche che, in un particolare circuito nel quale siano presenti più generatori, uno di questi si comporti da bipolo passivo e cioè assorba corrente (e potenza).

bipolo attivo bipolo passivo

Fig. 6 Fig. 7

V V V V i i i

I

V R

I

R

+

-

+

-

I

V

Page 8: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

8

Esempio 2

Nel circuito di figura 8 si individui il comportamento dei generatori di tensione presenti.

L'esempio fornisce già i valori e i versi delle correnti che entrano o escono dalle varie batterie. Associando ad ogni generatore una freccia che indichi il verso della tensione e confrontando questa con la freccia relativa alle correnti (fig. 9), possiamo affer mare che

Fig. 8

— il generatore da 15V si comporta da bipolo attivo; — il generatore da 5V si comporta da bipolo attivo; — il generatore da 2V si comporta da bipolo passivo.

Fig. 9 attivo attivo passivo

1.4 Le leggi di Kirchhoff Risolvere una rete elettrica significa ricavare il valore delle grandezze incognite del relativo circuito

(spesso le correnti, ma anche resistenze o tensioni). Per poter ora iniziare a fornire alcuni principi fondamentali che permettano di analizzare i circuiti

elettrici, dobbiamo indicare quali sono le parti essenziali che li compongono.

Si definisce nodo il punto di confluenza di tre o più elementi circuitali.

Si definisce ramo quella parte di circuito, costituita da uno o più elementi percorsi dalla stessa corrente, che congiunge due nodi.

Si definisce maglia un percorso chiuso ottenuto passando attraverso più rami.

Esempio 3

Individuare i nodi, i rami e le maglie del circuito di figura 10.

4mA

15V 2V

5V

2kW 5kW 1mA

4kW

3mA

4mA

15V 2V5V

4mA 4mA

Page 9: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

9

I nodi nel circuito sono due e li abbiamo indicati con le lettere A e B. I rami sono tre (fig. 11) e possiamo notare come tutti confluiscano su entrambi i nodi; questo, e lo vedremo più avanti, ci consentirà di ricavare informazioni utili per l'analisi del circuito solo da uno dei due nodi.

Fig. 10 Fig. 11 ramo 1 ramo 2 ramo 3

Le maglie sono ugualmente tre (fig. 12): la prima è costituita dai rami 1 e 2, la seconda dai rami 2 e 3 e la terza dai rami 1 e 3.

Fig. 12 maglia 1 maglia 2 maglia 3

Prima legge di Kirchhoff

A questo punto introduciamo la I legge (o principio) di Kirchhoff la quale afferma che

in un nodo la somma delle correnti entranti è uguale alla somma delle correnti uscenti.

Esempio 4

Calcolare le correnti dei circuito di figura 13.

Dopo aver individuato i nodi nel circuito notiamo la presenza di tre rami e quindi di altrettante correnti da calcolare, dal momento che su ogni ramo circola una corrente diversa. Nel nodo A la corrente I entra, la I1e la I2 escono. Applicando la legge di Ohm possiamo calcolare il valore di I1 e di I2; ai capi dei due resistori è applicata la stessa tensione. Quindi

I1 = 10/1000 = 0,01 A = 10 mA I2 = 10/2000 = 0,005 A = 5 mA

La corrente 1, erogata dal generatore, applicando la I legge di Kirchhoff, vale

I = 11 + I2 = 10 + 5 = 15 mA

V1

V2

R1

R2

R3

B

A A

B

V2

R2

A

B

R3V1

R1

V1

V2

R1

R2

R3

A

B

A A

B B

V1

V2

R1

R2

R3

A

B

Page 10: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

10

L'equazione che porta al calcolo di I è la stessa che si ricaverebbe applicando la legge di Kirchhoff al nodo B, in quanto in questo nodo confluiscono le stesse correnti del nodo A (per il nodo B la corrente I diventa uscente, mentre I1 e I2 sono entranti).

Fig. 13

Seconda legge di Kirchhoff

La II legge di Kirchhoff afferma che

in una qualsiasi maglia di una rete elettrica la somma algebrica delle tensioni è nulla.

Questo principio può essere anche enunciato, qualora ogni ramo sia formato dalla serie di un generatore ideale di tensione e di una resistenza, nel seguente modo:

in una maglia elettrica la somma algebrica delle forze elettromotrici associate ai generatori è uguale alla somma delle cadute di tensione ai capi dei resistori.

Esempio 5

Applicare la II legge di Kirchhoff alle maglie individuate nel circuito di figura 8. Per comodità abbiamo indicato in modo generico tensioni, correnti e resistenze del circuito di figura 8 e riportato in figura 14 le tre maglie che costituiscono la rete. Sono state inoltre segnate con delle frecce i versi delle tensioni in gioco. Per poter tradurre in equazioni la legge di Kirchhoff alle tre maglie, si deve assegnare un verso di percorrenza a ciascuna maglia in modo da individuare un riferimento per le tensioni da considerare positive; in figura 14 si assume come positivo il verso orario.

Fig. 14

La seconda legge di Kirchhoff si trasforma nelle seguenti equazioni:

maglia a V1 – R1I1 – R2I2 + V2 = 0 maglia b –V2 + R2 I2 – R3I3 – V3 = 0 maglia c V1 – R1I1 – R3I3 – V3 = 0

1kW 2kW 10V

A

B

I

I1 I2

V1

V2 V2

V3 V1 V3

R1

R2 R2

R3 R1

1k

R3

1k

+

a b c

+ +

I1

I2 I2

I3 I1 I3

Page 11: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

11

Inserendo i valori numerici delle grandezze, riportate nello schema di figura 8, lo studente può effettivamente verificare la validità delle tre equazioni.

Esempio 6

Ricorrendo alla seconda legge di Kirchhoff si determini la tensione VAB del circuito di figura 10 sapendo che R2=500W, V2=9V e la corrente che circola nel ramo 2 (fig. 11) è diretta verso il nodo B e vale 4mA. Ridisegniamo il ramo in questione come in figura 15. Specifichiamo che per VAB si intende la differenza di potenziale esistente tra i punti A e B, cioè VA - VB e che si è inserita, come riferimento di tensione positivo, una freccia che punta verso il primo dei due terminali del parametro di tensione. Applicando ora il secondo principio di Kirchhoff alla maglia costituita dal bipolo A-B, formato da R2 e V2 e chiusa mediante la VAB, possiamo scrivere

VAB – R2I + V2 = 0

Fig. 15

da cui VAB = R2I – V2 = 0,5 . 4 – 9 = –7 V

Il risultato negativo indica che il terminale A si trova ad un potenziale inferiore di 7 V rispetto al terminale B; possiamo altresì dire che VBA = 7 V.

NOTA Per snellire l'espressione, evitando di inserire la forma esponenziale, abbiamo espresso la resistenza in kW e la corrente in mA. Lo faremo qualche volta anche in seguito. Si prega pertanto di fare sempre attenzione alle unità di misura. Si ricordi che 1 kW • 1 mA = 1 V.

1.5 Connessioni tra resistori Per lo studio di una qualsiasi rete elettrica, prima di applicare i vari metodi di analisi, é molto spesso

conveniente, qualora ve ne sia la possibilità, semplificare il circuito andando a sostituire gruppi di resistori con il loro valore equivalente. Ciò é possibile se tali elementi sono connessi in serie o in parallelo.

Resistori in serie

Due o più resistori si dicono in serie se sono percorsi dalla stessa corrente (fig. 16).

Nel caso di N resistori in serie, la resistenza equivalente a tale gruppo, indicata con Req, risulterebbe

VAB

V2 = 9V

I = 4 mA

R2 = 500 W

A

B

1

Page 12: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

12

Neq RRRR +++= ...21 (1.2)

Questo vuol dire che, se al posto degli N resistori in serie ne viene inserito uno di valore ohmico equivalente, determinato tramite l'equazione (1.2), i valori di tensione e di corrente del bipolo non vengono modificati.

Fig. 16

Esempio 7

Verificare che i bipoli A-B negli schemi di figura 17 sono equivalenti. Siano:

R1 = 250 W R2 = 300 W R3 = 400 W La resistenza equivalente alla serie tra R1, R2 ed R3 risulta

Req = 250 + 300 + 400 = 950 Q.

Per verificare l'equivalenza dei bipoli A-B determiniamo la tensione VAB e la corrente I dei due circuiti di figura 17. Mediante la II legge di Kirchhoff, applicata allo schema di figura 17a, possiamo scrivere

05010 321 =−−−− IRIRIRI

da cui, inserendo i valori delle grandezze, otteniamo

mAAI 1001040030025050

10==

+++= ,

Stesso risultato ricaviamo per lo schema di figura b, inserendo nell'equazione alla maglia il termine IReq al posto di IRIRIR 321 ++ . Infatti

( ) IRIRRRIRIRIR eq=++=++ 321321

Per questo motivo anche le tensioni VAB sono identiche, in quanto

VIRIRIRIRV eqAB 59010950321 ,, =⋅==++=

R1

VAB

R2

I

RN

Neq RRRR +++= ...21 VAB

I

Page 13: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

13

a) 321 RRRReq ++= b) Fig. 17

Partitore di tensione

Allorquando si voglia calcolare la tensione ai capi di un resistore costituente l'elemento di una serie, conoscendo la tensione complessiva e non avendo interesse a determinare la corrente circolante nel ramo (fig. 18), é possibile ricorrere ad una semplice formula diretta. Questa deriva dal fatto che

in un gruppo di resistori posti in serie la tensione si ripartisce su di essi in modo direttamente proporzionale a ciascuna singola resistenza

Tale utile espressione risulta

eqR R

RVV = (1.3)

dove il termine eqR

V coincide con la corrente circolante nella serie ed eqR , nel caso di figura 18, risulta

21 RRRReq ++= .

Fig.18

R1

R2

R3

Req VAB

50W

10V

VAB

10V

50W

A

B B

AI I

R1

RVR

R2

V

Page 14: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

14

Resistori in parallelo

Due o più resistori sono connessi in parallelo se si trovano sottoposti alla stessa differenza di potenziale (fig. 19).

Per calcolare la resistenza equivalente di un gruppo di N resistori in parallelo si applica la seguente formula

Neq RRRR1111

21+++= ... (1.4)

che, per sole due componenti, si riduce all'espressione

21

21

RRRRReq+

= (1.5)

Fig. 19

Nel caso si debba calcolare la resistenza equivalente di tre o più elementi si applichi l'equazione (1.4) oppure si esegua un primo parallelo tra due resistenze, ponendo il risultato nell'espressione di parallelo con il terzo componente; si prosegua seguendo lo stesso criterio con il nuovo risultato posto in parallelo con l'eventuale quarto elemento e così via.

Il secondo metodo è indicato nel caso in cui le varie operazioni di parallelo possano essere eseguite con un veloce calcolo mentale.

E’ facilmente verificabile inoltre che la resistenza equivalente di un parallelo composto da N resistenze di ugual valore R è pari a R/N.

Esempio 8

Calcolare la resistenza equivalente della rete di figura 20a. Applicando l'equazione (1.4) ricaviamo

R1

A

R2 VAB RN Req

B

A

B

VAB

a) b)

Page 15: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

15

Ω=++=

kReq 31

61

101

1511 da cui Ω= kReq 3

Al risultato appena determinato potevamo giungere eseguendo i passaggi mostrati nelle figure 20: prima il parallelo tra i resistori da 15 e 10 kW, con valore equivalente, ricavato dall'applicazione della (1.5), pari a 6 kW; poi il parallelo tra 6 kW e 6 kW con risultato finale 6/2 = 3 kW.

Fig. 20

Partitore (o derivatore) di corrente

Consideriamo ora la connessione in parallelo di due resistori (fig. 21). Si vogliano calcolare le correnti in ciascun ramo conoscendo quella che confluisce nel nodo; possiamo scrivere

11 R

VI = (1.6) 2

2 RVI = (1.7)

dove 21

21

RRRRIIRV eq+

== (1.8)

Fig. 21

Sostituendo al termine V l'espressione a destra dell'equazione (1.8), prima nella (1.6) e poi nella (1.7), otteniamo

15kW 10kW 6kW 15//10 = 6kW 6kW 6//6 = 6/2 = 3kW

a) b) c)

R1

I1

R2V

I2

I

Page 16: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

16

21

12

21

21

RRRII

RRRII

+=

+=

( )

( )101

91

.

.

Operando una divisione membro a membro tra la (1.9) e la (1.10) o tra la (1.6) e la (1.7) osserviamo che

1

2

2

1

RR

II

= (1.11)

Possiamo dunque affermare che

le correnti circolanti su ciascun resistore di un parallelo stanno tra loro come le resistenze dei rami opposti.

A conclusione del paragrafo risolviamo il problema proposto nel seguente esempio.

Esempio 9

Del circuito di figura 22 determinare il valore di tutte le correnti e delle tensioni incognite. • Resistenza equivalente vista dal generatore: Req

Req = [2,6 + (6 // 4)] // 5 = 2,5 kW

(con il simbolo // indichiamo il parallelo tra due resistori) • Corrente erogata dal generatore: I

mARVI

eq

G 21052

53 =

⋅==

,

• Resistenza complessiva ramo sinistro: Rs Rs = 2,6 + (6 // 4) = 5 kW

• Correnti su 2,6 kW (ramo sinistro) e sui 5 k W (ramo destro): Is e Id

Fig. 22

6kW 4kW 5kW

2,6kW

A

VG

VG = 5V

B

C

C’

Page 17: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

17

Le due correnti sono uguali e pari a 1 mA, cioè la metà di quella totale, in quanto le resistenze dei rami sinistro e destro hanno lo stesso valore.

• Tensione sui 2,6 kW: VAB Applichiamo la formula (1.3) del partitore di tensione

( ) VVAB 624262

6254662

625 ,,,

,//,

,=

+⋅=

+⋅=

• Tensione sul parallelo: VBC I nodi C e C' sono equipotenziali e sul tratto di conduttore che li congiunge, considerato di resistenza nulla, circola la corrente IS.

VVVV ABGBC 42625 ,, =−=−=

• Correnti nei due rami del parallelo:I6k e I4k Applicando il partitore di corrente

mAII sk 4064

46 ,=

+⋅= mAII sk 60

646

4 ,=+

⋅=

1.6 Generatori ideali e reali

I generatori trattati in questa Unità di Apprendimento vengono definiti indipendenti in quanto la grandezza da loro prodotta non è legata a tensioni o correnti presenti in altri punti dei vari circuiti.

Si differenziano tra loro sia per la grandezza generata sia per il modello ideale o reale al quale fare riferimento.

I generatori definiti dipendenti verranno brevemente analizzati nell'Appendice 1.

Generatori di tensione

IDEALI

Un generatore di tensione si dice ideale se fornisce una tensione indipendente dalla corrente erogata e non condizionata quindi dal valore ohmico del carico che viene alimentato

La caratteristica V-I di tale dispositivo (dove la tensione costituisce la variabile dipendente) é pertanto quella di figura 23 ed è rappresentata da una semiretta parallela all'asse delle correnti (ascisse).

Fig. 23 Generatore ideale di tensione

VO VG RL

IO a) VO

VG

IO

b)

Page 18: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

18

REALI

La tensione prodotta da un generatore in realtà diminuisce all'aumentare della corrente erogata. Questo fenomeno può essere notato soprattutto per bassi valori ohmici del carico RL.

Un generatore reale di tensione può essere pertanto schematizzato con la serie tra un dispositivo ideale e la sua resistenza interna RO, coincidente con quella di uscita se si guarda dal carico verso il generatore (fig. 24a).

Fig. 24 Generatore reale di tensione

La tensione VO, corrisponde a quella del generatore ideale (VG) solo nel caso in cui il carico risulti scollegato (connessione a vuoto).

Generalmente invece si ha che VO = VG - ROIO (1.12)

L'espressione (1.12) si trasforma graficamente nella retta di figura 24b, che rappresenta la caratteristica voltamperometrica del generatore.

Il valore della corrente in corrispondenza di VO = 0 si ottiene cortocircuitando l'uscita, è pari a VG/RO ed è generalmente indicato con ICC (corrente di cortocircuito).

Esempio 10

Determinare il valore della tensione prodotta da un generatore reale su un carico di 250W sapendo che la tensione a vuoto è 12V e la corrente con l'uscita in cortocircuito è 240mA. Conoscendo il valore della corrente di cortocircuito possiamo determinare la resistenza interna del generatore.

Ω=== 50240

12,CC

GO I

VR

Per calcolare la tensione di uscita con un carico di 250 W si può ricorrere alla formula del partitore di tensione (eq.l.3) e quindi

VRR

RVVLO

LGO 10

30025012 =⋅=

+=

valore inferiore a quello a vuoto.

Da quanto esposto si deduce che.

affinché la tensione prodotta da un generatore possa essere considerata indipendente dalla corrente erogata, la resistenza interna deve essere trascurabile rispetto al valore ohmico minimo assunto dal carico (RO ideale = 0).

VO

VG

RL

IO a)

RO

VO

VG

VG /RO IO

pendenza = -RO

b)

Page 19: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

19

Generatori di corrente

IDEALI

Vengono definiti così quei dispositivi in grado di erogare una corrente di valore indipendente dalla tensione ai loro morsetti e quindi non condizionata dal valore ohmico di un eventuale carico.

La caratteristica voltamperometrica di questo tipo di generatore di corrente (fig. 25) è rappresentata pertanto da una semiretta parallela all'asse delle tensioni (ascisse).

Fig. 25 Generatore ideale di corrente.

REALI

La corrente erogata da questi generatori è in realtà dipendente dalla tensione presente tra i loro terminali. Collegando un carico, quanto più questo assume valore ohmico elevato, tanto minore rispetto al valore ideale risulta la corrente erogata. Questo effetto può essere pertanto schematizzato attraverso un resistore posto in parallelo al generatore ideale e che identifica la resistenza interna del dispositivo(fig. 26a).

Questa resistenza interna sottrae al carico una parte della corrente; il dispositivo eroga una corrente pari a quella ideale solo in situazione di carico in cortocircuito. Vale la relazione

O

OGO R

VII −= (1.13)

che si trasforma graficamente nella caratteristica voltamperometrica mostrata in figura 26b dove, per 0=OI (connessione a vuoto), GOO IRV = .

Fig. 26 Generatore reale di corrente.

IO

IG

ROIG VO

pendenza =OR

1−

b)

VO IG RL

IO a)

RO

VO IG RL

IO a) IO

IG

VO

b)

Page 20: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

20

Esempio 11

Un generatore eroga una corrente di cortocircuito di 100mA mentre su un carico di 100W fornisce 90mA. Quanto vale la sua resistenza interna? La corrente IG del generatore ideale corrisponde a quella di cortocircuito e vale quindi 100mA. Con il carico di 100W. sulla resistenza interna circola una corrente I pari a

I = 100 - 90 = l0mA Dal momento che la tensione di uscita è

VO = RLIO = 100 . 0,9 = 9V la resistenza interna vale

Ω=== 9000109,I

VR OO

Da quanto è stato detto si deduce che, affinché la corrente erogata da un generatore sia pressoché indipendente dal carico, la resistenza interna (in parallelo) deve assumere un valore elevato e tale da rendere trascurabile quella del carico stesso.

1.7 Metodi per la soluzione delle reti elettriche

Analizziamo ora alcuni tra i metodi più diffusi e pratici che permettono di determinare le grandezze incognite di un circuito elettrico (o rete elettrica).

Metodo di Kirchhoff

Nel paragrafo 1.4 sono state proposte le due leggi di Kirchhoff, che si traducono la prima in equazioni ai nodi (tante quante sono i nodi della rete meno uno), la seconda in equazioni alle maglie (tante quante sono le maglie).

Per risolvere una rete elettrica, e cioè per determinare le grandezze incognite di un circuito sotto analisi, è pertanto necessario individuare e scrivere un numero di equazioni pari a quello delle grandezze da calcolare.

• Le equazioni possono essere scelte tra tutte quelle possibili, ai nodi e/o alle maglie, e devono contenere tutte le incognite.

• Le equazioni formeranno un sistema che, risolto, fornirà il valore delle grandezze incognite.

• Prima di scrivere le equazioni ai nodi assegnare un verso arbitrario alle correnti incognite di tutti i rami. Nel caso in cui, durante lo sviluppo del sistema, venissero determinate alcune correnti con segno negativo, continuare lo svolgimento del sistema mantenendo lo stesso segno; ciò significherà solo che il vero verso della corrente calcolata é opposto a quello fissato.

• Prima di scrivere le equazioni alle maglie fissare arbitrariamente un verso di percorrenza in modo da individuare il riferimento positivo per le tensioni (come fatto nelle figure 14 dell'esempio 5).

Page 21: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

21

Esempio 12

Risolvere la rete di figura 27 calcolando le correnti circolanti in ogni ramo.

Fig. 27

Le correnti da calcolare sono tre, quanti i rami del circuito. Devono essere tre pertanto anche le equazioni da individuare ed inserire nel sistema da risolvere. Riferendoci allo schema di figura 28, possiamo scegliere l'equazione al nodo A e le equazioni alle due maglie interne a e b. Come si può notare abbiamo provveduto ad evidenziare le tre correnti incognite, assegnando loro un verso arbitrario, e fissato un riferimento di tensione positivo per le due maglie. Si faccia attenzione inoltre che in questo esempio le resistenze vengono espresse in kW e le correnti in mA.

Fig. 28

Il sistema risulta perciò il seguente:

bmagliaequazioneamagliaequazione

Anodoequazione

IIIII

III

⎪⎩

⎪⎨

=−−=−−−−

+=

0193205132118

32

121

321

,

Svolgiamo ora il sistema

⎪⎪⎩

⎪⎪⎨

−=

=−−+=

3192

0252152

3

21

321

II

IIIII

,

18V

19V

3V

1kW 3kW

2kW

1,5kW

+ +

a b

A I1 I3

I2

18V

19V

3V

1kW 3kW

2kW

1,5kW

Page 22: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

22

( )

⎪⎪⎪

⎪⎪⎪

−=

=−−−

−=

−+=

3192

0219535215

3195

3192

23

22

2221

II

II

IIII

,

Ricavando I2 dalla seconda equazione possiamo poi determinare il valore delle altre due correnti; otteniamo dunque: I1 = 2mA I2 = 5mA I3 = -3mA La corrente I3 risulta pertanto entrante nel nodo A e non uscente come fissato in partenza.

Esempio 13

Calcolare le correnti e la resistenza R nel circuito di figura 29. In questo caso le correnti incognite sono due in quanto la terza è quella imposta dal generatore da 2,5 mA.

Fig. 29

Servono comunque tre equazioni; si faccia però attenzione a non utilizzare quella della maglia che contiene il generatore di corrente, in quanto la tensione ai suoi capi, di cui non viene richiesto il calcolo, diventerebbe una quarta incognita. Si potrebbero quindi in forma rigorosa scrivere le tre equazioni e risolvere il sistema. Se osserviamo bene lo schema ci accorgiamo però che possiamo di volta in volta individuare una equazione contenente una sola incognita, la quale può essere pertanto immediatamente calcolata. L'equazione alla maglia destra (fissato ad esempio come verso di percorrenza quello orario) infatti ci permette direttamente di calcolare I2, in quanto

03104 23 =−⋅− IVAB

da cui

mAI 50104

3532 ,=

⋅−

=

Ora che conosciamo I2, applicando l'equazione al nodo A, possiamo calcolare I1; infatti

21 III +=

da cui mAIII 2505221 =−=−= ,,

Infine, applicando semplicemente la legge di Ohm, determiniamo R.

Ω=⋅

== − kI

VR Ab 521025

31

,

Fino a quando l'allievo non ha acquisito una buona dimestichezza nell'analisi delle reti, anche in problemi come questo è consigliabile scrivere inizialmente l'intero sistema.

1kW 4kW

R 3VI VAB

I1

I2A

B

VAB = 5VI = 2,5mA

Page 23: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

23

Metodo di sovrapposizione degli effetti

E’ possibile calcolare una o più grandezze di una rete lineare considerando separatamente l’effetto prodotto da ciascun generatore presente nel circuito, annullando ogni volta l'azione degli altri generatori.

Annullare l'azione dei generatori significa:

- cortocircuitare i generatori di tensione;

- aprire i rami in cui sono inseriti i generatori di corrente. I vari effetti dovranno successivamente essere sommati algebricamente; si terrà cioè conto, per

ciascuno di essi, del verso assunto dal parametro incognito rispetto a quello di riferimento.

Esempio 14

Calcolare con il metodo di sovrapposizione degli effetti la corrente I indicata nello schema di figura 30.

Fig. 30

I. Effetto del generatore da 15 V (fig.31a) (generatore da 12 V cortocircuitato) Si calcola IG:

( )[ ] mAIG 5105133

153 =

⋅+=

,//

Si calcola I’ applicando il partitore di corrente:

mAII G 522

,' ==

Fig. 31 a) b)

II. Effetto del generatore da 12 V (fig. 31b) (generatore da 15 V cortocircuitato) Si calcola IG:

1,5kW 3kW

3kWV18

15V 12V

I

1,5kW

3kW 3kW15V

IG I’

3kW

3kW 12V1,5kW

I’’

IG

Page 24: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

24

( )[ ] mAIG 3103351

123 =

⋅+=

//,

Si calcola I’’ applicando il partitore di corrente:

mAI 1351

513 =+

⋅=,

,''

I due effetti presentano verso opposto; il primo è concorde con quello assegnato in figura 30 e può quindi essere considerato positivo, pertanto

mAIII 51152 ,,''' =−=−=

Esempio 15

Calcolare con il metodo di sovrapposizione degli effetti la tensione VR ai capi del resistore da 6 kW nel circuito di figura 32.

Fig.32

I. Effetto del generatore di corrente (fig. 33a) (generatore di tensione cortocircuitato)

( ) VVR 841046102 33 ,//' =⋅⋅⋅= −

Fig. 33 a) b)

II. Effetto del generatore di tensione (fig. 33b) (ramo con il generatore di corrente aperto)

12V

6kW2mA

4kW

VR

6kW2mA 4kW VR’

12V

6kW

4kW

VR’’

Page 25: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

25

VVR 2746

612 ,'' =+

⋅=

I due effetti presentano versi opposti; il secondo è concorde con quello di figura 32 e può essere considerato positivo, pertanto

VVVV RRR 428427 ,,,''' =−=−=

Metodo di Thevenin

Questo metodo deriva dall' applicazione del teorema di Thevenin, il quale afferma che

una qualsiasi rete elettrica lineare vista da due terminali può essere rappresentata in modo equivalente da un bipolo costituito da un generatore di tensione ideale (Veq) in serie ad una resistenza (Req).

Fig. 34

In figura 34 abbiamo supposto la rete elettrica chiusa su un semplice resistore (RL), ma a destra del bipolo A-B poteva essere presente un'altra rete più o meno complessa.

• La Veq si determina calcolando la tensione a vuoto presente tra i due terminali di uscita della rete da semplificare (fig. 35a). ‘A vuoto’ significa aver staccato la restante parte del circuito collegata al bipolo in questione.

Fig. 35

• La Req é la resistenza vista dal bipolo, guardando verso la rete da semplificare (fig. 35b), dopo aver annullato i generatori indipendenti (nel caso di generatori dipendenti vedere Appendice 1).

rete elettrica lineare

A

Ba) b)

Veq = VAB (a vuoto)

annullati i generatori indipendenti Req

RL Veq

Req

RL

rete elettrica lineare

A

B

A

Ba) b)

Page 26: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

26

Esempio 16

Semplificare con il metodo di Thevenin la rete a sinistra dei terminali A-B nel circuito di figura 36.

Fig. 36

Per determinare Veq scollegare il resistore RL e calcolare la VAB a vuoto. Questa tensione coincide con quella ai capi del resistore da 12 kW in quanto su quello da l kW, avendo aperto il suo ramo, non scorre corrente.

VvuotoaVV ABeq 6612

129 =+

⋅== )(

La Req è quella compresa tra A e B dopo aver cortocircuitato il generatore di tensione (fig. 37) e vale ( ) Ω=+= kReq 51126 //

Fig. 37 A questo punto, se occorresse determinare la tensione o la corrente relative al resistore R, basterà ricostituire la maglia come in figura 36b.

Esempio 17

Determinare il circuito equivalente di Thevenin perla rete vista dai morsetti A e B di figura 38a. Nel circuito proposto potremmo applicare direttamente il metodo, di sovrapposizione degli effetti per determinare la Veq da inserire nello schema di figura 38c. Preferiamo però usare questo esempio per proporre una doppia applicazione del teorema di Thevenin. Trasformiamo prima la rete costituita dal generatore di corrente e dalla resistenza da 10 kW, aprendo il circuito nel modo mostrato in figura 38a, per giungere così allo schema di figura 38b. Cosi facendo passiamo dalla tipica configurazione di un generatore reale di corrente a quella altrettanto caratteristica di un generatore reale di tensione (Veq’ in serie a Req’).

Veq’ = V10kW = 10V Req’ = 10kW (con il generatore di corrente aperto)

Si arriva infine allo schema di figura 38c, calcolando la Veq ricorrendo al metodo di sovrapposizione degli effetti e la Req cortocircuitando i due generatori di tensione. Otteniamo quindi

6kW 12kW

1kW A

B

Req

9V

6kW

12kW

1kW

RL6kW

A

B

Veq

Req

RL6kW

A

B

a) b)

Page 27: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

27

VVV ABeq 671510

1041510

1510 ,=+

⋅++

⋅==

(abbiamo inserito nell'espressione direttamente entrambi gli effetti, calcolati applicando il partitore di tensione) Req = 10 // 15 = 6 kW

Fig. 38

1.8 Potenza elettrica La potenza associata ad un bipolo elettrico è data dal prodotto tra la tensione e la corrente ad

esso relative e si misura in watt [W]. L' espressione

vip = (1.14) descritta con lettere minuscole, indica la potenza calcolata in ogni istante su un elemento interessato da grandezze elettriche genericamente variabili nel tempo.

In regime continuo invece scriveremo VIP = (1.15)

Le equazioni (1.14) e (1.15) sono adatte soprattutto nel caso di potenza erogata da un generatore. Volendo invece determinare la potenza dissipata in regime continuo da un resistore di resistenza R,

per il quale V e I rappresentano rispettivamente la tensione ai suoi capi e la corrente in esso circolante, oltre alla (1.15) possiamo utilizzare le seguenti espressioni

( )

RV

RVVP

RIIRIVIP2

2

=⋅=

===

).(

).(

171

161

Bilancio energetico

In una rete elettrica la somma algebrica delle potenze associate ai generatori è uguale alla somma aritmetica delle potenze dissipate dai resistori.

Nella definizione abbiamo indicato la somma algebrica per le potenze dei generatori perché, come già accennato, in alcuni casi questi possono comportarsi come elementi passivi.

Esempio 18

Eseguire il bilancio energetico della rete di figura 39.

1mA 10kW

15kW

4V

A

B

15kW

4V

B

A

Veq’

Req’ A

B

Veq

Req

a) b) c)

Page 28: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

28

Fig. 39 • Calcoliamo la potenza erogata dal generatore: PG (è uno solo, pertanto sicuramente eroga potenza) Per fare questo determiniamo la corrente IG uscente dal suo polo positivo e che circola anche su R1.

mARRR

VRVI G

eq

GG 4

1028

3321

=⋅

=+

==//

Pertanto

mWIVP GGR 321048 31

=⋅⋅== −

• CalcoIiamo le potenze relative ai tre resistori. Prima però determiniamo la tensione sul parallelo tra R2 ed R3, sapendo che R2 // R3 = 1,2kW. Per cui

VV 848021

218 ,,,

,// =

+⋅=

mWIRP GR 812211 ,==

mWRVPR 5211

2

2

2 ,// ==

mWRVPR 687

3

2

3 ,// ==

Quindi è verificato l'equilibrio tra potenza erogata e potenza dissipata, infatti 12,8 + 11,52 + 7,68 = 32

1.9 Caratteristiche elettriche dei resistori e cenni costruttivi Proponiamo ora alcune caratteristiche elettriche relative ai resistori in commercio e fornite dalle case

costruttrici.

Resistenza nominale: assume valori standard in base a determinate serie, ciascuna composta secondo le norme IEC da particolari tagli. Nella tabella 1 sono riportati i valori delle serie E-12 ed E-24, anche se in commercio sono inoltre disponibili le E-6, E-48, E-96 ed E-192

Tolleranza: la resistenza nominale rappresenta un valore indicativo, ma non reale dei componente. In effetti il valore effettivamente misurato di un elemento può discostarsi da quello nominale. Il massimo errore relativo, espresso in percentuale, è indicato con il termine tolleranza. In molti tipi di resistori la lettura dei valori di resistenza nominale e di tolleranza è deducibile dall'interpretazione di una serie di anelli di diversa colorazione (fig. 40) che costituiscono un vero e proprio codice colori (che riportiamo nella tabella 2).

VG

R1

R2 R3

IG VG = 8 V R1 = 800 W R2 = 2 kW R3 = 3 kW

Page 29: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

29

Tabella 1 Serie E-12 Serie E-24

10 -- 12 -- 15 -- 18 -- 22 -- 27 -- 33 -- 39 -- 47 -- 56 -- 68 -- 82 --

10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91

Tabella 2

Colori Prime due cifre

Fattore esponenziale Tolleranza %

Assente Argento Oro Nero Marrone Rosso Arancio Giallo Verde Blu Viola Grigio Bianco

-- -- -- 0 1 2 3 4 5 6 7 8 9

-- 10-2

10-1

100

101

102

103

104

105

106

-- -- --

20 10 5 -- 1 2 -- -- -- -- -- -- --

Fig. 40

Ad esempio nelle serie E-12 ed E-24 gli anelli che identificano la resistenza sono tre, i primi due codificano il coefficiente moltiplicativo, il terzo indica il fattore esponenziale, mentre un quarto é relativo alla tolleranza. A tal proposito svolgere l’esempio 19 proposto più avanti.

Potenza dissipabile: è la massima potenza che il componente può dissipare ad una determinata temperatura ambiente (70° C).

Coefficiente di temperatura: rappresenta la variazione relativa di resistenza nominale in corrispondenza di uno scarto termico di 1° C. Viene indicato con TC, e spesso è espresso in ppm/°C (ppm = parti per milione del valore nominale, cioè 1 . 10-6 . Rnom)

Campo di temperature di esercizio: rappresenta l’intervallo di temperature di lavoro ammesso per il componente (ad esempio da -55 a + 125 °C)

Tensione massima: massima tensione di lavoro applicabile al componente

Esempio 19

Determinare i valori di resistenza e di tolleranza dei resistori di figura 41a e b.

Fig. 41

marrone verde arancio

oro

b) oro giallo viola

argento

a)

1a cifra 2a cifra Fattore esponenziale

Tolleranza

Page 30: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

30

a) Giallo – viola - oro/argento = 47 ◊ 10-1 ± 10% per cui 4,7W e ± 10% di tolleranza Il vero valore può essere compreso quindi tra 4,23 e 5,17 W. b) Marrone – verde - arancio/oro = 15 ◊ 103 ± 5% per cui 15 kW e ± 5% di tolleranza Il vero valore può essere compreso quindi tra 14,25 e 15,75 kW.

Esempio 20

Calcolare la massima variazione di resistenza di un componente di valore nominale 1 kW, con coefficiente di temperatura Tc, pari a 200 ppm/°C, in corrispondenza di uno scarto termico di 20 °C.

La formula, dedotta dalla definizione di coefficiente di temperatura, da applicare per calcolare DR è DR = Tc ◊ Rnom ◊ DT = 200 ◊ 10-6 ◊ 1000 ◊ 20 = 4 W

Tipologie

Le attuali tecniche costruttive vedono prevalere soprattutto i resistori a film (o a strato) e i resistori a filo.

I primi (fig. 42) sono costituiti da un sottile strato di materiale conduttivo (metallo, ossido di metallo, carbone, cermet = ceramica + metallo) avvolto su un cilindretto di materiale isolante (porcellana).

Fig. 42 Resistori a film.

Il valore ohmico di resistenza viene realizzato attraverso una particolare operazione di tornitura. Per potenze superiori al watt si ricorre ai resistori a filo (fig. 43), costituiti da un elemento

conduttivo avvolto e immerso in un corpo di ceramica. Per potenze dalla decina di watt in su è possibile trovare resistori in cui il filo viene avvolto su un nucleo in ceramica e poi alloggiato in una protezione di alluminio anodizzato.

Fig. 43 Resistori a filo.

Reti di resistenze

Sono costituite da un certo numero di elementi resistivi (fig. 44) inseriti in alloggiamenti di ceramica a 14 o 16 piedini (DIL), o in rivestimenti ancor più sagomati ad 8 o 9 terminali (SIL). Possono presentarsi in soluzioni singole o ad allacciamento in comune.

Potenziometri Sotto questo nome troviamo una vasta gamma di resistori il cui valore può essere regolato attraverso il

Page 31: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

31

movimento di un cursore che può essere circolare o lineare (fig. 45).

Fig. 44 Reti di resistenze: (a) e (b) singole; (c) e (d) con allacciamento in comune.

Fig. 45 Potenziometri.

Sono forniti di tre terminali e possono essere utilizzati nel modo rappresentato in figura 46b, e cioè da vere resistenze variabili (trimmer), oppure come in figura 47 dove, nell'uso classico da potenziometri e opportunamente alimentati, producono una tensione dipendente dalla posizione del cursore.

Sfruttando questa seconda modalità i potenziometri costituiscono il tipo più noto e semplice di trasduttori di posizione.

Fig. 46 Trimmer. Fig. 47 Potenziometro.

aR VG

RR

aR

VO = aVG

a)

b)

Page 32: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

32

1.10 I segnali

Una qualsiasi grandezza fisica a cui viene associata una informazione attraverso la variazione nel tempo di una sua caratteristica viene definita segnate.

Per la natura di questa materia noi prendiamo in esame solo i segnali di tipo elettrico. Una prima distinzione può essere effettuata dividendo i segnali in analogici e digitali. Un segnale analogico può assumere tutti i valori compresi entro un certo intervallo di esistenza,

mentre uno digitale è rappresentabile attraverso un numero finito di livelli. I segnali digitali legati all'elettronica sono generalmente di tipo binario, assumono cioè due soli

possibili valori, uno ‘basso’, il cosiddetto zero logico, l'altro ‘alto’ e cioè l'uno logico. Se un segnale s(t) è presente in ogni istante viene definito continuo (fig. 48), se invece è definito

solo in determinati significativi momenti è considerato discreto (fig. 49).

Fig. 48 Segnale continuo. Fig. 49 Segnale discreto.

I segnali da noi considerati saranno per lo più continui (in tutto il tempo o per alcuni intervalli). Questi possono essere distinti in periodici e aperiodici.

In figura 50 è disegnato un segnale periodico, definibile come quel fenomeno che si ripete con uguali modalità ad intervalli regolari di tempo.

Ogni intervallo durante il quale si sviluppa un ciclo del segnale si chiama periodo (unità di misura il secondo) e viene di solito indicato con il simbolo T.

Si definisce poi frequenza f l'inverso del periodo, cioè

Tf 1=

Essa rappresenta il numero di cicli che il segnale ripete in un secondo. La frequenza si misura in hertz [Hz] i cui multipli più significativi sono

il chilohertz [kHz] fl 1 kHz = 103 Hz il megahertz [MHz] fl 1 MHz = 106 Hz il gigahertz [GHz] fl 1 GHz = 109 Hz

Si dicono invece segnali aperiodici tutti quelli in cui non è possibile riconoscere dei cicli ripetitivi e per i quali non sono significativi i concetti di periodo e frequenza (fig. 51).

s

t

s

t

Page 33: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

33

Fig. 50 Segnale periodico.

Fig. 51 Segnale aperiodico. Fig. 52 Segnale alternato.

I segnali periodici, a loro volta, possono differenziarsi in unipolari e bipolari: i primi presentano sempre lo stesso verso rispetto a quello di riferimento, mentre i secondi lo invertono.

Tra i bipolari particolare importanza rivestono i segnali alternati (fig. 52). In essi sono uguali le aree, positiva e negativa, racchiuse in un periodo tra la funzione e l'asse delle ascisse.

Parametri fondamentali per definire le caratteristiche di un segnale periodico, oltre la frequenza e il periodo, sono: valor medio altezza di un ipotetico rettangolo la cui area è uguale alla somma algebrica delle

aree racchiuse in un periodo tra la funzione segnale e l'asse delle ascisse; valore efficace valore di un segnale continuo (tensione o corrente) che, applicato ad una

resistenza, produce in un ciclo gli stessi effetti termici della grandezza periodica; ampiezza valore massimo assunto dal segnale rispetto al suo valor medio; valore picco-picco distanza tra i valori massimo e minimo del segnale.

Esempio 21

Calcolare i valori medio ed efficace del segnale (tensione) raffigurato in figura 53.

t

s

t

s

S-

S+ S+

S-

T 2T

s

t

T

Page 34: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

34

L'area Al vale

5 ◊ 1 = 5 V ◊ s

e quindi il valor medio è

VTAVm 251

451 ,===

Il segnale di figura 53, applicato ad un resistore supposto di valore 1 kW, dissipa una potenza istantanea pari a 52/1000 = 0,025 W = 25 mW solo per 1 secondo ogni periodo; quindi l'energia trasformata in calore è

W = Pt = 25 ◊ 1 = 25 mJ

Il valore efficace del segnale, inteso come quel valore costante che, applicato in un periodo (4 s), dissipa la stessa energia, si ricava dall'espressione

mJWTR

Veff 252

==⋅

da cui

VVeff 524

101025 332 ,=

⋅⋅=

Fig. 53 Segnale rettangolare. Fig. 54

Il segnale di figura 53, così come generalmente tutte le grandezze periodiche con valor medio non nullo, può essere pensato come la somma tra un segnale continuo, coincidente con il valor medio del segnale in questione, e uno alternato di forma identica a quello dato.

In figura 54 abbiamo rappresentato le due componenti, continua ed alternata, del segnale di figura 53: la prima ha valore 1,25 V, la seconda ha valore medio nullo, massimo 3,75 V e minimo -1,25 V.

Segnali periodici significativi

Onda quadra Un'onda quadra è un segnale che in un periodo assume solo due livelli che si alternano con uguale

durata (fig. 55). I1 valore ‘basso’ è generalmente nullo, ma può essere considerata quadra anche un'onda che presenta livelli di segno opposto e di pari valore assoluto.

Il cosiddetto ciclo utile del segnale (duty-cycle), definito come rapporto tra la durata del livello alto

t(s)

v(V)

t(s)

v(V)

1 4 50

5

A1

1 4 5 0

-1,25

+1,25

+3,75

componente alternata

valor medio

Page 35: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

35

TH e il periodo T, ed indicato con la lettera d, è pari a 0,5. Cioè

50,==T

THδ (1.19)

Il duty-cycle viene usualmente espresso in percentuale.

Fig. 55 Onda quadra. Fig. 56 Tensione alternata sinusoidale.

Onda rettangolare Il segnale di figura 53 è rettangolare e si differenzia da quello quadro per avere un duty-cycle

diverso dal 50%. Nel caso di duty-cycle molto minore del 50% si usa indicare tale segnale con il termine impulsivo.

Onda sinusoidale Un segnale alternato sinusoidale assume la forma mostrata in figura 56 ed è rappresentato trigono-

metricamente dalla seguente legge ( ) ( )ϕω += tsenVtv M (1.20)

dove v(t) = valore istantaneo del segnale VM = valore massimo o ampiezza w = 2pf = pulsazione angolare j = fase iniziale Si può dimostrare che il valore efficace di un segnale sinusoidale è legato al suo valore massimo

dalla relazione

2M

effVV = (1.21)

t

v

t

v

TH

T

TVM

-VM

ωϕ

Page 36: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

36

Segnali aperiodici significativi

Gradino Un esempio di tensione a gradino è mostrata in figura 57. È definita dall'espressione

( ) ( )0ttuEtv −⋅= (1.22) dove

( )⎪⎩

⎪⎨⎧

>

<=−

0

0

01

0

ttper

ttperttu

rappresenta la funzione gradino unitario. Il gradino è uno dei segnali più importanti nello studio dei sistemi di controllo, la cui risposta a

questo tipo di eccitazioni offre molte informazioni sulla velocità e sulla stabilità dei sistemi in esame.

Fig. 57 Gradino. Fig. 58 Rampa.

Rampa È un segnale che cresce o decresce linearmente nel tempo. Un esempio di tale grandezza è mostrato

in figura 58 ed ha la seguente espressione analitica

( ) 00

EttT

Etv +−

= (1.23)

Importante per la classificazione dei sistemi di controllo, la rampa é inoltre uno dei segnali che si incontrano pia frequentemente nelle applicazioni e nella strumentazione.

Esponenziale Una tensione con possibile andamento esponenziale è mostrata in figura 59 ed ha espressione

analitica

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−=

−τt

eVtv 10 (1.24)

con

t

v

t

v

t0 T

E

E0

t0

Page 37: Alessandro Bertelli – Mariano Zanchi

Reti elettriche

Dipartimento di elettronica I.T.S. “L.Einaudi” - Montebelluna

37

V0 = valore asintotico a cui tende la funzione per t = costante di tempo del circuito.

Tale funzione sarà frequentemente utilizzata nella prossima Unità. Didattica, nello studio della risposta al gradino in sistemi contenenti elementi reattivi.

Fig. 59 Esponenziale.

t

v

V0

t

Page 38: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

38

APPENDICE 1

A.1 I quadripoli e i generatori dipendenti

Un quadripolo (fig. A.1) è un circuito che presenta una coppia di terminali in ingresso ed una in uscita e realizza una trasformazione di vario tipo del segnale che lo attraversa (amplificazione di tensione, di corrente, di potenza, adattamento di resistenze o di impedenze, filtraggio, ecc.).

Ad esso sono associate tensioni, correnti e resistenze sia di ingresso che di uscita. La resistenza di ingresso di un quadripolo è la resistenza equivalente vista dai terminali di ingresso,

con i terminali di uscita chiusi sull'eventuale carico e vale

i

ii i

vR = (1)

La resistenza di uscita di un quadripolo è la resistenza equivalente vista dal carico dopo aver annullato l'effetto dei generatori indipendenti; si ottiene dalla relazione

o

oo i

vR = (2)

Altri parametri fondamentali di un quadripolo sono: guadagno di tensione = rapporto tra tensione di uscita e tensione di ingresso

i

ov v

vA = (3)

guadagno di corrente = rapporto tra corrente di uscita e corrente di ingresso

i

oi i

iA = (4)

guadagno di potenza = rapporto tra la potenza fornita dalla coppia di terminali di uscita e quella associata ai morsetti di ingresso

i

op p

pA = (5)

Fig.A.1 Quadripolo

Naturalmente, nel caso in cui i valori che esprimono i vari guadagni dovessero risultare inferiori

rete elettrica vi

Ri

vo

Ro

ii io

Page 39: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

39

all'unità, sarà più opportuno parlare di attenuazione.

Viene definito generatore dipendente un generatore che fornisce una tensione o una corrente imposta dalla tensione o dalla corrente presente in un altro punto del circuito.

Svolgiamo il seguente esempio.

Esempio 1

Fig. A.2 Il quadripolo di figura A.2 richiama il circuito equivalente per lo studio del funzionamento di un transistor (BJT) in presenza di tensioni di ingresso variabili nel tempo. Questo argomento esula dagli obiettivi del volume, lo proponiamo sia per evidenziare la presenza di un generatore di tensione e di uno di corrente, entrambi dipendenti, sia per esercitarci al calcolo delle resistenze di ingresso e di uscita. Nello schema da analizzare il primo generatore fornisce una tensione legata a quella di uscita attraverso il parametro h1, il secondo genera una corrente legata a quella di ingresso attraverso il parametro h2. In questo esempio la coppia dei terminali di uscita è collegata al carico resistivo RL.

• Resistenza di ingresso

i

ii i

vR =

dove

oii vhiRv 11 +=

ma

( )Lio RRihv //22−=

(la corrente h2ii circola sul parallelo tra R2 e RL) per cui

( )Liii RRihhiRv //2211 −=

Dividendo membro a membro l'ultima espressione per ii ricaviamo

( )Li RRhhRR //2211 −=

• Resistenza di uscita Per calcolare la resistenza di uscita si tolga il carico, si consideri la corrente io erogata da un fittizio generatore di tensione vo e si annulli la sorgente della tensione vi (fig. A.3). Questo metodo è utilizzabile anche per determinare la resistenza equivalente nei circuiti in cui si riduce la rete con

R2

R1

RLvi

Ri Ro

h1vo h2ii

ii io

vo

o

Page 40: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

40

il metodo di Thevenin, nel caso in cui siano presenti generatori dipendenti.

Fig. A.3

Scriviamo dunque

o

oo i

vR =

dove

io

o ihRv

i 22

+=

e

1Rvh

i oii −=

da cui

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

1

21

2

1Rhh

Rvi oo

Sostituendo quest'ultima espressione nella relazione o

oo i

vR = otteniamo

2211

21

1

21

2

11

RhhRRR

Rhh

R

Ro −=

−=

Si noti infine come il circuito di figura A.2 presenti un terminale, comune sia al bipolo di uscita che a quello di ingresso, che potrebbe essere ridotto ad un unico morsetto. Questo particolare e molto diffuso quadripolo, come é appunto il BJT di cui abbiamo anticipato il modello equivalente, é praticamente riconducibile ad un elemento con tre terminali, definito tripolo.

R2

R1 Ro

h1vo h2ii

ii io

vo

Page 41: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

41

APPENDICE 2

A.2 Altri metodi per la soluzione delle reti elettriche

Metodo di Norton

Può essere considerato il duale del metodo di Thevenin.

Con il metodo di Norton è possibile ridurre una rete lineare che fa capo ad una coppia di terminali ad un generatore reale di corrente e cioè alla combinazione di un generatore ideale Ieq e di una resistenza equivalente Req connessa in parallelo (fig.A.4).

Fig. A.4

• La Ieq si determina calcolando la corrente che circola tra i due terminali della rete da semplificare dopo averli cortocircuitati.

• La resistenza equivalente, allo stesso modo di quanto visto col metodo di Thevenin, è invece la resistenza vista dai due terminali guardando la rete e si calcola dopo aver annullato i generatori indipendenti (generatori di tensione cortocircuitati, generatori di corrente aperti).

Esempio 2

Trasformare un modello equivalente realizzato secondo il teorema di Thevenin in uno secondo Norton.

Si tratta in pratica di rendere il modello di un generatore reale di corrente equivalente a quello di un generatore reale di tensione dato (fig. A.5).

• Determiniamo Ieq (fig. A.6a] (cortocircuitiamo il bipolo A-B)

'

'

eq

eqeq R

VI =

• • Determiniamo Req (fig. A.6b) (cortocircuitiamo il generatore e scolleghiamo iI carico)

'eqeq RR =

Ieq Req

rete elettrica lineare

A

B

A

B

Page 42: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

42

Fig.A.5 a) b)

Fig.A.6 a) b)

Esempio 3

Calcolare la tensione VAB presente ai capi del resistore da 12kW (fig. A.7), riducendo il circuito a sinistra del bipolo A-B applicando il metodo di Norton.

Per calcolare la Ieq si cortocircuiti il bipolo A-B e si determini la corrente che vi circola. Si possono separare gli effetti dei due generatori, come mostrano gli schemi di figura A.8.

Fig.A.7

I. Effetto dei generatore da 2 mA (fig. A.8a) La corrente '

eqI è quella che scorre sul resistore da 6 kW.

'eqV

A

B

'eqR Ieq A

'eqR

B

Req

B

'eqV RL Req RL

A

B

Ieq

A 'eqR

2kW

6kW

12kW

2mA

4mA

A

B

VAB

Page 43: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

43

mAI eq 5062

22 ,' =+

⋅=

II. Effetto del generatore da 4 mA (fig. A.8b)

La corrente ''eqI è quella che scorre sul resistore da 2 kW.

mAI eq 362

64 =+

⋅=''

Pertanto mAI eq 53350 ,, =+= .

Fig.A.8 a) b)

Per determinare la Req si aprano i rami dove sono presenti i due generatori di corrente e si calcoli la resistenza equivalente vista dal resistore da 12 kW guardando la rete:

Ω=+= kReq 862 (i due resistori sono in serie)

Il circuito di figura A.7 diventa quindi equivalente a quello di figura A.9. La tensione ai capi dei 12 kW risulta infine

( ) VVAB 816101281053 33 ,//, =⋅⋅⋅= −

Fig. A.9

8kW 12kW3,5mA

A

B

VAB

2kW

6kW

2mA

A

B

'eqI

2kW

6kW4mA

A

B

''eqI

Page 44: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

44

Metodo di Millman

Prima di enunciare il teorema di Millman, da cui scaturisce un ulteriore metodo per la soluzione di reti lineari, definiamo o ricordiamo il parametro conduttanza elettrica.

Si definisce conduttanza G l’inverso della resistenza.

RG 1=

Unità di misura: SVA ≡Ω≡ −1/ (Siemens)

Il teorema di Millman afferma che la tensione ai capi di un bipolo costituito da N rami in parallelo (fig. A.10a), dove ciascun ramo è equivalente alla serie tra un generatore di tensione ideale V ed una conduttanza G, può essere calcolata attraverso la seguente relazione

N

NNAB GGG

VGVGVGV

++++++

=......

21

2211 (6)

La dimostrazione passa attraverso il metodo di Norton, riducendo cioè la rete ad un generatore di corrente reale (fig. A. 10b).

a) b) Fig. A.10

La tensione ai capi del bipolo risulta pertanto il prodotto tra Ieq ed Req. La Ieq si ottiene cortocircuitando il bipolo A-B in figura A.10a e risulta

NNN

Neq GVGVGV

RV

RV

RV

I +++=+++= ...... 22112

2

1

1

La Req è invece ricavata dal parallelo delle N resistenze (tutti i generatori sono cortocircuitati)

R1

V1

A

B

R2 RN

V1 V1

VAB Ieq

A

B

Req VAB

Page 45: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

45

NNeq

GGGRRRR

+++=+++= ...... 2121

1111

Si giunge quindi alla equazione (6) sostituendo le espressioni ricavate per eqI e eqR1 nella relazione

eqeqAB IRV =

Esempio 4

Calcolare VAB nel circuito di figura A.11.

Fig. A.11

Applichiamo il metodo di Millman. Dalla lettura dello schema, confrontato con quello generico di figura A.10a, possiamo scrivere

VVVVVV 5020 321 −===

VmAGVmAGVmAG /// 4250110

10012

5001

321 ======

per cui, ricorrendo all'equazione (6), atteniamo

VVAB 251410245220 ,=

++⋅−⋅

=

Metodo di Miller

Questo metodo deriva dal teorema di Miller, il quale afferma che

in una rete lineare si può sostituire una resistenza, compresa tra due punti di cui si conosce il rapporto tra i potenziali rispetto ad un unico riferimento, con due resistenze collegate tra ciascun punto e il riferimento stesso.

Riferendoci agli schemi di figura A.12, dove il punto riferimento è quello di massa, indicando con A il rapporto VB/VA, si dimostra che le relazioni per la determinazione delle due resistenze sono

1

1

−=

−=

AARR

ARR

ABB

ABA

(8)

(7)

500W

20V

100W

200W

5V

A

B

VAB

Page 46: Alessandro Bertelli – Mariano Zanchi

Reti elettriche - Appendici

46

Fig. A.11

Esempio 5

Trasformare il circuito di figura A.13 secondo Miller nel caso in cui il parametro iVV0 assuma rispettivamente valore prima unitario e poi molto maggiore di 1 (consideriamo 100).

Nel primo caso, con 10 =iVV dalle (7) e (8), si ottengono

∞== BA RR

La rete si riduce a quella di figura A.13b.

Nel secondo caso, con 1000 =iVV , si ottengono

Ω≈Ω≈ kRR BA 660

La RA è molto minore di 6 kW e, risultando in parallelo alla resistenza da 10 kW, ne abbassa notevolmente il valore ( 606010 ≈//k ), mentre RB si trova in parallelo alla resistenza da 4 kW realizzandone una equivalente da 2,4 kW .

Il circuito si riduce come in figura A.13c.

Vi V0

b)

10kW Vi V0

a)

Vi V0

c)

6kW

4kW 10kW 4kW

10kW 2,4kW

Fig.A.13

RAB A B A B

RA RB VA VAVB VB

a) b)

11 −=

−=

A

ARR

A

RR AB

BAB

A

Page 47: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

47

ESERCIZI GUIDATI

EG. 1 Determinare la resistenza equivalente vista tra i terminali A e B nello schema di figura E.1. Calcolare successivamente la corrente che circola sul resistore 1 kW se VAB = 12 V.

Fig.E.1

Soluzione Per determinare la resistenza equivalente si eseguano le seguenti operazioni (descritte anche dalle figure E.2): • il parallelo tra le resistenze da 6 e 4 kW = RCD

(entrambe sono sottoposte alla tensione VCD)

Ω=+⋅

= kRCD 424646 ,

• la serie tra la resistenza RCD e la resistenza da 7,6 kW (Sono percorse dalla stessa corrente) Indichiamo questa serie con R1.

Ω=+= kR 1067421 ,,

• il parallelo tra R1 e la resistenza da 10 kW = RCB (entrambe sono sottoposte alla tensione VCB)

Ω== kRCB 51010 //

• ed infine la serie tra la resistenza RCB e la resistenza da 1 kW, da cui scaturisce la RAB

Ω=+= kRAB 615

La corrente che circola sul resistore da 1 kW equivale a quella fornita dall’eventuale generatore

4kW

6kW

1kW 7,6kW

10kW

A BC D

10kW

4//6kW

1kW

A B

7,6kW

10kW

(2,4+7,6)kW

1kW

BA

1kW 10//10kW

A B

a) b)

c)

Fig.E.2

Page 48: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

48

e si determina applicando la legge di Ohm. Con RAB espressa in kW risulta

mARVI

AB

AB 2106

123 =

⋅==

I è diretta verso il terminale B.

EG. 2 Calcolare la resistenza equivalente vista tra i terminali A e B nel circuito di figura E.3.

Fig.E.3

Soluzione

• Calcoliamo RDE (resistenza vista tra i terminali D ed E)

Ω== kRDE 81218 ,//

• Calcoliamo RCE

( ) Ω==+= kRR DECE 23634 ////

• Determiniamo infine RAB

( ) Ω==++= kRR CEAB 510101053 ////

EG. 3 Calcolare il valore della resistenza da inserire al posto di quella da 3 kW tra i punti A e C del circuito di figura E.3 in modo da ottenere una RAB equivalente pari a 6 kW..

Soluzione Indicando con RX la resistenza incognita, deve essere:

( ) Ω=++ kRR CEX 6105 //

Sapendo che RCB = 7kW possiamo scrivere

( ) 6107107

=++⋅+

X

X

RR

Da cui ottenendo otteniamo Ω= kRX 8 .

5kW

2kW

3kW

10kW

A BC D E4,2kW 3kW 18kW

Page 49: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

49

EG. 4 Calcolare il valore della resistenza equivalente RAB del circuito in figura E.3 nel caso in cui vengano cortocircuitati tra loro i nodi D e B.

Soluzione Cortocircuitare i nodi D e B significa praticamente collegarli tra loro attraverso un conduttore di valore resistivo nullo (fig. E.4a). In questo modo i resistori da 5 kW, 18 kW e 2 kW risultano ora tra loro in parallelo (fig. E.4b) ed il nodo B coincide con il D.

Fig.E.4

La rete di figura E.4a può essere quindi ridotta a quella di figura E.4c. La resistenza equivalente RAB è quindi ora pari a

( ) Ω+= kRR CBAB 103 //

dove ( )[ ] Ω+= kRCB 5182324 //////, Siccome

( ) Ω≈Ω kk 32415182 ,////

allora

18kW 5kW

2kW

3kW

10kW

A BC D E

4,2kW 3kW

18kW

5kW

2kW

3kW

10kW

A

BªD

C E

4,2kW 3kW

2//18//5kW 3kW

10kW

A BªDC E

4,2kW 3kW

c)

b)

a)

Page 50: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

50

Ω≈ kRCB 132,

mentre

Ω=Ω≈ 33913913 kRAB ,

EG. 5 Utilizzando le formule del partitore di tensione e di corrente calcolare la tensione VCD e la corrente circolante sui 4 kW, nel circuito di figura E.1, se VAB = 12 V.

Soluzione Volendo ricorrere solo al partitore di tensione si determini VCD dalla relazione

DBCD

CDCBCD RR

RVV+

=

dove (vedi EG.1)

VRRVV

AB

CBABCB 10

6512 =⋅==

per cui

VVCB 4210

4210 ,,=⋅=

Ora, per calcolare la corrente circolante sul resistore da 4 kW, si potrebbe applicare direttamente la legge di Ohm, da cui si otterrebbe

mAVI CDk 60

104 34 ,=⋅

=

Supponendo però di non aver svolto le operazioni precedenti e di conoscere solo la corrente I uscente dal terminale A e pari a 12/6 = 2 mA, calcoliamo I4k applicando il partitore di corrente. Prima determiniamo la corrente (I//) che circola nel parallelo tra 6 e 4 kW

mAII 12==// (perché (6//4) + 7,6 = 10kW)

Quindi

mAII k 6046

64 ,// =

+⋅=

EG. 6 Nel circuito di figura E.5 determinare RX e VX se VAB = 3V e VR = 1,8V.

Soluzione

• Calcoliamo la corrente I1 (fig. E.6) che circola sul resistore da 100 W.

Page 51: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

51

mAI 18100

811 ==

,

• Determiniamo la corrente I2 che scorre sul resistore da 500 W.

mAI 6500

32 ==

• Calcoliamo RX.

Dobbiamo però prima ricavare la corrente che vi circola (I3) applicando l’equazione di Kirchhoff al nodo A

mAIII 12618213 =−=−=

(I1 entra, mentre I2 e I3 escono dal nodo A)

Possiamo quindi scrivere

Ω=⋅

==−

25010123

33I

VR ABX

• Determiniamo infine VX ricorrendo alla II legge di Kirchhoff.

VIVVV ABRX 1227381400 1 =++=++= ,,

EG. 7 Risolvere la rete di figura E.7 calcolando le correnti incognite e la tensione ai capi del

VX

100W

RX 500W

400W

A

B

VR

Fig.E.6

VAB

I1

I3 I2

VX

100W

RX 500W

400W

A

B

VR

Fig.E.5

Page 52: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

52

generatore di corrente.

Soluzione Questo è un esercizio da risolvere applicando le due leggi di Kirchhoff individuando un sistema di tre equazioni, in quanto tre sono le grandezze incognite (due correnti e una tensione). Fissiamo quindi i versi di riferimento di tali grandezze (fig. E.8) e quello di percorrenza delle maglie (scegliamo quelle interne).

Fig.E.8

Scriviamo quindi un’equazione al nodo (A) e due alle maglie; ne scaturisce il seguente sistema, che vede espresse la corrente in mA e la resistenza in kW:

⎪⎪⎩

⎪⎪⎨

=+−

=−−

+=

destraamagliaeq.

sinistraamagliaeq.

Anodoeq.

IV

VI

II

G

G

059

0210

2

2

1

21

Risolvendo il sistema otteniamo:

mAI 31 = mAI 12 = VVG 4=

EG. 8 Calcolare il valore di tutte le correnti ed il potenziale dei punti A e B segnati nel circuito di figura E.9. Siano note:

10V 5V 2mA

2kW 9kW

++

I1 I2

VG

10V 5V 2mA

2kW 9kW

Fig.E.7

Page 53: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

53

VVVVVV CEBF 45100210 ,, ===

Soluzione Dal momento che VF = 0, il potenziale di tutti i punti coincide con la tensione tra gli stessi e il punto F (collegato a massa). Ad esempio VC = VCF = 10,45 V. Sullo schema di figura E.9 abbiamo già segnato le varie correnti. Conviene applicare le leggi di Ohm e di Kirchhoff e, osservando bene il circuito, ci accorgiamo che possiamo di volta in volta individuare una equazione contenente una sola incognita.

Fig.E.9

Si impostano e si risolvono dunque le seguenti operazioni:

VVVV EBEB 1811021212 ,,, =−=−=

mAVI EB 601071 31 ,

,=

⋅=

mAVI C 1110594510

1059 333 ,,

,,

=⋅

=⋅

=

mAVVVI CBBC 73010

451018111010 3332 ,,,

=−

=−

==

mAIII 13060730125 ,,, =−=−=

VVVV BABA 375111811101301051 33 ,,,, =+⋅⋅⋅=+= −

mAIII 37073011234 ,,, =−=−=

mAIII 50130370546 ,,, =+=+=

oppure

1,5kW

2,5kW 1kW

9,5kW

1,25kW 1,7kW

12V 12,2V

A B

C

F

I6 I5 I1

I4 I2

I3

D E

Page 54: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

54

mAVI DA 50102513751112

10251 336 ,,

,,

=⋅

−=

⋅=

EG. 9 Nel circuito di figura E.10 determinare RX in modo tale che sia VAB = VG/2.

Fig.E.10

Soluzione Affinché VAB sia pari a VG/2 la resistenza tra i terminali A e B deve risultare uguale a 2 R (cade la stessa tensione su RAB e sul resistore da 2 R che sono tra loro in serie). Pertanto

( ) RRRRRR XAB 24235 =⎥⎦

⎤⎢⎣⎡ += ////

per cui

( ) RRRRX 4235 =+// (infatti 4R//4R = 2R)

quindi

RRRX 255 =//

Si ricava infine

RRX 5=

EG. 10 Calcolare le correnti sui resistori del circuito di figura E.11 ricorrendo al metodo di sovrapposizione degli effetti.

Soluzione

I. Effetto del generatore da 3 mA (fig. E.12a)

RX 5R

R23

2R

4R

VG

B

A

Page 55: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

55

mAI 2525510

51031 ,' =++

+⋅=

mAII 750252332 ,,'' =−==

Fig.E.11

II. Effetto del generatore da 6 mA (fig. E.12b)

mAII 515105

5631 ,'''' =++

⋅==

mAI 545162 ,,'' =−= Ricaviamo quindi mAIII 75051252111 ,,,''' =−=−= mAIII 75354750222 ,,,''' −=−=−= mAIII 25251750333 ,,,''' =+=+= La corrente I2 ha pertanto verso opposto rispetto a quello assegnato in figura E.11.

Fig.E.12

EG. 11 Calcolare la corrente che scorre nel resistore da 475 W del circuito di figura E.13.

Soluzione

Per risolvere il problema applichiamo due volte il teorema di Thevenin. Dapprima operiamo dei tagli come indicato in figura E.13, semplificando la rete composta dal generatore da 12V e dai resistori da 1 e 3 kW, per ridurre il circuito come in figura E.14a. Otteniamo

VVeq 331

112 =+

⋅=' V

10kW

5kW 5kW 3mA

I’1 I’2

I’3

5kW 5kW

I’’1

6mA

I’’2

I’’3 a) b)

10kW

5kW 5kW3mA

I1

6mA

I2

I3

Page 56: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

56

Ω== kReq 75031 ,//' Successivamente apriamo il bipolo A-B per ridurre il circuito come in figura E.14b.

Fig.E.13

Per calcolare ABeq VV ='' (a vuoto) ricorriamo alla sovrapposizione degli effetti. Ricaviamo

7501

7507501

111

,,

, ''

'

'''

++⋅+

++

+⋅=

eqeq

eq

eqeq R

VR

RV

( ) 7501 ,//'''eqeq RR +=

Sostituendo nelle espressioni i valori numerici di 'eqV e di '

eqR , espressa in kW, otteniamo

VVeq 68,'' =

Ω=Ω= 5255250 kReq ,''

da cui

mAI 68475525

68 ,,=

+=

Fig.E.14

12V

1kW

A

B

3kW

1kW

750W

11V

475W

I

750W

1kW

475W

11V '

eqV

475W

A

B

'eqR

A

B

I

a) b)

I

''eqR

''eqV

Page 57: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

57

EG. 12 Determinare la tensione presente ai capi del generatore di corrente da 1 mA e quella tra i terminali A e B del circuito di figura E.15.

Fig.E.15

Soluzione

Ricorriamo al metodo di sovrapposizione degli effetti e facciamo inoltre notare come i due resistori da 12 kW siano in parallelo ed equivalenti ad uno di valore Ω= kR 6// .

I. Effetto del generatore di corrente da 1 mA

(circuito semplificato in figura E.16a)

( ) VRVAB 310610 33 =⋅⋅= −//

' //

VVVVV ABABG 13101010 3310 =⋅⋅+=+= −'''

II. Effetto del generatore di corrente da 0,5 mA (fig.E.16b)

0=''ABV (la corrente erogata dal generatore circola solo sul

resistore da 10kW)

VVG 55010 −=⋅−= ,''

III. Effetto del generatore di tensione (fig.E.16c)

VR

RVAb 2

64 −=

+⋅−=

//

//'''

La '''GV coincide con la tensione ai capi dei 6 kW, per cui

VVG 2='''

12kW

10kW

6kW 4V

1mA VG

12kW

A B

0,5mA

Page 58: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

58

Otteniamo quindi

VVAB 123 =−=

VVG 102513 =+−=

Fig.E.16

EG. 13 Analizzare il circuito di figura E.17, definito Ponte di Wheatstone, determinando sotto quale condizione, relativa ai resistori, la tensione VAB si annulla. Descrivere successivamente un’espressione che leghi la tensione di ‘squilibrio’ del ponte, cioè la VAB, a quella del generatore di alimentazione e alle resistenze, ponendo R2 =R3 =R4 =R.

10kW

6kW

1mA 'GV

A

B

6kW 'ABV //R

10V

6kW

''GV

A

B

''ABV

//R

10kW 0,5mA

6kW

'''GV

A

'''ABV

//R

4V

6kW

B

6kW

10kW

a) b)

c)

Page 59: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

59

Fig.E.17

Soluzione Il ponte di Wheatstone è una particolare struttura circuitale utilizzata soprattutto per rilevare la tensione fornita da alcuni tipi di trasduttori a variazione di resistenza (termoresistenze ed estensimetri). Un trasduttore è un dispositivo che trasforma una grandezza fisica, tipo temperatura, pressione, spostamento, velocità, ecc., in una grandezza o in un parametro elettrico. La variazione di resistenza dell’elemento trasduttore, che viene inserito in uno o più lati del ponte, si traduce in una variazione della tensione di squilibrio (VAB). Si fa in modo pertanto di rendere nulla la VAB (ponte in equilibrio) quando la grandezza da convertire in segnale elettrico assume un valore di riferimento. Vogliamo perciò determinare sotto quali condizioni, relative alle quattro resistenze dello schema, si verifica la situazione di equilibrio e come la tensione di squilibrio sia legata alla resistenza del trasduttore (supponiamo R1). Osserviamo che i resistori R1 e R2, così come R3 e R4, sono in serie, per cui possiamo scrivere

⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+

=43

4

21

1

RRR

RRR

VV GAB

In condizioni di equilibrio VAB = 0, per cui

043

4

21

1 =+

−+ RR

RRR

R

Operando il minimo comune multiplo e sviluppando l’espressione otteniamo

( ) ( ) 0421143 =+−+ RRRRRR

da cui si ricava che, per realizzare l’equilibrio del ponte, deve essere verificata la relazione

4231 RRRR =

Deve essere quindi uguale il prodotto tra le resistenze inserite sui lati opposti del ponte.

R3 R4

R1 R2

VG

B

A

VAB

Page 60: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

60

Ponendo R2 = R3 = R4 = R la tensione di squilibrio del ponte è descritta dall’equazione

RRRRV

RRR

VV GGAB +

−=⎟⎟

⎞⎜⎜⎝

⎛−

+=

1

1

21

1

221

EG. 14 Nel circuito di figura E.18 calcolare la corrente I che circola sul resistore da 100W..

Fig.E.18

Soluzione Applichiamo due volte il teorema di Thevenin per trasformare i generatori reali di corrente in generatori di tensione, aprendo il circuito nel modo indicato in figura E.19a. Lo schema si riduce a quello di figura E.19b; effettuando il parallelo tra i resistori da 400 e 600W, si ricava

VVeq 421010240 31 ,=⋅⋅= −

Ω=+= 6003602401eqR

VVeq 310310 332 =⋅⋅= −

Ω= kReq 11

A questo punto si deve riapplicare il metodo di Thevenin, aprendo il circuito ai capi del resistore da 100W (fig.E19c), dopo aver eseguito la differenza tra le tensioni dei due generatori e la serie tra le resistenze nel ramo a destra dei 100W. Si ricava quindi (fig.E.19d)

VvuotoaVV ABeq 6381606

812142 ,

,,

,,,)( =⋅+⋅==

Ω=Ω== 400402160 kReq ,,//,

per cui la corrente sul resistore da 100W vale

360W

1kW

600W 100W

200W

10mA

9V

3mA

400W

I

Page 61: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

61

mAR

VI

eq

eq 27500

63100

,,==

+=

EG. 15 Un generatore reale di tensione (fig. E.20) presenta la caratteristica voltamperometrica di figura E.21. Si determinino:

- la tensione a vuoto del generatore; - la corrente di cortocircuito; - il valore della resistenza interna del generatore;

10mA

3mA

360W

200W 9V

1kW

100W 240W

Veq1

Req1 Req2

200W

100W

9V

Veq2

2,4V

600W 1,2kW

100W 6V

A

B

Veq

Req

100W

I

a)

b) c)

Fig.E.19 d)

Page 62: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

62

- la corrente di carico che provoca una diminuzione della tensione di uscita pari al 10% di quella a vuoto ed il corrispondente valore della resistenza di carico RL.

Fig.E.20 Fig.E.21

Soluzione

Dalla lettura della caratteristica deduciamo una tensione a vuoto, coincidente con quella del generatore ideale, pari a 24V e una corrente di cortocircuito (ICC) di 600mA = 0,6A.

• Calcoliamo la resistenza interna R0 del generatore.

Ω=== 4060

240 ,CC

G

IV

R

• Determiniamo la corrente I0 erogata dal generatore.

Sappiamo che la V0 è il 10% in meno di quella a vuoto, quindi

VVV G 621900 ,, ==

e che

Ω==−

= 4060

24

0

00 ,R

VVI G

da cui

AmAI 0606040

621240 ,,

==−

=

• Calcoliamo RL

Ω=== 360060621

0

0

,,

IV

RL

EG. 16 Determinare graficamente i parametri del bipolo A-B di figura E.20 (e cioè V0 e I0) se la resistenza di carico RL vale 80 W.

Soluzione Sulla caratteristica voltamperometrica del generatore di tensione reale si tracci la retta che

V0

VG

RL

I0 a)

R0

A

B

V0 (V)

24

I0 (mA)

b)

600

Page 63: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

63

identifica la resistenza da 80 W (fig. E22). L’intersezione tra le due rette individua il punto Q, le cui coordinate rappresentano la soluzione del nostro problema. Dalla lettura del diagramma rileviamo

mAIVV 20016 00 ==

Fig.E.22

Osserviamo come, rispetto all’esercizio precedente, la tensione di uscita sia scesa decisamente. Questo è spiegabile col fatto che la resistenza di carico è molto diminuita, essendo ora solo il doppio di quella interna del generatore. In modo analitico si poteva giungere alla soluzione determinando VAB attraverso il partitore di tensione tra RL e R0 (in serie ed alimentate da VG) e successivamente I0 applicando la legge di Ohm.

EG. 17 Calcolare la potenza dissipata dalla rete resistiva di figura E.23 sapendo che VR = 5 V.

Fig.E.23

Soluzione Piuttosto che calcolare e successivamente sommare le potenze dissipate da ciascun resistore è consigliabile determinare quella erogata dal generatore (si ricordi che le potenze erogate e

V0 (V)

24

I0 (mA)

20

16

12

8

4

100 200 300 400 500 600

Q

RL = 80 W

1kW VG

1kW 1,4kW

4,8kW

A

B

I I1

I2

VR

Page 64: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

64

dissipate si bilanciano). Bisogna quindi calcolare la VG. Se VR = 5 V allora

VVAB 121

1415 =+

⋅=,

Le correnti sui due rami del parallelo valgono quindi

mAI 51 =

mAI 521084

1232 ,

,=

⋅=

La corrente che il generatore eroga vale dunque

mAI 57525 ,, =+=

per cui

VVG 51912105710 33 ,, =+⋅⋅= −

La potenza erogata dal generatore e dissipata dalla rete è pertanto

mWIVP G 251461057519 3 ,,, =⋅⋅== −

EG. 18 Nel circuito di figura E.24 calcolare il valore di RX sapendo che, aprendo il contatto S, la potenza erogata dal generatore diminuisce del 20%.

Fig.E.24

Soluzione Indicando con Pc = potenza erogata con il contatto chiuso Pa = potenza erogata con il contatto aperto

possiamo scrivere

ccCca PPPPP 808020 ,%% ==−=

Dal momento che RVVIP 2==

RX 3kW

S

20V

3kW

6kW

Page 65: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

65

ca

a RRP

22 208020 ,==

Dove Rc e Ra sono le resistenze equivalenti viste dal generatore rispettivamente con il contatto chiuso e aperto.

Risulta pertanto

ac RR 80,=

con

Ω=+= kRa 5336 //

Dunque

( ) Ω=+= kRR Xc 4336 ////

da cui

Ω== kRR XX 1236 //////

Si ottiene così il valore di RX

Ω= kRX 2

EG. 19 Determinare e disegnare l’andamento temporale di vA, relativamente alla rete di figura E.25, se vi è il segnale mostrato in figura E.26.

Fig.E.25

Soluzione

La tensione vA(t) scaturisce dall’effetto combinato del particolare segnale triangolare, detto a dente di sega, con valore medio nullo, ampiezza 10V e frequenza f = 1/T = 1 kHz, e della tensione continua da 8 V. La forma d’onda di vA sarà pertanto anch’essa a dente di sega, con valore picco-picco ridotto dal partitore prodotto dal circuito, e presenterà una componente continua dovuta all’effetto degli 8 V. Per risolvere il problema ricorriamo alla sovrapposizione degli effetti.

I. Effetto del segnale a dente di sega vi(t) (fig. E.27a)

6kW

vi 3kW

6kW

8V

A

vA

Page 66: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

66

( ) ( ) ( ) ( )41

66363

⋅=+

= tvtvtv iiA ////'

II. Effetto della tensione continua (fig. E.27b)

( ) VvA 2663

638 −=+

⋅−=//

//''

Pertanto vA(t) risulta

( ) ( )2

4−=

tvtv i

A

Il segnale applicato tra A e massa presenta dunque un valore picco-picco pari a 20/4 = 5V ed una componente continua (valor medio) pari a -2V. L’andamento temporale di vA è mostrato in figura E.28.

6kW

vi 3kW

A

'Av 6kW

6kW

3kW

6kW A

6kW 8V''Av

a)

b)

Fig. E.27

t(ms)

vi(V) 10

-10

Fig. E.26

t(ms)

0,5

-4,5

Fig. E.28

-2

componente continua

1 2 3

1 2 3

vi(V)

Page 67: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

67

ESERCIZI PROPOSTI

P-1 Calcolare la resistenza equivalente vista tra i terminali A e B dei circuiti di figura P.1. ( ) ( )[ ]Ω=Ω= 250300 bRaR ABAB ;

Fig.P.1

P-2 Calcolare la resistenza equivalente vista tra i terminali A e B del circuito di figura P.2. Ripetere il calcolo cortocircuitando tra loro i nodi C e D.

[ ]Ω≈Ω= 9851 ABAb RkR ;

Fig.P.2

P-3 Calcolare la resistenza incognita RX del circuito di figura P.3 in modo da ottenere una RAB pari a 2 kW. [ ]Ω= kRX 15

P-4 Calcolare nel circuito di figura P.4. la corrente erogata dal generatore. [ ]mAI 3=

P-5 Determinare il valore delle correnti nei circuito di figura P.5. [ ]mAImAImAIbmAIa 127515 321 ==== ;;);)

P-6 Dopo aver svolto l’esercizio P.3 calcolare le tensioni e le correnti associate ad ogni resistore del circuito di figura

100W

B

A

240W

100W 170W

0,26kW

400W 0,33kW

0,5kW

B

A

450W

600W

450W

600W

150W

600W

400W

300W

800W 490W

960W 470W

A

B

240W E D

Page 68: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

68

P.3 se VAB = 30V. Si ricorra, ove opportuno, ai partitori di tensione e di corrente.

⎥⎥⎥⎥

⎢⎢⎢⎢

====Ω==Ω

VVmAIRsuVVmAIksuVVmAIksu

risultatiAlcuni

X 1280183612542

,

,

Fig.P.3

Fig.P.4

Fig.P.5

2,4kW

6kW

3kW

RX

A

B

10kW

3kW RAB

15kW 3kW

10kW 6kW

24VI

R VG

V1

BA

B A

VAB

⎪⎩

⎪⎨

Ω===

kRVV

VV

G

AB

1510I

V2

R1 R2 I2

I3

I1

VAB ⎪⎪⎪

⎪⎪⎪

Ω=Ω=

===

kRkRVV

VVVVAB

4228315

2

1

2

1

a)

b)

Page 69: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

69

P-7 Considerando VE = 0V, calcolare il potenziale di tutti i punti segnati nel circuito di figura P.6.. [ ]VVVVV VVV DCBA 842161810 ,;,;,;, =−===

Fig.P.6

P-8 Calcolare la tensione VG e la corrente I del circuito di figura P.7 sapendo che I1 = 1mA [ ]mAIVVG 5130 ,; ==

Fig.P.7

P-9 Calcolare le correnti della rete di figura P.8. [ ]mAImAImAI 503020 321 =−== ;;

Fig.P.8

P-10 Calcolare VX nel circuito di figura P.9. [ ]VVX 16=

P-11 Calcolare VX nel circuito di figura P.10 sapendo che VAB = ø5V. [ ]VVX 3=

P-12 Nel circuito di figura P.11 calcolare VAB e le correnti dei vari rami. [ ]VVAB 52,=

E

12V

10kW

20kW 120kW

50kW

40kW

B

D

C

A

1kW 5kW 10kW

1,5kW

8kW 12,5kW VG 7,5V

I

I1

250W

400W

100W20V 30V

5V 600WI2

I3

I1

Page 70: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

70

Fig.P.9

Fig.P.10

Fig.P.11

Fig.P.12

P-13 Calcolare la corrente I erogata dal generatore sapendo che sul resistore da 4 kW di figura P.12 la caduta di

10kW

5kW

2kW

1kW

20kW

20V

VX

1mA

5kW

4kW

2kW

400W

8kW

6kW

10V

VX

A

B

0,5kW

6kW 2kW

14V

2kW

6kW

28V

A B

4kW

2kW

I

9V

5kW

1kW

8kW

3kW

6V

Page 71: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

71

tensione è nulla. . [ ]mAI 54,=

P-14 Determinare la tensione a vuoto VG di un generatore reale di tensione, la cui caratteristica voltamperometrica è mostrata in figura P.13, sapendo che R0 = 25W. Calcolare la resistenza di un eventuale carico al quale il generatore fornisca una corrente di 50 mA.

[ ]Ω== 17510 LG RVV ;

Fig.P.13 Fig.P.14

P-15 Un generatore reale di corrente presenta una resistenza interna di 2 kW e fornisce in cortocircuito 50 mA. Calcolare la corrente erogata su un eventuale carico ai cui capi sia presente una tensione di 4V.

[ ]mAI 480 =

P-16 Determinare il valore della resistenza incognita nel circuito di figura P.14. [ ]Ω= kRX 15

P-17 Nel circuito di figura P.15 calcolare la potenza erogata dal generatore di valore incognito VX sapendo che la potenza dissipata dal resistore da 4kW è di 9mW e che VAB è positiva.

[ ]mWP 60=

Fig.P.15

P-18 Nel circuito di figura P.16 la tensione tra i punti A e B vale 12V. E’ noto inoltre che le potenze dissipate da R1 e da R2 sono uguali e che quella globale dissipata da tutti i resistori è di 38mW. Si calcolino R1, R2 e VX.

[ ]VVkRR X 2751221 =Ω== ;,

P-19 Calcolare per quale valore di RX la corrente che circola sul resistore da 9kW del circuito di figura P.17 diminuisce di un terzo quando il contatto S viene chiuso.

[ ]Ω= kRX 6

P-20 Nel circuito di figura P.18 è noto che la corrente circolante sul resistore da 20 kW è il 90% di quella fornita dal generatore e che la tensione ai capi del parallelo è pari a VG/3. Determinare i valori di R1 e R2.

V0(V)

VG

I0(mA) 400

3kW 1,5kW RX 10kW

3kW

10kW

VG

I 4/5 I

VX

1k

2kW

2kW 6kW

12V

4kW

B

A

Page 72: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

72

[ ]Ω=Ω= kRkR 21180 21 ;

Fig.P.16

Fig.P.17

Fig.P.18

10V

0,8kW

1,2kW

3V

VX

R1

R2

1mAB

A

13,5kW 9kW

750W

S

RX

3kW

36V I

R1 20kW

15kW

VG

R2

Page 73: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Laboratorio

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

73

LABORATORIO

ESPERIENZA 1 Misura di resistenze

Obiettivi Esercitarsi alla decodifica dei valori di resistenza attraverso il codice colori. Uso del multimetro in versione ohmetro.

Verifica della tolleranza delle resistenze.

Materiali resistori: 10 di diverso valore ohmico

e strumentazione multimetro

Procedimento

a Farsi consegnare dall'insegnante 10 resistori di valore diverso e casuale. Determinare il valore ohmico e di tolleranza delle resistenze decodificando i vari colori.

b Misurare con il multimetro in versione ohmetro i veri valori delle resistenze scegliendo di volta in volta per lo strumento la portata immediatamente superiore al valore resistivo da rilevare.

c Per ogni resistore calcolare il vero errore relativo percentuale secondo l'espressione

n

nmis

RRR

%−

dove

Rmis = valore resistivo misurato Rn = valore resistivo nominale

d Verificare che l'errore calcolato, per ogni resistore, sia inferiore alla tolleranza nominale.

e Con i dati raccolti si realizzi una tabella come quella mostrata.

valore nominale [W]

valore misurato [W]

errore relativo %

Note Gli allievi, al termine della prova, potrebbero misurare altri resistori dello stesso valore nominale e con ugual tolleranza di quelli già misurati. In questo modo avranno la possibilità, dopo averne rilevato i veri valori ohmici, di verificare come, a parità di dati nominali, si possano riscontrare differenze tra i valori.

Page 74: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Laboratorio

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

74

ESPERIENZA 2 Misura delle resistenze equivalenti di due reti proposte negli esercizi guidati

Obiettivi Esercitarsi al cablaggio di resistori inseriti in connessione serie e/o parallelo. Misura di resistenze equivalenti. Scelta tra i resistori commerciali. Verifica sperimentale degli esercizi svolti,

Materiali resistori: 1 kW, 3,9 kW, 5,6 kW, 8,2 kW, 10 kW + altri in base alle e strumentazione scelte degli allievi

multi metro

Procedimento

a Bisogna montare il circuito di figura E.1 inserendo al posto dei componenti indicati resistori di valore commerciale della serie E-12. Occorre individuare quelli di valore nominale tale da approssimare meglio i valori dati nell'esercizio EG.1.

La rete di figura E.1 si trasforma quindi in quella di figura L.l.

Fig. L. 1

b Calcolare, in base ai valori nominali, la resistenza equivalente vista tra i terminali A e B.

c Misurare con il multimetro la reale resistenza equivalente.

d Effettuare il confronto tra i dati calcolati e misurati. Osservare di quanto si discostano dal risultato dell'esercizio EG.1.

e Montare il circuito di figura E.3, relativo all'esercizio EG.2, con lo stesso criterio della fase (a). Questa volta siano gli studenti ad effettuare la scelta dei componenti.

Nel caso ci si trovasse di fronte a valori resistivi nominali che, sia in eccesso sia in difetto, si avvicinano con lo stesso scarto a una delle resistenze proposte in figura E.3 si scelga indifferentemente uno dei due componenti commerciali.

f Ripetere le fasi (b), (c) e (d).

Note Lo studente può ripetere la prova, ad esempio solo relativamente al circuito di figura E.1, cercando di approssimare maggiormente i valori ohmici attraverso una combinazione serie o parallelo di componenti commerciali.

ESPERIENZA 3 Misure di correnti e di tensioni per la verifica sperimentale dell'esercizio P-4

Obiettivi Uso dei multimetro in versione amperometro e voltmetro. Uso dell'alimentatore.

Verifica sperimentale dell'esercizio P-4.

3,9kW

5,6kW

1kW 8,2kW

10kW

A B

C D

W

Page 75: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Laboratorio

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

75

Materiali resistori: 2 x 1,5 kW , 2 x 12 kW, 15 kW , 10 kW e strumentazione multimetri

alimentatore

Procedimento

a Svolgere l'esercizio P-4.

b Montare il circuito di figura L.2, il quale non è altro che lo schema dì figura P.4 in cui sono stati sostituiti alcuni valori resistivi con i rispettivi equivalenti realizzati con componenti commerciali. Il circuito necessita di una alimentazione di 24 V. Nel caso in cui con il proprio alimentatore non si raggiungesse tale tensione, alimentare a 12 V; si otterrà però una corrente I dimezzata rispetto a quella calcolata in P-4.

c Con l'amperometro inserito come mostrato in figura L.2 misurare la corrente I erogata dall'alimentatore. Confrontare il valore misurato con quello calcolato in P-4.

d Misurare la corrente I1 e le tensioni ai capi di tutti i resistori.

Fig. L. 2 Note Se l'alimentatore non ha una visualizzazione digitale della tensione, si prenda l'abitudine di

misurarne col multimetro l'esatto valore, almeno nelle prove in cui è richiesta una certa precisione nei risultati. Il valore della corrente I risulta molto vicino a quello calcolato di 3mA (3,03 mA), mentre la misurazione di I1 ha dato come risultato 0,81 mA (contro gli 0,8 mA teorici). Andando a rilevare poi le varie tensioni si può verificare ciò che si deduce dall'analisi dei circuito e cioè come i resistori da 15 kW e da 10 kW siano in parallelo così come i due da 12 e la serie 1,5 + 1,5.

ESPERIENZA 4 Misura di tensioni e correnti in una rete con due alimentatori

Obiettivi Misura di correnti e di tensioni.

Verifica delle leggi di Kirchhoff. Bilancio energetico.

Materiali resistori: 1,8 kW, 2,2 kW:, 2,7 kW

15kW

1,5kW

10kW 12kW

24VI

A

1,5kW

I1

12kW

Page 76: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Laboratorio

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

76

e strumentazione multimetri due sezioni di alimentazione

Procedimento a Montare il circuito di figura L.3.

b Dopo aver regolato le due tensioni di alimentazione misurare le correnti dei tre rami e le tensioni ai capi di ciascun resistore.

Fig. L. 3

c Con i valori di corrente e tensione misurati verificare la I legge di Kirchhoff, relativa ad uno dei due nodi, e la II applicata ad una delle maglie.

d Constatare se entrambi i generatori si comportano da bipoli attivi.

e Sempre attraverso i valori misurati calcolare le potenze associate ad ogni sezione di alimentazione e a ciascun resistore; successivamente eseguire il bilancio energetico.

Note Questi sono i valori di tensione e corrente da noi rilevati: R = 2,2 kW : V = 2,27 V I = 1,04 mA R = 1,8 kW : V = 6,73 V I = 3,76 mA R = 2,7 kW. : V = 7,27 V I = 2,72 mA

I generatori sono entrambi attivi.

ESPERIENZA 5 Verifica dei metodo di Thevenin

Obiettivi Applicazione del metodo di Thevenin. Misura della resistenza equivalente attraverso il metodo del dimezzamento di tensione.

Uso del trimmer.

Materiali resistori: 10 kW, 15 kW, 3,9 kW e strumentazione trimmer 10 kW

multimetri due sezioni di alimentazione

Procedimento

a Calcolare la corrente che circola sul resistore da 3,9 kW nel circuito di figura L.4 utilizzando il metodo di Thevenin.

b Montare il circuito e misurare la corrente incognita.

9V 5V

1,8kW 2,7kW

2,2kW

Page 77: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Laboratorio

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

77

Fig. L. 4

c Misurare ora la Veq e la Req viste dal bipolo A-B. Per misurare la Veq si inserisca un voltmetro al posto del resistore da 3,9 kW , mentre per rilevare la Req si modifichi il circuito come in figura L.5, utilizzando il multimetro in versione ohmetro.

Fig. L. 5

d Per rilevare l'entità della resistenza equivalente si può ricorrere, in alternativa, al metodo del dimezzamento della tensione, che consiste nell'inserire un trimmer e nell'alimentare la rete con una certa tensione E, come mostra la figura L.6. Scegliere un trimmer di valore nominale superiore alla presunta resistenza equivalente (optiamo per l0 kW) e fissare E =10 V. Inserire un voltmetro in parallelo alla resistenza da 15 kW e regolare il cursore del trimmer fino a leggere sullo strumento una tensione pari a E/2, cioè 5 V. A questo punto misurare la resistenza del trimmer.

Fig. L. 6

Quella rilevata coinciderà proprio con la Req, in quanto, essendo uguali le tensioni sul parallelo e sul trimmer, lo saranno anche le rispettive resistenze.

e Una volta determinate sperimentalmente Veq ed Req montare il circuito di figura L.7 e rimisurare la corrente.

10kW

15kW V E

RV

10kW

15kW

A

B

WVeq

15V

10kW

15kW

3,9kW

10V

A

B

I

Page 78: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Laboratorio

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

78

Fig. L. 7

f Confrontare i valori di corrente rilevati nelle fasi (b) ed (e) con quello teorico calcolato.

Note Con il metodo diretto indicato nella fase (b) abbiamo rilevato una corrente di 505 mA. La successiva misura di Veq ed Req ha fornito i seguenti risultati:

Veq = 5,03 V

Req = 6,2 kW

La corrente rilevata nella fase (e) é stata di 500 mA.

A

Veq

Req

3,9kW

Page 79: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Quadro riassuntivo

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

79

QUADRO RIASSUNTIVO

Leggi e metodi per la soluzione delle reti elettriche

Denominazione Definizione

Ohm In un resistore RVI =

Kirchhoff I In un nodo la somma delle correnti entranti è uguale alla somma delle correnti uscenti.

Kirchhoff II In una qualsiasi maglia di una rete elettrica la somma algebrica delle tensioni è nulla.

Sovrapposizione degli effetti È possibile calcolare una o più grandezza di una rete lineare considerando separatamente l’effetto prodotto da ciascun generatore presente nel circuito, annullando ogni volta l’azione degli altri generatori e sommando poi algebricamente gli effetti trovati.

Thevenin Una qualsiasi rete elettrica lineare vista da due terminali può essere rappresentata in modo equivalente da un bipolo costituito da un generatore di tensione ideale (Veq) in serie ad una resistenza (Req). La Veq si determina calcolando la tensione ‘a vuoto’ presente tra i due terminali di uscita della rete da semplificare. La Req è la resistenza vista dal bipolo, guardando verso la rete da semplificare, dopo aver annullato i generatori indipendenti.

Potenza elettrica e bilancio energetico

VIP = 2RIP = R

VP2

=

In una rete elettrica la somma algebrica delle potenze associate ai generatori è uguale alla somma aritmetica delle potenze dissipate dai resistori.

Page 80: Alessandro Bertelli – Mariano Zanchi

Reti elettriche – Quadro riassuntivo

Dipartimento di lettronica I.T.S. “L. Einaudi” - Montebelluna

80

Connessioni di resistenze e partitori

serie partitore di tensione

Neq RRRR +++= ...21

eqR R

RVV =

parallelo partitore di corrente (tra 2 resistori)

Neq RRRR

1111

21

+++= ...

(2 resistori) 21

21

RRRRReq +

=

21

21 RR

RII+

=

21

12 RR

RII+

=

Page 81: Alessandro Bertelli – Mariano Zanchi

Dipartimento di elettronica Istituto Tecnico Statale “Luigi Einaudi” - Montebelluna

Reti elettriche lineari Capitolo II – Il condensatore, l’induttore e i fenomeni transitori

Alessandro Bertelli – Mariano Zanchi

Riedizione a cura di Massimo Ballon

Page 82: Alessandro Bertelli – Mariano Zanchi

Sommario

2 Il condensatore, l'induttore e i fenomeni transitori ........................................................................ 83

2.1 II condensatore............................................................................................................................. 84 Esempio 1.................................................................................................................................... 85 Esempio 2.................................................................................................................................... 85

2.2 Fenomeni transitori nei circuiti R-C........................................................................................... 87 Esempio 3.................................................................................................................................... 89

Condensatore inizialmente carico e sottoposto ad una tensione di alimentazione nulla ................ 89 Esempio 4.................................................................................................................................... 91

Analisi generalizzata ....................................................................................................................... 91 Esempio 5.................................................................................................................................... 92 Esempio 6.................................................................................................................................... 92

2.3 L'induttore .................................................................................................................................... 93 Rete R-L sottoposta ad una tensione a gradino............................................................................... 94 Rete R - L con corrente iniziale diversa da zero e tensione di alimentazione nulla ....................... 96

2.4 Connessioni serie-parallelo di condensatori ed induttori........................................................... 97 Condensatori in serie....................................................................................................................... 97 Condensatori in parallelo ................................................................................................................ 98

Esempio 7.................................................................................................................................... 98 Induttori in serie .............................................................................................................................. 99

Esempio 8.................................................................................................................................... 99 Induttori in parallelo........................................................................................................................ 99

Esempio 9.................................................................................................................................. 100 2.5 Analisi dei circuiti R-L ed R-C attraverso la trasformata di Laplace ...................................... 100

Esempio 10................................................................................................................................ 102 Esempio 11................................................................................................................................ 103

2.6 Caratteristiche dei condensatori ................................................................................................ 104 Parametri principali....................................................................................................................... 104 Tipologie ....................................................................................................................................... 105 Ceramici ........................................................................................................................................ 106 Plastici........................................................................................................................................... 106 Elettrolitici .................................................................................................................................... 107 Condensatori variabili ................................................................................................................... 108

2.7 Caratteristiche degli induttori.................................................................................................... 108 Angolo di perdita e fattore di merito............................................................................................. 109

ESERCIZI PROPOSTI.................................................................................................................... 129 LABORATORIO .............................................................................................................................. 133

ESPERIENZA 1 Risposta al gradino di un circuito R-C.......................................................... 133 ESPERIENZA 2 Analisi del transitorio in un circuito R-C....................................................... 134 ESPERIENZA 3 Analisi del transitorio in un circuito R-C con struttura del tipo di figura E.1b 135 ESPERIENZA 4 Risposta al gradino di un circuito R-L.......................................................... 136

QUADRO RIASSUNTIVO .............................................................................................................. 139 Condensatori ................................................................................................................................. 139 Risposta al gradino. Formula generale.......................................................................................... 139

Page 83: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

82

Induttori......................................................................................................................................... 140

Page 84: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

83

2 Il condensatore, l'induttore e i fenomeni transitori

In questa Unità di Apprendimento affrontiamo lo studio di due componenti passivi quali il condensatore e l'induttore, definiti genericamente reattivi, e l'analisi del loro comportamento sia in regime continuo che transitorio. Sviluppiamo specificatamente questo argomento per giungere alla descrizione ed alla utilizzazione di espressioni analitiche. che consentano di determinare l'andamento temporale di tensioni e correnti relative a circuiti R-C (resistore-condensatore) ed R-L (resistore-induttore) sottoposti a segnali a gradino. La trattazione è relativa a sistemi del primo ordine, costituiti da reti in cui sono presenti o un unico elemento reattivo o gruppi di un tipo di tali componenti, ma connessi tra loro in serie e/o in parallelo. Per la comprensione delle espressioni analitiche che saranno affrontate si ritiene necessaria la conoscenza della funzione esponenziale.

OBIETTIVI

Conoscere i condensatori e gli induttori e le loro unità di misura

Saper determinare i valori equivalenti di tali componenti connessi in serie e in parallelo

Comprendere i fenomeni transitori relativi a circuiti R-C ed R-L. sottoposti a segnali di ingresso a gradino

Conoscere il significato fisico di costante di tempo e saperla calcolare nei vari circuiti

Saper analizzare i fenomeni transitori nei circuiti R-C ed R-L più significativi sia mediante le formule dirette di soluzione sia attraverso l'uso della trasformata di Laplace

Page 85: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

84

2.1 II condensatore Il condensatore è un componente lineare provvisto di due terminali. E’ quindi un bipolo e, al

contrario del resistore, non dissipa potenza, ma la scambia con il sistema in cui è inserito. Esso è capace di immagazzinare energia che successivamente è in grado di restituire al circuito che

l'aveva fornita. Il condensatore, il cui simbolo elettrico è mostrato in figura 1, è praticamente costituito da due

elementi conduttori (armature) separati da uno strato di materiale isolante (dielettrico).

Fig. 1 Condensatore Fig. 2

Se tra le armature del condensatore viene applicata una differenza di potenziale (fig. 2), queste accumuleranno una carica di ugual valore ma di segno opposto. La relazione tra carica Q e tensione V risulta

VQC = (2.1)

C è un parametro costante, indipendente dal valore della tensione applicata, che rappresenta la capacità del condensatore e si misura in farad [F].

La capacità di un farad è quella di un condensatore che sottoposto alla d.d.p. di 1 V acquista la carica di 1 C.

Proprio l'invariabilità della capacità con la tensione fa sì che questo componente possa essere considerato lineare.

Dal momento che il farad rappresenta una unità di misura molto elevata rispetto ai valori capacitivi che si riscontrano nelle varie applicazioni, per i componenti commerciali si ricorre ai sottomultipli quali:

il microfarad [mF] fl 1 mF = 10-6 F

il nanofarad [nF] fl 1 nF = 10-9 F

il picofarad [pF] fl 1 pF = 10-12 F

Nel caso in cui il condensatore sia già carico e sottoposto ad una tensione continua, la struttura stessa

C

-Q

+ + + +

+ + + + + + + +

- - - -

- -

- -

-

+Q

V

-

+

Page 86: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

85

del componente impedisce, nel ramo in cui esso è inserito, un passaggio di corrente.

Il termine ‘già carico’, come più spesso vedremo nel prossimo paragrafo, indica una situazione che per il condensatore viene definita più propriamente a regime. Possiamo dunque affermare che

un condensatore, alimentato da una tensione continua e a regime, può essere considerato un circuito aperto.

Esempio 1

Determinare la tensione e la carica presenti a regime sulle armature del condensatore nel circuito di figura 3.

Fig. 3

Il condensatore risulta carico alla tensione del generatore e cioè 10 V. La caduta di tensione ai capi del resistore è nulla così come la corrente che circola nella maglia. La quantità di carica presente sulle due armature si può calcolare utilizzando l'espressione (2.1), da cui si ricava

CnCCVQ μ470470101047 9 .==⋅⋅== −

Esempio 2

Calcolare la capacità del condensatore del circuito di figura 4 sapendo che la carica accumulata a regime sulle sue armature vale 0,2 mC.

Fig. 4

Determiniamo prima la tensione ai capi del condensatore, sapendo che, quando questo è già carico, può essere considerato come un circuito aperto. Pertanto, osservando anche la figura 5, possiamo scrivere

VVC 263

6963

324 =+

⋅−+

⋅=

per cui dall'espressione (2,1) risulta

nFFVQ

C 10010220

==== μ,,

10V

1kW

47nF VC

24V

6kW

C

3kW

9V + -

Page 87: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

86

Fig. 5

Nel ramo in cui è posto un condensatore è possibile osservare un movimento di cariche e quindi un passaggio di corrente, che ovviamente non avviene attraverso il dielettrico, solo se vi è una variazione della tensione applicata.

Ad esempio, ad un aumento di tensione DV corrisponde un incremento di carica DQ pari a

VCQ Δ=Δ (2.2)

Questa variazione di carica avviene in un intervallo di tempo Dt in virtù di una corrente che per definizione vale

tQIΔΔ

= (2.3)

da cui

tIQ Δ=Δ (2.4)

Pertanto l'equazione (2.2) si può scrivere

VCtI Δ=Δ (2.5)

dalla quale ricaviamo la relazione che lega corrente e tensione in un ramo capacitivo e cioè

tVCIΔΔ

= (2.6)

Questa equazione è stata scritta per intervalli finiti delle grandezze in gioco. Nel caso più generale di tensione variabile con continuità le varie espressioni si dovrebbero

considerare valide per intervalli di tempo infinitesimi (cioè di durata tendente a zero) e in tali relazioni bisognerebbe esprimere le grandezze con lettere minuscole, in quanto funzioni del tempo.

In tal caso l'equazione (2.6) si trasformerebbe nella seguente

tvCiΔΔ

= (2.7)

dove il termine dv/dt rappresenta la derivata della tensione rispetto al tempo e costituisce una operazione matematica non ancora affrontata a questo punto del corso di studi.

Per quanto concerne l'argomento appena esposto sono al momento sufficienti comunque i concetti relativi all'espressione (2.6).

24V

6kW 3kW

9V VC

Page 88: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

87

2.2 Fenomeni transitori nei circuiti R-C

Viene da chiedersi cosa accade se in un circuito in cui é presente un condensatore, supposto già in situazione di carica ‘a regime’ o completamente scarico, viene modificato il valore di alimentazione continua.

Da quanto esposto precedentemente deduciamo che il condensatore varia la sua carica e si porta in un nuovo stato di ‘regime’.

Questo però avviene passando attraverso un fenomeno di carica (o scarica) definito transitorio, la cui durata, come spiegheremo più avanti, dipende dai valori delle resistenze e della capacità presenti nel circuito.

Per cercare di capire meglio quanto si vuole proporre facciamo ora riferimento al classico schema di figura 6a.

Condensatore inizialmente scarico e sottoposto ad una tensione di alimentazione a gradino Nel circuito di figura 6a si suppone il condensatore inizialmente scarico; la tensione ai suoi capi è

pertanto nulla.

a) b)

Fig. 6 ( ) 00 =Cv

Alla serie composta dal condensatore e dal resistore viene applicato un segnale vi a gradino che, come visto nell'unità precedente, ha le seguenti caratteristiche

vi = 0 per t < t0

vi = VG per t > t0

dove con t0è indicato l'istante in cui avviene il passaggio tra 0 e VG del segnale vi. In figura 6b abbiamo voluto simulare il gradino di tensione mediante l'intervento su un deviatore che

in posizione 1 mantiene il condensatore scarico, mentre portato nell'istante t0 in posizione 2 permette l'eccitazione della rete con la tensione VG.

Per comodità possiamo indicare con 0 l'istante t0 di inizio fenomeno. Nel momento appena successivo alla transizione di vi da 0 a VG, che possiamo indicare come istante

0+, il condensatore mantiene il suo stato di carica nulla; questa, infatti, in un intervallo di tempo infinitesimo, non può cambiare.

Dunque possiamo affermare che ( ) 00 =+

Cv

La rete è però ora alimentata dalla tensione VG e dunque il condensatore ha la possibilità di caricarsi

VG 0

R

C vi vC

iC

R

12

iC

vC C vi

VG

Page 89: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

88

grazie ad una corrente che, per t = 0+, assume valore massimo, uguale a VG/R. Questo valore si calcola considerando che la corrente di carica è la stessa che circola sui resistore, ai

cui capi è presente la tensione CGR vVv −=

vR all'istante 0+ vale dunque VG. Successivamente, nell'evolversi del fenomeno, il condensatore accumula cariche e la sua tensione

aumenta tendendo a VG. Bisogna però constatare che nel frattempo, se la vC sale, la tensione ai capi del resistore diminuisce e

così pure la corrente di carica. Ciò significa che la vC aumenta con una ‘velocità’ sempre minore, in quanto questa dipende proprio dall'entità della corrente.

L'andamento temporale della tensione vC può dunque essere rappresentato da una funzione esponenziale crescente (U.D. 1, par. 9). Dall'analisi di questa funzione e da quanto esposto si può dedurre che in realtà la vC non arriva mai al valore di tensione VG, al quale tende asintoticamente, ma che comunque tale valore potrà essere considerato praticamente raggiunto dopo un tempo che tra poco verrà quantificato.

L'equazione esponenziale che descrive il fenomeno transitorio relativo allo schema di figura 6 è

( ) ⎟⎠⎞⎜

⎝⎛ −=

− τt

GC eVtv 1 (2.9)

ed il diagramma che la rappresenta è mostrato in figura 7. La velocità con cui il transitorio si evolve è dipendente dal parametro t, definito costante di tempo.

Fig. 7 Carica del condensatore

Nell'equazione (2,9) infatti, quanto minore è t, tanto più piccolo risulta il termine τte− e tanto maggiore, a parità di tempo, è il valore di vC.

Possiamo dare alcune informazioni sulla costante di tempo di un generico circuito R-C, sia dedotte dal diagramma temporale di figura 7 sia relative ai componenti circuitali della rete.

La costante di tempo è individuata dall'intervallo temporale che si ottiene tracciando la tangente alla funzione nell'origine dei tempi e proiettando la sua intersezione con la retta vC = VG sul l'asse delle ascisse.

t

vC

VG

t

vC º 99% VG

5t

63% VG

Page 90: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

89

Una bassa costante di tempo implica quindi una retta tangente con maggior pendenza e quindi una velocità iniziale di crescita della funzione più elevata.

In un tempo pari a t il condensatore si carica ad un valore pari a circa il 63% di quello a regime. La tensione ai suoi capi è dunque vC(t) º 0,63 VG.

Ponendo infatti nella equazione (2.9) t = t si ha

( ) ( ) GGC VeVv 6301 1 ,≈−= −τ (2.10)

La costante di tempo, attraverso i componenti della rete, si calcola in base alla relazione

CReq=τ

dove Req rappresenta la resistenza equivalente vista dai terminali del condensatore dopo aver annullato l'effetto dei generatori.

La durata di un fenomeno transitorio può essere considerata praticamente pari ad un tempo equivalente a circa 5 volte t.

Dalla equazione (2.9) si calcola infatti

per t=5t fl vC (5t) = VG (1 - e-5) º 0,993 VG

che, con un errore di approssimazione inferiore all' 1%, può essere considerato valore a regime.

Esempio 3

Calcolare dopo quanto tempo il condensatore del circuito di figura 6 può essere considerato carico sapendo che R=15 kW e C=220 nF. La costante di tempo della rete di figura 6 è pari a

t = RC = 15 ÿ 103 ÿ 220 ÿ 10-9 = 3,3 ms

Il condensatore si carica praticamente in 5t e cioè in un tempo

T = 5t = 5 ÿ 3,3 = 16,5 ms

Condensatore inizialmente carico e sottoposto ad una tensione di alimentazione nulla

Analizziamo il circuito di figura 6a considerando stavolta il condensatore già carico alla tensione VG ed immaginando la rete sottoposta ad un gradino di tensione opposto a quello precedente; si ipotizzi cioè che la tensione di ingresso, in un nuovo istante iniziale fissato per comodità di nuovo a 0, torni a 0 volt (fig. 8).

Il condensatore ora si trova praticamente inserito in una maglia che si chiude semplicemente attraverso il resistore (fig. 9).

Page 91: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

90

a) b)

Fig. 8 ( ) GC Vv =0

Nel nuovo istante 0+, appena successivo alla transizione della tensione di ingresso da VG a 0 volt, il condensatore non varia la carica accumulata, ma ha la possibilità di iniziare a scaricarsi in quanto le cariche negative addensate su una delle sue armature percorrono la maglia, con verso opposto a quello convenzionale della corrente, per andare a neutralizzare le cariche positive poste sull' altra armatura.

La corrente di scarica, istante per istante, vale

( ) ( )R

tvti C

C = (2.12)

e in t = 0+ assume il suo massimo valore, cioè VG /R.

Fig. 9 Fig. 10 Scarica del condensatore

Anche in questo caso la velocità con cui il componente si scarica, legata all'entità della corrente, diminuisce durante l'evolversi del fenomeno.

La tensione tende ad annullarsi in modo asintotico ed è dunque nuovamente un'equazione esponenziale, questa volta decrescente, a descriverne l'andamento (fig. 10) e cioè

( ) τtGC eVtv −= (2.13)

dove, anche in questo caso, t rappresenta la costante di tempo della rete.

R C vC

iC

+

t

vC

VG

t

vC º 1% VG

5t

37% VG

VG 0

R

C vi vC

iC

R

21 vC C vi

VG

Page 92: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

91

Esempio 4

Calcolare quanto vale la tensione ai capi del condensatore nel circuito di figura 8 dopo 3,3 ms dall'inizio del fenomeno di scarica, considerando i valori dei componenti assegnati nell'esempio 3 e vC(0) = 15V. Anche in questo circuito la costante di tempo vale

t = RC 3,3 ms

Quindi il valore di tensione richiesto è quello osservato dopo un tempo pari a t. Ricorrendo all'equazione (2.13) e sapendo che vC(0) = Vo = 15V, otteniamo

vC (t) = 15e-1 º 5,52V

In un tempo pari a t la tensione ai capi del condensatore è diminuita di una quantità pari a

15 - 5,52 = 9,48 V

e cioè di una frazione pari al 63% di VG.

Analisi generalizzata Le equazioni (2.9) e (2.13) sintetizzano l'andamento temporale dei fenomeni di carica e scarica di un

condensatore inserito in un classico circuito R-C. A questo punto è necessario però trovare il modo per generalizzare la descrizione analitica di un

qualsiasi fenomeno transitorio, relativo ad una rete sottoposta ad una tensione a gradino, in cui sia comunque presente un solo componente reattivo.

È possibile giungere ad una equazione generale risolutiva applicando la seconda legge di Kirchhoff alla maglia relativa al circuito R-C (come ad esempio quello delle figure 6 o 8).

Il procedimento che conduce alla formula finale tuttavia non può essere proposto in quanto l'equazione alla maglia risulta generalmente integro-differenziale ed una sua analisi richiederebbe pertanto conoscenze di matematica che certamente non possono essere proposte agli allievi a cui quest' opera è dedicata.

Si fornisce perciò direttamente l'espressione generale che, opportunamente applicata, può essere utilizzata per determinare l'andamento temporale di qualsiasi corrente o tensione relativa ai circuiti R-C nelle condizioni sopra citate.

L'espressione risolutiva è dunque del tipo

( ) τtBeAtf −+= (2.14)

dove

f(t) = tensione o corrente t = costante di tempo A e B = parametri costanti

Per individuare l'andamento della tensione o della corrente sotto analisi bisogna di volta in volta determinare i valori dei parametri A e B. Questi possono essere calcolati imponendo sulla rete le cosiddette condizioni iniziali e finali. Ciò significa ‘fotografare’ il circuito rispettivamente negli istanti 0+ ed ¶, dove con ¶ identifichiamo il valore limite di tempo in cui il condensatore é a regime.

CONDIZIONE INIZIALE

f(0+) = A + B (2.15) (in quanto 1=− τte per t = 0)

Il valore f(0+) deve essere dedotto dal circuito.

CONDIZIONE FINALE

Page 93: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

92

f(¶) = A (2.16)

(in quanto 0=− τte per t Ø ¶ Il valore f(¶), coincidente con quello a regime, deve essere dedotto dal circuito. Dalle equazioni

(2.15) e (2.16) si ricava anche che

B =.f(0+) -.f(¶) (2.17)

La (2.14) può quindi essere riscritta in questo modo

( ) ( ) ( ) ( )[ ] τteffftf −+ ∞−+∞= 0 (2.18)

Esempio 5

Utilizzare l'equazione (2.18) per giungere alle (2.9) e (2.13). Nel circuito di carica (fig. 6) sappiamo che

vC (0+) = 0 e vC (¶) = VG

per cui, applicando l'equazione (2.18), otteniamo

vC (t) = VG + [0 - VG ]e-t/t

che, dopo aver messo in evidenza VG, coincide con la (2.9). Nel circuito di scarica (fig. 8) invece sappiamo che

vC (0+) = VG e vC (¶) = 0

per cui dalla (2.18) ricaviamo

vC (t) = 0 + [VG - 0]e-t/t

praticamente equivalente alla (2.13).

Esempio 6

Relativamente al fenomeno di carica della rete di figura 6 determinare l'andamento temporale della corrente ricorrendo all'equazione (2.18). Nel circuito di figura 6 sappiamo che

( ) ( )R

VRvV

i GCGC =

−=

++ 0

0

( ) 0=∞Ci (a regime la corrente di carica è nulla)

per cui

( ) ττtGtG

C eR

Ve

RV

ti −−=⎥

⎤⎢⎣

⎡−+= 00

Page 94: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

93

2.3 L'induttore

L'induttore, il cui simbolo elettrico è mostrato in figura 11, è un componente lineare per il quale la relazione tra corrente e tensione (alle differenze finite) risulta

tiLvL Δ

Δ−=

(2.19)

dove vengono indicati

- con il termine vL, la forza elettromotrice autoindotta (f.e.m.); - con L il coefficiente di autoinduzione o induttanza, parametro che presenta come unità di misura

l'henry [H].

L'equazione (2.19) rappresenta in pratica la legge di Lenz la quale afferma che

se in un conduttore, avvolto in modo da costituire una spira o una bobina, circola una corrente che varia nel tempo, ai capi di questo conduttore si manifesta una forza elettromotrice indotta proporzionale alla velocità di variazione di tale corrente (Di/Dt).

Il coefficiente di proporzionalità é proprio l'induttanza L, mentre il segno negativo posto davanti al termine a destra della (2.19) indica che la f.e.m. prodotta é di polarità tale da opporsi alla variazione di corrente. La freccia con la quale indicheremo questa tensione avrà verso opposto a quello della corrente se questa tenderà ad aumentare (fig. 12a), verso concorde se la corrente tenderà a diminuire (fig. 12b).

Ricordiamo inoltre che l'induttanza rappresenta il coefficiente di proporzionalità che lega il flusso magnetico F, generato dalla corrente che scorre nella spira o nella bobina, e la corrente stessa; vale cioè la relazione

F = Li (2.20)

Il flusso è quello concatenato, cioè quello che attraversa la superficie della spira o delle spire della bobina e nel Sistema Internazionale si misura in weber [Wb].

L'induttanza invece dipende sia dal mezzo in cui il flusso si instaura sia dalla struttura del componente.

Un induttore di valore 1H percorso dalla corrente di 1A genera un flusso concatenato di 1Wb. Anche l'induttore inoltre, così come il condensatore, è un componente in grado di immagazzinare o

cedere energia. In questa Unità di Apprendimento non facciamo volutamente cenno ai fenomeni di mutua induttanza,

non indispensabili in questo contesto e legati in ambiente elettrico soprattutto al funzionamento del

L L L i+Di i-Di

vL vL Fig. 11 Induttore

a) b)

Fig. 12

Page 95: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

94

trasformatore, di cui rimandiamo lo studio al volume Fondamenti di Elettronica. L'equazione (2.19) alle differenze finite in realtà è strettamente valida solo se, nell'intervallo di

tempo considerato Dt, la corrente varia linearmente. In caso contrario si dovrebbe ricorrere ad una operazione di derivata e la (2.19) si trasformerebbe nella

dtdiLvL −=

(2.21)

Dalle equazioni (2.19) e (2.21) appare comunque chiaro che,

se la corrente è costante, quindi in regime continuo, l’induttore, considerato idealmente un conduttore di resistenza nulla, si comporta come un cortocircuito (vL=0).

Dalla (2.19) è altresì chiaro che, applicando in un determinato istante ai capi del componente una certa tensione, la corrente non varia immediatamente di una quantità finita. Questo significa che, nel momento in cui si applica una tensione di tipo a gradino

— l'induttore si comporta come un circuito aperto rispetto alla variazione di corrente;

— nel ramo in cui l'induttore è inserito bisogna comunque considerare la corrente circolante prima del verificarsi del cambiamento dell'alimentazione.

Queste due constatazioni sono utili per studiare anche nei circuiti R-L, costituiti da resistori ed induttori, i fenomeni transitori, che si osservano nel passaggio di queste reti tra due situazioni di regime.

Rete R-L sottoposta ad una tensione a gradino Per determinare l'andamento temporale della corrente o della tensione relative ad uno dei due

componenti della rete di figura 13, sottoposta ad una eccitazione di tipo a gradino, si può, anche in questo caso, ricorrere all'equazione (2.18) derivante dalla soluzione della equazione differenziale relativa alla maglia individuata dalla rete in questione.

a) b)

Fig. 13 ( ) 00 =Li

Volendo analizzare la corrente di maglia iL e la tensione presente ai capi dell'induttore vL, fissando in t0 = 0 l'istante in cui avviene la transizione della tensione di ingresso, possiamo osservare che

- la corrente, un attimo prima dell'istante di applicazione del gradino e cioè in t = 0-, è nulla e dal momento che non può variare istantaneamente lo è anche in t = 0+; per cui

VG 0

R

L vi vL

iL R

12

iL

vL L vi

VG

Page 96: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

95

iL(0+) = 0

- la tensione vL, corrispondente alla f.e.m. autoindotta, in t = 0+ è massima e va a bilanciare la tensione di alimentazione e pertanto

vL(0+) = VG

- la corrente ‘a regime’, cioè a fine transitorio, si determina considerando l'induttore un cortocircuito, quindi

( )R

Vi GL =∞

- la tensione vL, a regime è invece nulla

vL(¶) = 0 Dall'equazione (2.18) si ricavano così gli andamenti esponenziali, crescente per iL e decrescente per

vL, delle due grandezze (fig.14).

a) b)

Fig. 14 Forme d’onda in un circuito R-L alimentato da una tensione a gradino.

( ) ( )( ) τ

τ

tGL

tGL

eVtv

eR

Vti

=

−= 1

).(

).(

232

222

t rappresenta la costante di tempo della rete ed assume lo stesso significato fisico visto per i circuiti R-C; in questo caso però vale la relazione

eqRL

=τ (2.24)

In questo caso Req = R, ma può essere generalmente determinata con i criteri già esposti nei circuiti

t

vL

VG

t

37% VG

63% VG

t

iL

RVG

t

iL º 99%R

VG

5t

63% R

VG

Page 97: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

96

R-C. I valori a regime delle grandezze interessate dal fenomeno transitorio possono essere considerati

raggiunti dopo un tempo pari a 5 t.

Rete R - L con corrente iniziale diversa da zero e tensione di alimentazione nulla

La situazione è illustrata dagli schemi di figura 15. La rete di figura 13 viene ora eccitata da una tensione a gradino con tendenza opposta alla precedente. Siamo infatti di fronte ad una transizione della tensione vi, da VG a 0 volt.

Considerando per comodità il nuovo istante iniziale come istante t0 = 0 e supponendo iL(0-) = VG /R possiamo dedurre che

a) b)

Fig. 15 ( ) RVi GL 0

- in t = 0+, appena successivo alla transizione di vi, la corrente non cambia valore, per cui

( )R

Vi GL =+0

- la tensione vi, è la f.e.m. che viene generata in opposizione alla tendenza della corrente a variare; se ora vi = 0, mantenendo lo stesso verso di riferimento assegnato in figura 13, si ricava

( ) ( ) GLL VRiv −=−= ++ 00

- nella nuova situazione di regime la corrente e la tensione si annullano, per cui

iL (¶) = 0 vL (¶)=0

Gli andamenti esponenziali delle due grandezze (fig. 16) si ricavano ancora dalla equazione (2.18) e sono rappresentati analiticamente dalle espressioni

( )

( ) τ

τ

tGL

tGL

eVtv

eR

Vti

−=

=

).(

).(

262

252

con t ancora uguale a L/R.

VG 0

R

L vi vL

iL R

21 vL vi

VG

L

Page 98: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

97

Fig. 16 Forme d’onda relative al circuito di figura 15

2.4 Connessioni serie-parallelo di condensatori ed induttori

L'equazione (2.18) fornisce, una volta determinati i valori iniziali e finali, l’andamento temporale del segnale in regime transitorio nei sistemi di primo ordine e cioè in reti R-C ed R-L nelle quali il componente capacitivo o induttivo è unico. Tale espressione è utilizzabile anche nel caso in cui, in presenza di un gruppo di questi elementi, essi possano essere ricondotti ad uno di valore equivalente attraverso risoluzione di collegamenti serie e/o parallelo effettuati dopo aver annullato i generatori indipendenti.

Forniamo ora le espressioni utili per calcolare i valori equivalenti delle varie connessioni relative ai due tipi di componenti.

Per rendere più snella la trattazione non proponiamo in questa parte le dimostrazioni; rimandiamo tali procedure, relative solo ai condensatori, alla sezione Esercizi guidati (EG. 11).

Condensatori in serie

I condensatori di figura 17 sono in serie. Per ciascuno di loro è uguale la carica accumulata.

Fig. 17 Condensatori in serie

Il valore di capacità equivalente è dato dall'espressione

t

iL

RVG

vL

-VG

t

C1

Q

C2

Q

CN

Q

V

+ + + - - -

Page 99: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

98

N

eq

CCC

C111

1

21

+++=

... (2.27)

che, nel caso di due soli elementi, si trasforma nella

21

21

CCCCCeq +

= (2.28)

Condensatori in parallelo

Una connessione di condensatori in parallelo è mostrata in figura 18. In questa configurazione é la tensione ai capi di ciascun elemento ad essere la stessa. La capacità equivalente risulta

Neq CCCC +++= ...21 (2.29)

Fig. 18 Condensatori in parallelo

Esempio 7

Calcolare la capacità equivalente della rete di condensatori mostrata in figura 19. Si ponga: C1 = 0,47pF, C2=100nF, C3=150nF. Dall'osservazione dello schema notiamo che C2 e C3 sono in parallelo ed il loro equivalente é in serie con Cl.

nFCCC 15010032 +== ////

nFFC 4704701 == μ,

nFCC

CCCeq 163

250470250470

1

1 ≈+⋅

=+

=//

//

C1 C2 CN Q1 Q2 QN+ + +

- - - V

Page 100: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

99

Fig. 19

Induttori in serie

Gli induttori mostrati in figura 20 sono in serie. Su di essi circola la stessa corrente. Il valore dell'induttanza equivalente risulta

NNeq LLLL +++= ...1 (2.30)

Fig. 20 Induttori in serie

Esempio 8

Calcolare l'induttanza equivalente della rete di figura 21. Riportando tutti i valori dei parametri in mH possiamo scrivere

Leq = 0,15 + 0,3 + 1 = 1,45 mH

Fig. 21

Induttori in parallelo

Lo schema di figura 22 mostra una connessione di induttori in parallelo. La tensione presente ai loro capi è la stessa.

L'induttanza equivalente in questo caso vale

N

eq

LLL

L111

1

21

+++=

... (2.31)

che, nel caso di due soli elementi, si trasforma nella relazione

21

21

LLLLLeq +

= (2.32)

150mH 300mH 1,45mH

C2

C3

C1

L1 L2 LN i

Page 101: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

100

Fig. 22 Induttori in parallelo

Esempio 9

Calcolare l'induttanza equivalente della connessione di figura 23 se L1=100mH, L2=400mH, L3=200mH.

Fig. 23

Applicando direttamente l'equazione (2.31) ed esprimendo per comodità le induttanze in mH, ricaviamo

HLeq μ5710

201

401

101

1

3

≈⋅⎟⎟⎠

⎞⎜⎜⎝

⎛++

=

,,,

Al risultato appena ricavato potevamo giungere applicando due volte l'equazione (2.32), utilizzata prima per calcolare ad esempio l'equivalente tra L1 ed L2 e successivamente per ottenere il valore finale svolgendo il parallelo tra l'equivalente parziale ed L3.

2.5 Analisi dei circuiti R-L ed R-C attraverso la trasformata di Laplace

L'equazione (2.18), che fornisce l'espressione generale per determinare la risposta di un circuito R-C o R-L ad un segnale a gradino, è stata proposta senza dimostrazione in quanto soluzione di una equazione generalmente integro-differenziale. Alla (2.18) ed anche alla determinazione di tensioni e correnti in circuiti con più componenti di tipo L-C, con segnali di eccitazione anche più complessi di

L1 L2 LNV

L1 L2 L3

Page 102: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

101

quelli a gradino, è possibile giungere ricorrendo alla trasformata di Laplace. Il metodo di analisi proposto in questo paragrafo fa riferimento ai contenuti esposti, in Appendice,

nella sezione di Matematica.

Supposto che a questo punto l'allievo conosca i modelli secondo Laplace dei componenti elettrici e sappia interpretare le tabelle di trasformazione e antitrasformazione, per risolvere una rete elettrica bisogna procedere nel seguente modo:

b) trasformare le funzioni temporali che descrivono i segnali prodotti dai generatori in funzioni nel dominio di Laplace. Ad esempio, un segnale a gradino di ampiezza VG, espresso analiticamente v(t) = VG u(t), dove u(t) è il gradino unitario, diventa V(s) = VG /s;

b) sostituire i componenti R, C ed L con i loro modelli nel dominio di Laplace (fig. 24).

La relazione tra tensione e corrente nei vari casi diventa:

resistore V(s) = RI(s) (2.33)

condensatore ( ) ( )s

VsI

sCsV 01

+= (2.34)

dove V0 è la tensione iniziale sul condensatore;

induttore V(s) = sLI(s)-LI0 (2.35)

dove il termine LI0 è relativo ad una eventuale corrente iniziale nell'induttore;

Fig. 24 Rappresentazione dei componenti passivi nel dominio di Laplace

d) risolvere la rete applicando i metodi utilizzati in regime continuo; le equazioni integro-differenziali nel dominio del tempo si trasformano in equazioni algebriche nel dominio di s. I termini 1/sC ed sL rappresentano rispettivamente le impedenze capacitiva e induttiva che nell'analisi mediante le L-trasformate devono essere trattate come le resistenze;

d) dopo aver ricavato la soluzione della rete nel dominio di Laplace usare le tabelle di antitrasformazione per ottenere l'andamento temporale delle grandezze richieste.

Per la soluzione con la L -trasformata di reti con più componenti L-C si rimanda al volume Fondamenti di Elettronica nel quale saranno affrontati i sistemi del secondo ordine e la loro risposta a

R

sC1

sV0

V(s)

sL

V(s) V(s)

I(s) I(s) I(s)

LI0

Page 103: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

102

segnali a gradino e sinusoidali.

Esempio 10

Determinare l'andamento della tensione ai capi del condensatore nel circuito di figura 6, in risposta ad un gradino di tensione di ampiezza 5 V. Si consideri il condensatore inizialmente scarico.

Fig. 25

L -trasformando il circuito otteniamo la rete di figura 25, nella quale il segnale a gradino è rappresentato dal termine 5/s, e V0/s è nullo perché il condensatore non possiede carica iniziale. Per determinare VC(s) possiamo applicare la formula del partitore di tensione, ottenendo

( ) ( )⎟⎠

⎞⎜⎝

⎛ +=

+=

+=

RCss

RCsRCs

sCR

sCs

sVC 1

5

15

1

15

A questo punto cerchiamo di scomporre l'espressione a destra nell'equazione appena determinata in modo da ricavare dei termini più semplici da antitrasformare1. A tale scopo possiamo scrivere

⎟⎟⎟⎟

⎜⎜⎜⎜

++=

⎟⎠

⎞⎜⎝

⎛ +RC

s

BsA

RCRC

ss

RC1

51

5

dove A e B sono parametri costanti.

Per determinare A moltiplichiamo tutti i membri dell'equazione per s, ponendo poi s = 0. Otteniamo A = RC.

Per determinare B moltiplichiamo successivamente tutti i membri dell'equazione per RC

s 1+ , ponendo poi

RCs 1

−=

Otteniamo B = -RC.

Inserendo nell'espressione di VC (s) i termini relativi ad A e B ricaviamo

( )

RCss

sVC 155

+−=

che antitrasformata ci conduce all'equazione

1 Questo metodo, chiamato ‘espansione in frazioni parziali’, è illustrato in dettaglio nel volume Fondamenti di elettronica.

R

sC1

s5

IC(s)

VC(s)

Page 104: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

103

( ) ( )RCtRCtC eetv −− −=−= 1555

Il condensatore si carica quindi esponenzialmente tendendo a 5 V; la costante di tempo del circuito è pari a RC.

Volendo determinare l'andamento della corrente di carica basta applicare la legge di Ohm al condensatore:

( ) ( )

⎟⎠

⎞⎜⎝

⎛ +=

⎟⎠

⎞⎜⎝

⎛ +==

RCs

R

sCRCss

RC

sC

sVsI C

C 1

5

11

5

1

che, antitrasformata, conduce alla espressione

( ) RCtC e

Rti −=

5

Esempio 11

Determinare l'andamento della corrente che circola nell'induttore del circuito di figura 13 in risposta ad un gradino di tensione di 5 V. La corrente iniziale sia nulla. Si ponga R = 50 W, L= 10 mH. La figura 26 mostra il circuito nel dominio di s. Non compare il termine LI0 in quanto la corrente iniziale è nulla. Scrivendo l'equazione alla maglia otteniamo

( ) ( )ssLIsRIs LL +=5

Fig. 26

da cui

( )⎟⎠

⎞⎜⎝

⎛ +=

⎟⎠

⎞⎜⎝

⎛ +=

+=

LRss

LLRss

LsLR

ssI L15

55

Ponendo L/R = t scriviamo

( )⎟⎟⎟⎟

⎜⎜⎜⎜

++=

⎟⎠

⎞⎜⎝

⎛ +=

ττ1

51

15

s

BsA

Lss

LsI L

da cui

ττ11

1

++=

⎟⎠

⎞⎜⎝

⎛ + s

BsA

ss

R

s5

IL(s)

sL

Page 105: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

104

Per determinare i parametri A e B procediamo come nell'esempio 10, ottenendo

A = t B = -t

per cui

( )⎟⎟⎟⎟

⎜⎜⎜⎜

+−=

⎟⎟⎟⎟

⎜⎜⎜⎜

+−=

ττ

τ1

1151

115

ssRssLsI L

cite, antitrasformata, conduce all'espressione

( ) ( )τtL eti −−= 110,

con t = L/R = 0,2 ms La corrente cresce pertanto esponenzialmente tendendo al suo valore a regime di 0,1 A.

2.6 Caratteristiche dei condensatori

In questo paragrafo proponiamo un elenco ed una breve spiegazione delle principali caratteristiche che solitamente sono inserite nei cataloghi e nei fogli tecnici dei condensatori.

Prima di tutto c'è da far rilevare che la lettura del valore nominale di capacità è legata a modalità diversificate in base alle numerose tipologie disponibili in commercio, che si differenziano sostanzialmente per il materiale dielettrico che separa le armature, oltre che per la forma e le dimensioni dei contenitori.

I valori nominali di capacità seguono generalmente le serie E-6 ed E-12.

Parametri principali

Tolleranza: massima differenza relativa tra valore nominale di capacità e valore effettivo. Viene espressa in percentuale (tipicamente ±1%, ±2%, ±5%, ± 10%, ±20%, ma anche oltre per gli elettrolitici).

Tensione nominale: massima tensione di lavoro. Viene fornito il parametro per tensioni sia continue che alternate. I costruttori indicano comunque valori sensibilmente inferiori a quelli di rottura.

Coefficiente termico: indica l'effetto della temperatura sulla capacità. Può essere positivo (sigla P), negativo (N) o nullo (NP0). Viene espresso in ppm/°C, cioè in parti per milione del valore nominale, per variazione unitaria di temperatura.

Campo di temperatura: intervallo di temperatura entro il quale far lavorare il condensatore.

Resistenza di isolamento: indica la resistenza offerta dal dielettrico al passaggio di corrente continua (di dispersione). Idealmente un condensatore carico, scollegato dal resto della rete, dovrebbe conservare indefinitamente l'energia immagazzinata sotto forma di carica elettrostatica; in realtà ciò non si verifica a causa del valore finito della resistenza del dielettrico. Questa dipende dal tipo di materiale isolante e dalla temperatura. Valori tipici 103 π 106 MW. Nei condensatori elettrolitici non viene espresso il valore di resistenza di isolamento, ma è indicato direttamente quello della corrente di dispersione, misurata in mA.

Page 106: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

105

tgd: rappresenta il fattore di perdita ed indica il grado di dispersione (e di dissipazione) del condensatore sottoposto a tensione alternata. Tale dispersione si verifica essenzialmente attraverso il dielettrico. Per descrivere il fenomeno si può identificare il circuito equivalente del condensatore con il parallelo tra la sua capacità C ed una resistenza equivalente R (fig. 27). Nel caso ideale di resistenza R di valore infinito e con tensione di alimentazione alternata nel ramo capacitivo scorre corrente, corrente IC che risulta in anticipo di 90° rispetto alla tensione applicata2. Se invece si tiene conto della dispersione e quindi del valore finito della resistenza equivalente, bisogna considerare che su di essa circola un'ulteriore corrente (IR) in fase con la tensione V (fig. 28). La corrente totale, che si ottiene dalla somma vettoriale tra IC ed IR, non è più sfasata di 90°, ma di un angolo j inferiore. Quindi, maggiore è la dispersione, minore è la resistenza equivalente parallelo, più elevata è la IR, più piccolo è j e più grande è il valore di d (d=90°øj= angolo di perdita). In definitiva, un condensatore di migliore qualità presenta un fattore di perdita più basso. Del parametro tgd viene generalmente fornito il valore misurato alla frequenza di 1kHz, alla quale è legato secondo la relazione

fCRtg

πδ

21

=

Nel circuito equivalente del condensatore reale dovremmo inserire, in serie al parallelo tra R e C, anche la resistenza e l'induttanza prodotte dai terminali; queste comunque, alle frequenze di lavoro, hanno una minima incidenza.

Fig.27 Circuito equivalente parallelo del condensatore Fig.28

Tipologie

I tipi più diffusi di condensatori in commercio, legati anche alle varie gamme di capacità disponibili, sono:

- con dielettrico ceramico (fig. 29) - con dielettrico plastico (fig. 30)

2 Per offrire una spiegazione del fattore di perdita è necessario introdurre questi concetti che, comunque, saranno proposti agli allievi in modo completo nell’Unità di Apprendimento relativa allo studio dei circuiti in regime sinusoidale nel volume Fondamenti di Elettronica.

I

V IR

IC

j

dR C

I

~V

IR IC

Page 107: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

106

- elettrolitici (fig. 31)

Ceramici

Coprono un campo di capacità che va dal pF ad alcune centinaia di nF. Presentano varia struttura, ad esempio a disco, a strato o multistrato e sono disponibili in forma anche miniaturizzata.

Sono generalmente caratterizzati da componente induttiva serie molto bassa. Si dividono in condensatori a bassa e ad alta costante dielettrica.

Fig. 29 Condensatori ceramici.

I primi sono contraddistinti da un coefficiente termico controllato e sono molto utilizzati in alta frequenza.

Dei secondi si sfrutta la elevata costante dielettrica per realizzare componenti di dimensioni particolarmente ridotte; questo tipo dì condensatore ceramico ha prestazioni mediamente inferiori ai precedenti, ma, dato il basso costo, viene utilizzato per scopi generali, quali il disaccoppiamento e il by-pass.

LETTURA

Su questo tipo di componenti il valore nominale di capacità è indicato attraverso modalità di stampigliatura di cui forniamo alcuni esempi;

2p2 (= 2,2 pF) n22 (= 0,22 nF = 220 pF) 15n (= 15 nF)

dove la lettera, oltre ad indicare il sottomultiplo, individua la posizione della virgola decimale; oppure, se non è indicato il sottomultiplo,

33 (= 33 pF) 472 (= 47 ÿ 102 pF = 4,7 nF )

dove il valore è espresso generalmente in pF, e nel secondo caso, la terza cifra rappresenta il fattore moltiplicativo.

Plastici

Coprono una gamma di capacità che va dal nF a qualche mF. Sono realizzati avvolgendo nastri di materiale plastico metallizzato ed arrotolato a forma di cilindro o

di rettangolo; il dielettrico può essere costituito da

Page 108: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

107

- polipropilene (per alte frequenze ed elevate tensioni) - policarbonato (caratterizzato da buona stabilità) - poliestere (per impieghi universali) - polistirene (generalmente a basse perdite, per filtri, oscillatori, sample & hold).

Fig. 30 Condensatori plastici.

LETTURA

Per i condensatori con contenitore a forma di parallelepipedo possiamo avere una stampigliatura del tipo

4N7 (4,7 nF; la lettera indica il sottomultiplo e la virgola) 0,15 (0,15 mF; in questo caso la capacità è espressa in mF)

Queste cifre sono seguite da una lettera che indica la tolleranza, che può essere M=±20%, K= ±10%, J=±5%, e da un numero che esprime la tensione di lavoro.

Per i condensatori plastici di altra forma il valore di capacità può essere anche espresso direttamente in pF, ad esempio 4700 (4700 pF = 4,7 nF), 68000 (68 nF) oppure con tre cifre, di cui la terza rappresenta il fattore moltiplicativo (es: 333 = 33 ÿ 103 pF = 33 nF).

È possibile inoltre ancora trovare componenti a riguardo dei quali la lettura del valore è legata a un codice colori a cinque fasce. Le prime tre forniscono il valore di capacità (la terza rappresenta il fattore moltiplicativo), la quarta la tolleranza e la quinta la tensione di lavoro.

Elettrolitici

Sono condensatori realizzati per capacità che vanno dal mF in su e tensioni di lavoro che da qualche volt (per alti valori di capacità) raggiungono alcune centinaia di volt (per le capacità più basse).

Viste le loro dimensioni, comunque contenute, essi presentano un rapporto volume/capacità molto buono.

La loro tolleranza, che dipende anche dalle tensioni nominali, può però essere più alta rispetto agli altri tipi (ad esempio -10%, +30% o anche -10%, +50%). Generalmente non viene fornita la resistenza di isolamento, ma la corrente di dispersione.

I condensatori elettrolitici si suddividono in polarizzati e non polarizzati. I primi presentano dei terminali caratterizzati da una precisa polarità e sono costituiti da due armature

realizzate con fogli di alluminio avvolto; sulla prima armatura, quella di anodo, viene formato uno strato di ossido che costituisce il dielettrico. Tra la pellicola di ossido e la seconda armatura (catodo)

Page 109: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

108

viene inserito un elettrolita (generalmente solido).

Fig. 31 Condensatori elettrolitici. Fig. 32 Connessioni di condensatori elettrolitici

polarizzati per uso in alternata.

Il condensatore elettrolitico polarizzato deve essere usato applicando al terminale positivo sempre un

valore di tensione più elevato rispetto a quello negativo e quindi, per questo motivo, non può essere usato in regime alternato.

L'eventuale inversione delle polarità della tensione applicata porterebbe a distruggere lo strato di ossido (che tenderebbe a formarsi sull'altra armatura) con conseguente produzione di gas e danneggiamento del componente.

In questo tipo di componenti il valore di capacità é stampigliato completo di unità di misura. I condensatori elettrolitici non polarizzati vengono invece realizzati ossidando entrambe le armature.

L'elettrolita è quindi compreso tra i due strati di ossido. In commercio sono disponibili anche condensatori elettrolitici al tantalio che, rispetto a quelli in

alluminio, presentano dimensioni più ridotte. Nel caso di uso in alternata ed in mancanza di componenti non polarizzati si può ricorrere alla

connessione di figura 32, dove si ricordi che la capacità equivalente risulta pari a C1C2 /(C1 + C2).

Condensatori variabili Sono disponibili in commercio condensatori a capacità variabile (fig. 33), un tempo molto utilizzati

nei circuiti di sintonia dei radioricevitori ed ora soprattutto come compensatori di capacità, inseriti in funzionamento da trimmer in parallelo ad elementi di valore fisso.

2.7 Caratteristiche degli induttori Per realizzare un induttore il conduttore viene avvolto in modo da costituire un certo numero di spire.

L' avvolgimento che ne deriva viene chiamato genericamente bobina. L'induttanza del componente è direttamente proporzionale al quadrato del numero di spire ed

inversamente proporzionale alla riluttanza del mezzo su cui la bobina è avvolta. La riluttanza (R), a

a)

b)

C1

C2

C1

C2

+

+

+

+

Page 110: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

109

sua volta, oltre a dipendere dalle caratteristiche geometriche della struttura, è inversamente proporzionale alla permeabilità magnetica del materiale (m).

Una bobina può essere avvolta sia in aria che su un nucleo di materiale ferromagnetico. Questa soluzione si adotta nel caso si voglia ottenere, a parità di forma e numero di spire, una induttanza di valore più elevato. I materiali ferromagnetici presentano infatti una permeabilità molto maggiore dell'aria (per quanto detto L è direttamente proporzionale a m).

Fig. 33 Condensatori variabili (trimmer).

Gli induttori in aria, in base alle varie applicazioni, possono essere ad un solo strato o a più strati e

vengono in alcuni casi avvolti su supporti di ceramica o di teflon, di forma circolare o rettangolare, che operano un effetto stabilizzante dell'induttanza nei confronti della temperatura.

La presenza dei nuclei, se da un lato permette di aumentare il valore di induttanza, dall'altra introduce perdite dovute all'isteresi magnetica e alle correnti indotte.

Fino alle frequenze del campo audio trovano applicazione bobine avvolte su nuclei in ferro, ferro-nichel e permalloy; questi nuclei non sono costituiti però da strutture compatte, ma da pacchi di lamierini che limitano le perdite per correnti indotte.

Tra i materiali ferromagnetici trovano inoltre ampia diffusione, fino a frequenze di centinaia di MHz, le ferriti che, rispetto alle leghe, presentano, a discapito di una permeabilità inferiore, perdite ridotte. Le ferriti sono prodotte attraverso un processo di compressione e di riscaldamento di polveri di ossidi e di altre sostanze (rame, zinco, nichel).

Le forme dei nuclei sono di vario genere, ad esempio a toroide, a barretta e ad olla (struttura formata da due ‘tazze’ o ‘conchiglie’, che racchiudono l'alloggiamento su cui è avvolta la bobina e sono tenute da molle di bloccaggio).

In commercio, inoltre, sono disponibili degli induttori (bead-core) le cui bobine sono inserite in contenitori di ridotte dimensioni e di aspetto simile a quello di resistori o condensatori. Trovano soprattutto applicazione nei circuiti a radiofrequenza per lasciar passare la componente continua e bloccare le correnti di segnale.

Angolo di perdita e fattore di merito

Anche tra gli induttori un parametro caratteristico risulta essere il fattore di perdita tgd, anche se al suo posto viene generalmente fornito il parametro Q (fattore di merito).

Il parametro Q = 1/tgd indica il rapporto tra l'energia immagazzinata dall'induttore e quella dissipata. Si parla di energia dissipata in quanto il modello reale di questo componente, al contrario di quello

ideale, preso in considerazione per l'analisi del transitorio, deve tener conto anche della resistenza degli avvolgimenti e, in corrente alternata, delle perdite nel nucleo. Il circuito equivalente serie è pertanto quello riportato in figura 34.

Con una resistenza di valore nullo la tensione prodotta sull'induttore da una corrente sinusoidale risulterebbe in anticipo di 90° sulla corrente stessa.

In realtà la corrente produce su R anche una componente di tensione in fase che riduce l'angolo j di sfasamento tra V e I (fig. 35). L'angolo di perdita d = 90° - j, idealmente nullo, è dunque diverso da

Page 111: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

110

zero. Si può dimostrare che il fattore di merito é dato dalla relazione

RfLQ π2

= (2.37)

Fig.34 Circuito equivalente serie di un induttore reale Fig.35

Per questo parametro le case costruttrici indicano un valore ad una frequenza specifica. Nel circuito di figura 34 il condensatore tratteggiato simula invece l'effetto capacitivo esistente tra le

varie spire e tra le spire e l'eventuale nucleo. Tale effetto può essere considerato trascurabile se si lavora al di sotto di una certa frequenza (definita di risonanza).

Nei fogli tecnici, oltre ai valori di induttanza e del fattore di merito, sono generalmente riportati anche i dati relativi alla massima corrente, alla frequenza di risonanza e alla resistenza in continua.

V

I VR

VL

j

d

L

VR

C

R

VL

~V I

Page 112: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

111

ESERCIZI GUIDATI

EG. 1 Calcolare le costanti di tempo dei circuiti rappresentati nelle figure E.1.

Soluzione La costante di tempo di ciascun circuito R-C proposto si ricava dal prodotto ReqC, dove Req è la resistenza equivalente vista dal condensatore dopo aver cortocircuitato il generatore di tensione. C vale 220nF mentre R vale 10kW.

Circuito a) Req = R + 4R = 5R = 50 kW t = 11 ms Circuito b) Req = R//3R = 0,75 R = 7,5 kW t = 1,65 ms Circuito c) Req = (R + R)//2R = R = 10 kW t = 2,2 ms

EG. 2 Determinare l'andamento temporale della tensione vo nel circuito di figura E.2 se vi é il segnale a gradino di figura E.3a.

Fig.E.2 Fig.E.3 a) b)

Soluzione Dal momento che per t<0 vi=0V il condensatore può essere considerato inizialmente scarico.

t(ms)

5

vi(V)

0 t(ms)

5

t

vC

vo(V)

vo

0 180

vi vo 12kW

15nF

vC

vi vo R

4R C

R

3R

C

R

2R

C

R

vo

vo

vi

R = 10kW

C = 220nF

a) b)

c)Fig.E.1

Page 113: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

112

Per la soluzione del problema è possibile seguire due diversi procedimenti. Il primo implica l'equazione alla maglia

vo(t) = vi (t) - vC (t)

nella quale vi(t) = 5V e vC(t) = 5(1 - e-t/t) in quanto il condensatore si carica tendendo a 5V; per cui

vo(t) = 5 - 5(1 – e-t/t) = 5e-t/t

con t = 12 ÿ 103 ÿ 15 ÿ 10-9 = 180 ms

Il secondo invece richiede l'applicazione diretta della equazione (2.18) che ci conduce all'espressione scritta sopra se si determinano i valori iniziali e finali. Osservando il circuito deduciamo che

vo(0+) = 5V vo(¶) = 0 V

Il diagramma temporale di vo è mostrato in figura E.3b.

EG. 3 Determinare nuovamente l'andamento temporale di va nel circuito di figura E.2 considerando questa volta un segnale d'ingresso ad onda quadra, valore picco-picco 10 V, valor medio 5 V e frequenza 500 Hz.

Soluzione Il segnale di ingresso che eccita la rete di figura E.2 è dunque quello mostrato in figura E.4a. Dal momento che è un'onda quadra, il suo duty-cycle è del 50%. Nella fase in cui vi assume il livello ‘alto’ l'andamento di vo ricalca quello visto nell'esercizio precedente e riportato nel diagramma di figura E.3b, partendo però questa volta da un valore iniziale di 10V. Dal momento che un semiperiodo del segnale di ingresso, coincidente con la durata di una fase, vale

msf

T 150021

21

2=

⋅==

e che la costante di tempo della rete è pari a 180 ms, possiamo affermare che è verificata la relazione T/2 ¥ 5t.

In ogni fase il condensatore riesce pertanto a caricarsi o a scaricarsi completamente.

Per determinare l'andamento di vo, in corrispondenza del livello basso di vi si parta dal fatto che inizialmente la tensione vC presente ai capi del condensatore vale praticamente 10V (con il segno di figura E.2). Nel nuovo istante 0+ dunque vi = 0V

e vC(0+) = 10V

Sapendo che per la maglia del circuito in questione vale la relazione

vo = vi - vC

possiamo scrivere

Page 114: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

113

vo(0+) = -vC(0+) = -10V

Durante questo semiperiodo il condensatore tende esponenzialmente a scaricarsi e quindi la vo in valore assoluto decresce con lo stesso andamento.

La descrizione grafica dell'intero fenomeno è mostrata in figura E.4b.

Fig.E.4

EG. 4 Dimensionare i componenti di un circuito R-C come quello di figura 3 in modo che tale rete, eccitata da un segnale a gradino di ampiezza 5V, produca sul condensatore una tensione che assume il valore di 2,4 V con un ritardo di 1ms dall'istante in cui avviene la transizione di livello del segnale d'ingresso. La corrente che circola nella maglia deve essere in qualsiasi momento inferiore ad 1mA.

Soluzione Per quanto visto già nella sezione teorica di questa Unità di Apprendimento sappiamo che gli andamenti di tensione e corrente sul condensatore sono i seguenti:

( ) ( )τtC etv −−= 15

( ) τtC e

Rti −=

5

Dalle richieste del testo dobbiamo imporre che, dopo 1ms, vC valga 2,4V; dalla prima equazione quindi possiamo calcolare t.

( ) ( )τtC etv −−== 1542, (t espresso in ms)

t(ms)

10

vi(V)

0

t(ms)

-10

vi(V)

1 2 3

1 2 3

10

a)

b)

Page 115: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

114

ms531

5421

1 ,,ln

≈⎟⎠⎞

⎜⎝⎛ −

La massima corrente che circola nella rete si ricava dalla equazione di iC(t) ponendo t = 0; per cui

( ) mAR

tiC 15<=

Dunque otteniamo

R > 5kW e t = RC = 1,53ms

Fissando R = 5,6kW ricaviamo

FR

C μτ 270,≈=

EG. 5 Determinare l'andamento temporale della tensione vo nel circuito di figura E.1b se vi è un gradino di ampiezza 16 V. Si consideri il condensatore inizialmente scarico.

Soluzione Aprendo il circuito nei due rami che collegano il resistore R al condensatore, e semplificando la rete a sinistra del taglio applicando il metodo di Thevenin, il circuito si riduce a quello di figura E.5, già noto.

Fig.E.5

L'ampiezza del segnale a gradino equivalente risulta VRR

R 43

16 =+

, mentre

Ω== kRRReq 573 ,// se R = 10kW.

Con questi parametri otteniamo

( ) ( )τtC etv −−= 14

dove t, già calcolata in E-1, vale 1,65ms.

EG. 6 Descrivere l'andamento temporale della tensione vA nel circuito di figura E.6 se fase 1: in t = 0 si chiude S1 (S2 aperto)

Veq

Req

C vC +

Page 116: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

115

fase 2: in t = 50 ms si chiude S2 e si apre S1 fase 3: in t = 150 ms si apre anche S2. Il condensatore sia inizialmente scarico.

Fig.E.6

Soluzione Per determinare l'andamento di vA nelle varie fasi, ricordando che generalmente vale la relazione

vA = vC + vR dobbiamo ricorrere all'equazione (2.18), dopo aver calcolato ogni volta i valori iniziali e finali della grandezza da analizzare.

Fase 1 vC(0+) = 0 (condensatore scarico)

vA(0+) = vR(0+) = V63020

2015 =+

vA(¶) = vC(¶) = 15V (sui 20kW a regime non scorre corrente)

Quindi, dalla (2.18),

( ) ( )1115 τtC etv −−=

( ) 1915 τtA etv −−=

con t1 = (30 + 20) ÿ 103 ÿ 0,47 ÿ 10-6 = 23,5ms

Dopo 50ms la tensione vA giunge al valore dato dalla espressione

( ) VevA 931391550 52350 ,, ≈−= −

mentre vC vale

( ) ( ) VevC 211311550 52350 ,, ≈−= −

Fase 2 Attraverso una semplice traslazione dell’asse dei tempi trasformiamo l’istante t = 50ms nel nuovo istante iniziale 0; in t = 0+ abbiamo questa situazione

30kW

15V 9V

10kW 20kW

0,47mF

S1

A

S2

vC

vR

vA

Page 117: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

116

vC(0+) = vC(50) = 13,21V

vA(0+) = ( ) V61921131020

202113 ,,, −=+⋅+

dove il termine ( )921131020

20+⋅

+, rappresenta la tensione ai capi del resistore da 20kW

all’istante iniziale del fenomeno (e che ha verso negativo rispetto al riferimento).

Il valore a regime di vA coincide invece con quello di vC e vale quindi -9V. Per cui, applicando l'equazione (2.18), possiamo scrivere

( ) 2479 τtA etv −+−= ,

con t2 = (20 + 10) ÿ 103 ÿ 0,47 ÿ 10-6 = 14,1ms

Dal momento che questa fase dura 150 - 50 = 100ms, intervallo di tempo maggiore di 5t2, il transitorio si esaurisce e vA raggiunge il valore a regime di -9V prima dell'inizio della terza fase in cui si apre anche S2.

Fase 3 A questo punto il condensatore non viene alimentato, ma non può neanche scaricarsi (i due interruttori aperti costituiscono delle resistenze di valore infinito); sui 20kW non circola corrente e pertanto la tensione tra il punto A e massa rimane indefinitamente a -9V. La soluzione grafica del problema è mostrata in figura E.7.

Fig.E.7

EG. 7 Determinare l'andamento temporale di iL e di vL nel circuito di figura E.8 se all’istante t=0 l’interruttore S viene chiuso.

Soluzione Con l’interruttore aperto, e quindi in t = 0-, la corrente iL e la tensione vL sono nulle. Alla chiusura dell’interruttore la iL non può variare istantaneamente, pertanto

iL(0+) = 0

In t = 0+ i due resistori sono pertanto in serie e su di essi circola una corrente i pari a

t(ms)

-9

vA(V)

50 100 150

15

6

-1,6

13,93

Page 118: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

117

( ) ( ) mAi 11063

90 3 =⋅+

=+

mentre la vL vale

( ) ( ) Vvv kL 636

6900 6 =+

⋅== ++

Fig.E.8

A regime invece tutta la corrente scorre sul resistore da 3kW e sull’induttore, che si comporta come un cortocircuito; pertanto

( ) 0=∞Lv

( ) mAiL 31039

3 =⋅

=∞

Applicando l’equazione (2.18) si ottiene pertanto

( ) ( )mAeti tL

τ−−⋅= 13

( ) τtL ev −=∞ 6

Fig.E.9

La costante di tempo si ricava dall’espressione

t

vL(V)

6

0 t

iL(mA)

3

0

3kW

6kW 14mH

9V

S

iL

vL

Page 119: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

118

eqRL

Dove Req è la resistenza vista dai terminali dell’induttore dopo aver annullato il generatore, per cui

( ) sμτ 71063

10143

3

=⋅

⋅=

//

La durata del transitorio può dunque considerarsi pari a 5 ÿ 7 = 35ms. Gli andamenti temporali di iL e vL sono mostrati in figura E.9.

EG. 8 Determinare l'andamento temporale di iL e di vL nel circuito di figura E.10 se all’istante t=0 l’interruttore S viene chiuso.

Fig.E.10

Soluzione In t = 0-, cioè prima della chiusura dell’interruttore,

( ) mAiL 51021

60 3 =⋅

=−

,

( ) 00 =−Lv

Subito dopo la chiusura dell’interruttore, cioè in t=0+, solo la vL varia, mentre iL(0+) si mantiene a 5mA.

Fig.E.11

Per valutare la vL(0+) si semplifichi il circuito, applicando il teorema di Thevenin, come in figura E.11. Nello schema

Req

L vL

iL

Veq

R1

R2

L 6V

12V

S vL

iL

mHLkRkR

3084

21

2

1

=

Ω=Ω=

,,

Page 120: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

119

VVeq 428421

21128421

846 ,,,

,,,

,=

+⋅−

+⋅=

Ω== kReq 9608421 ,,//,

per cui

( ) VvL 425960420 ,,, −=⋅−=+

Sempre dallo schema semplificato di figura E.11 deduciamo i valori a regime.

( ) mARV

ieq

eqL 52

96042 ,

,,

===∞

( ) 0=∞Lv

Applicando l’equazione (2.18) ricaviamo gli andamenti temporali, mostrati anche in figura E.12.

( ) τtL eti −+= 5252 ,, ( ) τt

L etv −−= 42,

con

sRL

eq

μτ 253110960

10303

3

,,

=⋅⋅

==−

Fig.E.12

EG. 9 Nel circuito di figura E.13 il segnale d’ingresso vi è quello mostrato nel diagramma temporale

t

vL(V)

-2,4

0

t(ms)

iL(mA)

5

0

t(ms)

2,5

50 100 150

50 100 150

Page 121: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

120

di figura E.14a. Determinare l’andamento di iL(t). Sia inizialmente iL = 0.

Soluzione Osservando il diagramma di figura E.14a deduciamo che l'analisi del circuito dovrà essere distinta praticamente in tre fasi, le prime due di durata identica, T1 e T2, mentre nell'ultima vi rimane indefinitamente a 0. Nella prima vi assume valore 2V, nella seconda -3V.

Fig.E.14

Dal calcolo della costante di tempo pari a

smsRL μτ 80080

100108 3

==⋅

==−

,

possiamo anche affermare che nelle fasi 1 e 2 il transitorio non può essere considerato esaurito in quanto T1 e T2 risultano decisamente inferiori a 5t. Pertanto il valore iniziale della corrente nelle fasi 2 e 3 non coinciderà con quello a regime dei fenomeni precedenti, ma corrisponderà entrambe le volte alla iL calcolata nell'istante appena precedente alle transizioni della tensione di ingresso.

Fase 1 iL(0+) = 0

iL(¶) = =100

2 0,02A = 20mA

( ) ( )τtL eti −−= 120 (dall’eq. 2.18)

e, dopo 200ms,

( ) ( ) 3618120200 80200 ,≈−= −eiL mA

R

vi

iL

L 0 200 400 t(ms)

vi(V)

2

-3

T1 T2

1 2 3

0 200 400 t(ms)

iL(mA) 20

-30

18,36mA

26mA iL = 0

a)

b)

Fig.E.13 R = 100W

L = 8mH

Page 122: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

121

Dunque in questa fase la corrente che circola nell’induttore parte da 0, tende a 20mA e, nell’istante in cui essa giunge al valore di 18,36mA, la tensione d’ingresso commuta a -3V.

Fase 2 Trasliamo in pratica l'asse delle ordinate di 200ms e fissiamo nuovamente in t = 0 l'istante iniziale del fenomeno. Ricaviamo

iL(0+) = 18,36mA

iL(¶) = =−100

3 -0,03A = -30mA

( ) τtL eti −+−= 364830 , (dall’eq. 2.18)

e, dopo 200ms,

( ) 26364830200 80200 −=+−= −eiL , mA

Pertanto in questa fase la corrente parte dal valore di 18,36, diminuisce, inverte il verso di circolazione, tende a -30mA, ma, quando raggiunge i -26 mA, la vi commuta a 0V.

Fase 3 iL(0+) = -26mA iL(¶) = 0

( ) τtL eti −−= 26 (dall’eq. 2.18)

La corrente, dunque, parte dal valore assunto nell'istante prima della commutazione di vi, e tende a 0 giungendoci dopo un tempo approssimativamente pari a 5t = 400ms.

I diagrammi temporali di iL sono riportati in figura E.14b.

EG. 10 Nel circuito di figura E.15 in t = 0 si chiude l'interruttore S1. Nell'istante in cui la corrente iL supera un valore pari al doppio di quello che si ottiene, a regime, con S1 aperto ed S2 chiuso, lo stato degli interruttori commuta; dunque S1 si apre ed S2 si chiude. Questa situazione poi permane per un tempo indefinitamente lungo. Si descriva l'andamento temporale della iL per l'intero fenomeno e si calcoli quanto tempo trascorre, dal momento in cui S1 viene chiuso, prima di poter considerare la corrente definitivamente a regime

Soluzione Con S1 chiuso ed S2 aperto lo schema circuitale si riduce a quello di figura E.16a. La corrente parte da 0 e tende esponenzialmente al suo valore di regime; quindi

iL(0+) = 0 iL(¶) = =+ 821815 0,15A = 150mA

e ( ) ( )τtL eti −−= 1150,

Lo stato degli interruttori cambia quando iL raggiunge un certo valore I, pari al doppio della

Page 123: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

122

iL(¶) calcolata nella fase in cui L è alimentata dalla tensione di 5V (valore a regime della fase in cui S2 è chiuso ed S1 è aperto e mostrata in figura E.16b).

Fig.E.15 Fig.E.16

Pertanto

I = 2iL(¶) = =+

⋅8218

52 2 ÿ 0,05 = 0,1A = 100mA

Questo è inoltre il valore iniziale del nuovo fenomeno transitorio che vede a questo punto la corrente decrescere esponenzialmente tendendo al valore di regime iL(¶ ), pari a 50mA. Pertanto, applicando la (2.18), con S1 aperto ed S2 chiuso possiamo scrivere

( ) τtL eti −+= 5050 (mA)

L'evoluzione temporale della iL è mostrata in figura E.17. II tempo T2 che intercorre prima di poter considerare il circuito definitivamente a regime (con iL = 50mA) è pari a

T2 = T1 + 5t

con t che è la stessa nei due stati e vale 10/100 = 0,1 ms = 100 ms, mentre T1 è il tempo impiegato dalla corrente per raggiungere il valore I = 100 mA (S1 chiuso - S2 aperto). Per calcolare T1, esprimendo i tempi in ms, scriviamo

( ) ( )1001

1115010 TL eTi −−== ,,

da cui T1 risulta 110ms. Infine otteniamo

18W

82W

10mH

18W 18W

S2 S1

82W

10mH

5V 15V

15V

vL

iL

iL

S1 chiuso

S2 aperto

18W

82W

10mH

15V

iL

S1 aperto

S2 chiuso

a)

b)

Page 124: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

123

T2 = 110 + 5ÿ100 = 610ms

Fig.E.17

EG. 11 Sviluppare il procedimento che conduce alle equazioni (2.27) e (2.29) per la determinazione della capacità equivalente in connessioni rispettivamente serie e parallelo di condensatori.

Soluzione

• Serie Alla equazione (2.27) si giunge in quanto, osservando la figura 17, possiamo affermare che ciascun componente accumula la stessa carica Q e ai suoi capi è presente una tensione che è in genere diversa per ogni condensatore ed inversamente proporzionale alla singola capacità; la somma delle varie tensioni è uguale a quella applicata all'intera serie e può essere anche considerata pari al rapporto tra la carica Q e la capacità equivalente. Indicando con V1, V2, ..., VN le tensioni ai capi di ciascun elemento e sapendo che

NN C

QVCQV

CQV === ...

22

11

NVVVV +++= ...21 e eqC

QV =

possiamo scrivere

Neq CQ

CQ

CQ

CQ

+++= ...21

Dividendo tutti i termini di quest'ultima equazione per Q e sviluppandola per ricavare Ceq giungiamo alla (2.27)

• Parallelo Facendo riferimento alla figura 18 notiamo che, in questo caso, tutti gli elementi sono sottoposti

t(ms) 0

iL(mA)

100 200 300

150

100

50

400 500 600110

T1 5t

T2

Page 125: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

124

alla stessa tensione e che, per ciascuno di essi, la carica accumulata, generalmente diversa, è direttamente proporzionale al valore di capacità. La carica totale è data dalla somma aritmetica di tutti i contributi ed è anche pari al prodotto tra la tensione e la capacità equivalente del parallelo, cioè

VCVCVCVCQQQQ eqNNt =+++=+++= ...... 2121

da cui si giunge all'equazione (2.29).

EG. 12 Il gruppo di condensatori di figura 19, relativi all’esempio 7, sia alimentato da una tensione continua di 10V. Determinare la tensione e la carica associata a ciascun elemento.

Soluzione

Ricordiamo i valori delle tre capacità: C1 = 470nF, C2 = 100nF, C3 = 150nF. I due condensatori in parallelo presentano una capacità equivalente C// pari a 100+150=250nF. La Ceq complessiva è invece pari a 250ÿ470/(250 + 470) = 163nF Possiamo calcolare la carica accumulata dall'intera rete

nC16301010163 91 =⋅⋅==== −VCQQQ eq//

La tensione ai capi di C1 vale

V53470

1630

11 ,≈==

CQV

mentre quella sul parallelo è

V56250

1630 ,//

// ≈==CQV

La carica accumulata da C2 e da C3 si determina nel seguente modo:

nC6505610100 922 =⋅⋅== − ,//VCQ

nC9755610150 933 =⋅⋅== − ,//VCQ

(la somma tra Q2 e Q3 dovrebbe risultare pari a Q; questa operazione non è perfettamente verificata a causa dell’approssimazione nei calcoli precedenti).

EG. 13 Determinare gli andamenti temporali della tensione ai capi di un condensatore caricato da una corrente costante e della corrente circolante in un induttore sottoposto a tensione costante.

Soluzione

• Condensatore caricato da una corrente costante Rappresentiamo la situazione mediante un componente capacitivo che costituisce il carico di un generatore di corrente costante (fig. E.18).

Page 126: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

125

Fig.E.18 Fig.E.19

Sappiamo che tra tensione e carica vale in ogni istante la relazione

Cqv =

dove il valore della carica accumulata è funzione del tempo e della corrente i = I = costante secondo l'espressione

Itq =

pertanto possiamo scrivere

tCIv =

Quindi, nel caso in cui la corrente che carica il condensatore risulti costante, la tensione ai capi del condensatore assume un andamento temporale lineare, come mostra la figura E.19. La pendenza della retta è pari al rapporto I/C.

• Induttore sottoposto ad una tensione costante

La situazione è sintetizzata dallo schema di figura E.20.

In questo caso la tensione del generatore è equilibrata dalla f.e.m. autoindotta prodotta dal componente, che risulta quindi costante. Ricaviamo dunque che, in valore assoluto,

Vti

Lmef L ==ΔΔ

= costante...

Da cui

LV

tiL =ΔΔ

Ciò significa che la velocità con cui varia la corrente é costante per qualsiasi intervallo di tempo considerato. Questo è verificato se la corrente ha un andamento temporale lineare.

Considerando il valore di corrente iL nel generico istante t e iL = 0 per t = 0 possiamo, nella equazione sopra scritta, porre DiL = iL, e Dt = t, per cui otteniamo

C vC

I

pendenza = C

I

vC

t

Page 127: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

126

tLViL =

Se l'induttore é sottoposto ad una tensione continua positiva, su di esso circola una corrente crescente linearmente il cui andamento è rappresentato graficamente dalla retta di figura E.21 che presenta una pendenza pari al rapporto V/L.

Fig.E.20 Fig.E.21

Le relazioni cercate per vC e per iL avremmo potuto determinarle in modo più immediato ricorrendo alla integrazione delle equazioni (2.7) e (2.21); questa però è una operazione matematica che gli allievi a cui è indirizzato il testo affrontano in anni di corso successivi.

EG. 14 Nel circuito R-C di figura E.22a il condensatore sia carico a 10V. All’istante 0 di inizio fenomeno l’interruttore si chiude. Determinare, applicando la trasformata di Laplace, l’andamento temporale della tensione presente ai capi del condensatore.

a) Fig.E.20 b)

Soluzione

Ricorrendo alla trasformata di Laplace il circuito diventa quello di figura E.22b. Il segnale applicato attraverso la chiusura dell'interruttore é rappresentato dal termine 10/s con il segno positivo verso il basso; l'altro generatore tiene conto della tensione iniziale sul condensatore. Possiamo a questo punto scrivere

( ) ( )sIsCs

sV CC110

−= (osservare il verso assegnato alla IC)

iL

pendenza = LV

iL

t

L V

R

C

10V

vC

sC1

VC(s)

s10

s10

R IC(s)

Page 128: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

127

dove ( )

RCs

R

CsR

sCR

sssIC 1

20

120

1

1010

+=

+=

+

+=

per cui ( )⎟⎠⎞

⎜⎝⎛ +

−=

RCss

Rs

sVC 1

2010

Il secondo termine che compone la VC(s) può essere così riscritto

⎟⎟⎟⎟

⎜⎜⎜⎜

++=

⎟⎠⎞

⎜⎝⎛ +

RCs

BsA

RCRC

ssRC 120

1120

Ponendo RC = t, si ottiene

ττ11

1

++=

⎟⎠⎞

⎜⎝⎛ + s

BsA

ss

Procedendo come negli esempi 10 e 11 ricaviamo

A = t e B = -t

per cui ( )⎟⎟⎟⎟

⎜⎜⎜⎜

+−−=

⎟⎟⎟⎟

⎜⎜⎜⎜

+−−=

ττ

τ1

1120101

112010

sssssRCssVC

Antitrasformando otteniamo

( ) ( )τtC etv −−−= 12010

L’andamento della tensione ai capi del condensatore è rappresentato da una funzione esponenziale alla quale è sovrapposto un termine costante: può essere quindi così descritto

( ) τtC etv −+−= 2010

Il condensatore si carica esponenzialmente ad una tensione di -10V partendo dal valore iniziale di 10V.

EG. 15 Nel circuito di figura E.23 la situazione è quella a regime con S1 chiuso ed S2 aperto. Ad un certo istante lo stato degli interruttori viene scambiato: S1 si apre ed S2 si chiude. Mediante l'applicazione della trasformata di Laplace determinare l'andamento temporale della corrente iL.

Page 129: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi guidati

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

128

Fig.E.23 Fig.E.24

Soluzione Con S1 chiuso ed S2 aperto sull'induttore circola una corrente a regime pari a V/R1. Questa corrente tende ad essere mantenuta anche quando gli interruttori cambiano stato; il valore V/R1 è quindi anche quello assunto inizialmente dalla corrente durante il fenomeno transitorio da analizzare. Il circuito, con S2 chiuso ed S1 aperto, nel dominio di Laplace può essere visto come in figura E.24. Il generatore LI0, dove I0 = V/R1, tiene conto della corrente iniziale circolante nell'induttore. Applicando la seconda legge di Kirchhoff alla maglia possiamo scrivere:

( ) ( ) 020 =+− sIRLIssLI LL

da cui ponendo I0 = V/R1,

( )

LRs

RV

RsLRLV

sI L2

1

2

1

+=

+=

Antitrasformando otteniamo

( ) τtL e

RVti −=

1

con 2R

L=τ .

La corrente che circola nell'induttore, da un valore iniziale pari a V/R1, si esaurisce attraverso un fenomeno esponenziale entro un tempo che praticamente vale 5L/R2.

R2

R1

L

S2

S1

V

R2

sL

LI0

IL(s)

iL

Page 130: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi proposti

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

129

ESERCIZI PROPOSTI

P-1 Calcolare le costanti di tempo dei due circuiti di figura P.1 sapendo che R = 10kW e C = 0,33mF. [ ]ms954ms99 ,);,) == ττ ba

a) Fig.P.1 b)

P-2 Nel circuito di figura P.1a determinare l'andamento temporale di vA e di iC se vi è un segnale a gradino di ampiezza 12V. R = 10kW.

( ) ( )[ ])(,; mA2046 ττ tC

tA etietv −− =−=

P-3 Determinare l’andamento temporale della tensione vo nel circuito di figura E.a se vi è un segnale a gradino con transizione negativa, descritto cioè nel seguente modo

vi = 15V per t < 0 vi = 0V per t > 0.

( )[ ]τtetv −−= 30

P-4 Ripetere l’esercizio P-3 relativamente al circuito di figura E.1c. ( )[ ]τtetv −−= 7530 ,

P-5 Il circuito di figura P.2 è eccitato da un segnale a gradino di ampiezza incognita. La tensione ai capi del condensatore, che assume in risposta a tale ingresso un andamento esponenziale crescente, raggiunge il valore di 5,67V dopo un tempo pari alla costante di tempo e di valore 150µs. Sapendo inoltre che la corrente di carica iniziale vale 3mA, calcolare il valore dei componenti.

[ ]nF503 =Ω≈ CkR ;

P-6 Determinare l’andamento temporale di vo nel circuito di figura P.2 se vi è il segnale mostrato in figura P3.a. Il condensatore sia inizialmente carico a 5V. Si dimensionino i componenti della rete in modo che il transitorio si esaurisca in un tempo minore o uguale alla metà della durata dell’impulso d’ingresso. Si fissi per la resistenza un valore commerciale della serie E-12 superiore a 15kW.

( )[ ]nF10183 =Ω= CkRbPfiguraintvo ;;.

P-7 Determinare l’andamento temporale di vC nel circuito di figura P.1b se vi è un segnale a gradino di ampiezza 24V e calcolare dopo quanto tempo la tensione ai capi del condensatore raggiunge i 3V.

( ) ( )[ ]mstetv tC 33218 ,; ≈−= − τ

P-8 Nel circuito di figura P.4 in t = 0 viene chiuso l’interruttore S1 e dopo 12ms anche S2. Determinare l’andamento temporale di vC per l’intero fenomeno. Il condensatore è inizialmente scarico.

( ) ( )( ) ⎥

⎥⎦

⎢⎢⎣

=+=

==−=−

msetvchiusiSedScon

msVvmsdopoetvchiusoSCont

C

Ct

C

655834

1258712112

221

11

2

1

,,,:

,,:;:

τ

ττ

τ

vi

4R

4R

R

C

3R

6R 3R Cvi

A

vA

iC R

vC

Page 131: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi proposti

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

130

Fig.P.3

Fig.P.4

P-9 Determinare l’andamento temporale di vo se, all’istante t = 0, il deviatore S del circuito di figura P.5 si porta in posizione 2. Calcolare inoltre dopo quanto tempo vo raggiunge 4V.

( ) ( )[ ]stperVvsconetv ot

C μμττ 11641015 ,; ≈==−= −

P-10 Nel circuito di figura E.8, relativo all’esercizio EG.7, determinare l’andamento temporale della corrente che circola sul resistore da 6kW e della tensione ai capi del resistore da 3kW dopo la chiusura dell’interruttore.

( )[ ]ττ tk

tk evmAeti −− −== 691 36 );(

P-11 Dopo aver svolto l’esercizio EG-7 si consideri il circuito di figura E.8 a regime con l’interruttore chiuso. In un nuovo istante t = 0 si apra S e si rideterminino gli andamenti temporali di iL e vL..

( ) ( ) ( )[ ]sconetvmAeti tL

tL μτττ 32183 ,; ≈−== −−

vi R

C

vC

vo

vi(V)

t(ms)

5

-5

0 2

vo(V)

t(ms)

10

-10

0 2

a)

b)

Fig.P.2

6kW

12kW 8kW

2kW S1 S2

18V 10V

1mF

vC

Page 132: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi proposti

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

131

Fig.P.5

P-12 Determinare l’andamento temporale della corrente i che circola sul resistore da 1,2kW nello schema di figura E.10 dal momento in cui l’interruttore viene chiuso.

( ) ( )[ ]mAeti t τ−+= 25

P-13 Nel circuito di figura P.6, in risposta ad un segnale di ingresso a gradino di ampiezza 5V, la tensione ai capi dell’induttore scende a 2V dopo un tempo pari a 100µs, mentre la corrente a regime vale 100mA. In base a questi dati determinare i valori di R e di L.

[ ]mHLR 46550 ,; ≈Ω=

Fig.P.6

P-14 Dopo aver svolto l’esercizio EG-10 determinare gli andamenti temporali della tensione vL, presente ai capi dell’induttore, e della vA, considerata tra il punto A e massa nel circuito di figura E.15.

( ) ( )[ ]7.Pfiguraintvetv AL

Fig.P.7

P-15 Nel circuito di figura P.8 la coppia di interruttori S1-S4 si chiude alternativamente alla coppia costituita da S2-S3 e per un tempo di ugual durata. Partendo da una situazione a regime come quella mostrata in figura, e

t(ms) 0

vL(V)

15

5

110

-5

t(ms) 0

vL(V)

15

4,1

110

12,3

3,2

13,2

vi

R

L vL

10mH

2 1 vo

5V

1kW

S

Page 133: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Esercizi proposti

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

132

considerando che in ciascuna fase il transitorio si esaurisce, descrivere analiticamente e graficamente l'andamento temporale della corrente iL. Si determini inoltre il massimo valore della frequenza di chiusura con la quale ciascuna coppia di interruttori viene comandata, in modo da garantire sempre il raggiungimento della corrente di regime.

[diagramma temporale di iL in figura P.9 ; fmax = 250 Hz]

Fig.P.8 Fig.P.9

10W 10W

15W 15W

S1

S3 S4

S2

10mH

10V

iL

iL(mA)

t

-400

400

2T

2T

Page 134: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Laboratorio

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

133

LABORATORIO

ESPERIENZA 1 Risposta al gradino di un circuito R-C

Obiettivi Analisi della risposta della rete ad un gradino con transizione positiva. Analisi della risposta della rete ad un gradino con transizione negativa.

Misura della costante di tempo.

Materiali resistori: 10kW e strumentazione condensatori: 15nF oscilloscopio a doppia traccia generatore di funzioni

Fig.L.1

Procedimento

a Montare il circuito di figura L.1. Per realizzare i primi due obiettivi sopra citati con un'unica operazione si applichi in ingresso un'onda quadra, tutta positiva, di ampiezza e frequenza opportune. La frequenza deve essere fissata di valore tale da garantire l'esaurimento dei fenomeni transitori sia per la carica che per la scarica del condensatore. Si calcoli pertanto la costante di tempo del circuito e si imponga una frequenza che verifichi la relazione T/2 > 5t.

b Si colleghi il canale due dell'oscilloscopio per rilevare l'andamento della tensione ai capi del condensatore e il canale uno per osservare il segnale prodotto dal generatore di funzioni. Dopo aver posizionato opportunamente i selettori V/div. e time/div. si analizzi il fenomeno, riflettendo sull'andamento della tensione vo in relazione a quanto studiato in sede teorica.

c Si proceda ora in modo da effettuare una misura della costante di tempo attraverso lettura della funzione esponenziale, relativa alla carica e visualizzata sull'oscilloscopio. È opportuno agire sulla scala dei tempi per espandere il grafico relativo ad un semiperiodo di carica. Si ricordi che in un tempo pari a t la tensione sul condensatore raggiunge il 63% del suo valore finale. Si confronti il valore di t misurato con quello teorico calcolato.

d Si aumenti la frequenza del segnale di ingresso, regolando conseguentemente il selettore time/div., e si osservi la variazione del fenomeno transitorio.

Note Con un segnale di ampiezza 7V e frequenza pari circa a 300Hz abbiamo ottenuto l'andamento riportato in figura L.2. Il transitorio si esaurisce prima della transizione del segnale di ingresso.

10kW

15nF CH1 CH2 G.d.F. vi vo

Page 135: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Laboratorio

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

134

Aumentando la frequenza il periodo si riduce; a 2kHz, ad esempio, sia in fase di carica che di scarica il condensatore non raggiunge i valori di regime, come è evidente in figura L.3, e la sua tensione varia tra 1,2 e 5,9 V.

Fig.L.2 Esperienza 1: f = 300Hz

Fig.L.3 Esperienza 1: f = 2kHz

ESPERIENZA 2 Analisi del transitorio in un circuito R-C

Obiettivi Osservazione della corrente di carica e di scarica del condensatore. Osservazione della tensione sul resistore in risposta ad un’onda quadra bipolare.

Materiali gli stessi della esperienza 1 più 1 trimmer da 10kW e strumentazione

Fig.L.4

10kW

15nF

CH1 CH2 G.d.F. vi vo

Signal parameter

CH2 – volts/div: 1V CH1 – volts/div: 1V timebase – sec/div: 0,1ms

0

CH1 = vi

CH2 = vo

Signal parameter

CH2 – volts/div: 1V CH1 – volts/div: 1V timebase – sec/div: 0,5ms

0

CH1 = vi

CH2 = vo

Page 136: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Laboratorio

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

135

Procedimento

a Risistemare i componenti utilizzati per l’esecuzione dell’esperienza 1 come in figura L.4. Inserire in ingresso lo stesso segnale scelto per la fase a) nella precedente prova. Osservando con l’oscilloscopio la tensione ai capi del resistore si rileverà anche la corrente di carica e scarica del condensatore: vale infatti la relazione i = vo/R. I valori istantanei di i si ricaveranno quindi dividendo la tensione per i 10kW della resistenza.

b Si analizzi di nuovo l’andamento di vo applicando questa volta in ingresso un segnale bipolare, di valore picco-picco doppio rispetto all’ampiezza del segnale utilizzato nella fase a).

c Risistemando il segnale d’ingresso com’era nella fase a), si inserisca in serie al resistore un trimmer da 10kW e si osservi come varia la tensione vo (ora presente ai capi dell’intera serie) agendo sul cursore per aumentare la resistenza totale.

Note Con un segnale unipolare di frequenza poco superiore ai 300Hz la tensione ai capi della resistenza ha l’andamento riportato in figura L.5; con una vi bipolare è possibile notare (fig. L6) come la vo raggiunga valori massimi e minimi doppi rispetto al caso precedente.

Fig.L.5 Esperienza 2: f = 300Hz - vi unipolare

Fig.L.6 Esperienza 2: f = 300Hz - vi bipolare

ESPERIENZA 3 Analisi del transitorio in un circuito R-C con struttura del tipo di figura E.1b

Obiettivi Analisi del transitorio. Dimensionamento dei componenti per la realizzazione di una prefissata costante di tempo.

Signal parameter

CH2 – volts/div: 2V CH1 – volts/div: 2V timebase – sec/div: 0,5ms

0

CH1 = vi

CH2 = vo

Signal parameter

CH2 – volts/div: 2V CH1 – volts/div: 2V timebase – sec/div: 0,5ms

0

CH1 = vi

CH2 = vo

Page 137: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Laboratorio

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

136

Materiali componenti in base alle scelte dello studente e strumentazione oscilloscopio a doppia traccia generatore di funzioni

Procedimento

a Si monti il circuito di figura E.1b scegliendo dei valori per R e C tali da realizzare una costante di tempo compresa tra 10 e 200ms, fissando per R un valore commerciale superiore a 4kW.

b Sia lo studente a sviluppare la prova adottando un procedimento che gli consenta di osservare ed analizzare il transitorio delle tensioni ai capi del condensatore ed eventualmente di altre grandezze che egli ritiene significative.

ESPERIENZA 4 Risposta al gradino di un circuito R-L

Obiettivi Osservazione dell’andamento della corrente circolante nell’induttore e della tensione ai suoi capi in risposta a segnali a gradino con transizione sia positiva che negativa. Misura della costante di tempo del circuito.

Analisi del transitorio in risposta ad un’onda quadra bipolare.

Materiali resistori: 1kW e strumentazione induttori: 14mH oscilloscopio a doppia traccia generatore di funzioni

Fig.L.7

Procedimento

a Montare il circuito di figura L.7. Applicare in ingresso un’onda quadra unipolare di ampiezza 1,5V e frequenza tale da garantire l’esaurimento, in ciascun semiperiodo, dei fenomeni transitori.

b Visualizzare con i due canali dell’oscilloscopio i segnali vi e vo. Dall’osservazione di vo si è in grado contemporaneamente di rilevare l’andamento della corrente circolante sull’induttore espressa direttamente in mA (iL = vo/1kW).

c Sfruttando al meglio l'oscilloscopio si misuri la costante di tempo del circuito e si confronti tale valore con quello teorico calcolato.

d Si scambino le posizioni del resistore e dell’induttore, come mostrato in figura L.8, e si analizzi l’andamento della tensione sull’induttore.

1kW

14mH

CH1 CH2 G.d.F. vi vo

iL

Page 138: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Laboratorio

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

137

e Si modifichi il segnale di ingresso in un’onda bipolare di valore picco-picco pari al doppio dell’ampiezza imposta nelle fasi precedenti e si riosservino la tensione e la corrente relative all’induttore.

f Si aumenti la frequenza del segnale di ingresso e si osservi la variazione del fenomeno transitorio, sviluppando a riguardo delle riflessioni personali.

Fig.L.8

Note Le nostre rilevazioni sulla corrente e la tensione associate all’induttore sono riportate, per i vari casi, nelle figure L.9, L.10, L.11, L.12.

Fig.L.9 Esperienza 4: CH2-mA/div : 0,2mA - vi unipolare

Fig.L.10 Esperienza 4: vi unipolare

Signal parameter

CH2 – volts/div: 0,5V CH1 – volts/div: 0,5V timebase – sec/div: 50ms

0

CH1 = vi

CH2 = vo

Signal parameter

CH2 – volts/div: 0,2V CH1 – volts/div: 0,2V timebase – sec/div: 50ms

0

CH2 = iL

CH1 = vi

1kW

14mHCH1 CH2 G.d.F. vi vo

Page 139: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Laboratorio

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

138

Fig.L.11 Esperienza 4: CH2-mA/div : 0,5mA - vi biipolare

Fig.L.12 Esperienza 4: vi biipolare

Signal parameter

CH2 – volts/div: 1 V CH1 – volts/div: 1V timebase – sec/div: 50ms

0

CH1 = vi

CH2 = vo

Signal parameter

CH2 – volts/div: 0,5V CH1 – volts/div: 0,5V timebase – sec/div: 50ms

0

CH2 = iL

CH1 = vi

Page 140: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Quadro riassuntivo

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

139

QUADRO RIASSUNTIVO

Condensatori

Relazione v - q Cq

v =

Relazione i - v dtdvCi =

Risposta al gradino: carica iniziale nulla

( ) ⎟⎠⎞

⎜⎝⎛ −=

− τt

GC eVtv 1

t = RC

Connessione serie N

eq

CCC

C111

1

21+++

=...

Connessione parallelo Neq CCCC +++= ...21

Risposta al gradino. Formula generale

Circuito con un solo elemento reattivo

( ) ( ) ( ) ( )[ ] τteffftf −+ ∞−+∞= 0

( )=+0f valore iniziale

( ) =∞f valore finale

VG 0

R

C vi vC

iC

Page 141: Alessandro Bertelli – Mariano Zanchi

Il condensatore, l’induttore e i fenomeni transitori – Quadro riassuntivo

Dipartimento di Elettronica I.T.S. “L. Einaudi” - Montebelluna

140

Induttori

Relazione v - i dtdiLv −=

Risposta al gradino: corrente iniziale nulla

( ) ⎟⎠⎞

⎜⎝⎛ −=

− τtG

L eR

Vti 1

RL

Connessione serie NNeq LLLL +++= ...1

Connessione parallelo N

eq

LLL

L111

1

21+++

=...

VG

0

R

L

iL

Page 142: Alessandro Bertelli – Mariano Zanchi

Dipartimento di elettronica Istituto Tecnico Statale “Luigi Einaudi” - Montebelluna

Elettronica digitale Capitolo I – Algebra di boole e circuiti logici

Alessandro Bertelli – Mariano Zanchi

Riedizione a cura di Massimo Ballon

Page 143: Alessandro Bertelli – Mariano Zanchi

Sommario

1 Algebra di Boole e circuiti logici ...................................................................................................... 144 1.2 Sistemi di numerazione non decimale....................................................................................... 146

Sistema di numerazione binario.................................................................................................... 146 Esempio 1.................................................................................................................................. 146

Sistema di numerazione ottale ...................................................................................................... 147 Esempio 2.................................................................................................................................. 147

Sistema di numerazione esadecimale (o hex) ............................................................................... 147 Esempio 3.................................................................................................................................. 147

1.3 Operazioni con i numeri binari ................................................................................................. 147 Addizione ...................................................................................................................................... 147

Esempio 4.................................................................................................................................. 148 Sottrazione .................................................................................................................................... 148

Esempio 5.................................................................................................................................. 148 Esempio 6.................................................................................................................................. 150

Moltiplicazione ............................................................................................................................. 150 Esempio 7.................................................................................................................................. 150

Divisione ....................................................................................................................................... 151 Esempio 8.................................................................................................................................. 151

1.4 Codici numerici e alfanumerici ................................................................................................. 152 Codice BCD .................................................................................................................................. 152

Esempio 9.................................................................................................................................. 152 Codice GRAY (o riflesso)............................................................................................................. 152 Codice ASCII................................................................................................................................ 153

Esempio 10................................................................................................................................ 153 1.5 La logica e le operazioni logiche ............................................................................................... 154

Costanti e variabili ........................................................................................................................ 154 Operazione NOT........................................................................................................................... 155 Operazione AND........................................................................................................................... 155

Esempio 11................................................................................................................................ 156 Operazione OR.............................................................................................................................. 157

Esempio 12................................................................................................................................ 158 Operazioni derivate ....................................................................................................................... 158

1.6 Proprietà, leggi e teoremi dell'algebra booleana ...................................................................... 160 1.7 Forme canoniche e semplificazione algebrica.......................................................................... 162

Esempio 13................................................................................................................................ 162 Esempio 14................................................................................................................................ 162

Somma canonica ........................................................................................................................... 163 Esempio 15................................................................................................................................ 163

Semplificazione............................................................................................................................. 165 Esempio 16................................................................................................................................ 165

Prodotto canonico ......................................................................................................................... 165 Esempio 17................................................................................................................................ 166 Esempio 18................................................................................................................................ 166

Page 144: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici - Sommario

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

143

1.8 Mappe di Karnaugh ................................................................................................................... 167 Rappresentazione delle funzioni ................................................................................................... 167 Mappe a due variabili.................................................................................................................... 168

Esempio 19................................................................................................................................ 168 Mappe a tre variabili ..................................................................................................................... 168

Esempio 20................................................................................................................................ 168 Mappe a quattro variabili .............................................................................................................. 168

Esempio 21................................................................................................................................ 169 Semplificazione delle funzioni...................................................................................................... 169

Esempio 22................................................................................................................................ 170 Esempio 23................................................................................................................................ 171 Esempio 24................................................................................................................................ 171 Esempio 25................................................................................................................................ 172

1.9 Realizzazione di funzioni booleane con porte NAND e NOR .................................................. 173 Porte NAND.................................................................................................................................. 173

Esempio 26................................................................................................................................ 173 Porte NOR..................................................................................................................................... 173

Esempio 27................................................................................................................................ 174 ESERCIZI GUIDATI ...................................................................................................................... 175 ESERCIZI PROPOSTI.................................................................................................................... 192 QUADRO RIASSUNTIVO .............................................................................................................. 199

Operazioni logiche ........................................................................................................................ 199 Proprietà e teoremi dell’algebra di Boole ..................................................................................... 200

APPENDICE.................................................................................................................................... 201 Codice ASCII................................................................................................................................ 201

Page 145: Alessandro Bertelli – Mariano Zanchi

1 Algebra di Boole e circuiti logici

Oggetto dell'Elettronica Digitale è lo studio delle apparecchiature che basano il loro funzionamento sul sistema binario e che sono preposte alla riproduzione ed elaborazione dei segnali in forma numerica. In questa Unità di Apprendimento vengono trattati i sistemi di numerazione ed i codici binari, i metodi di rappresentazione delle funzioni logiche ed i circuiti logici elementari, quali premesse alla realizzazione dei sistemi combinatori e sequenziali che saranno trattati nei capitoli successivi. Dato che gli argomenti riguardano soprattutto procedure esecutive per la rappresentazione delle funzioni logiche, per la loro semplificazione ed infine per la loro realizzazione, viene dedicato largo spazio agli esempi ed agli esercizi come mezzo più idoneo all'acquisizione di una buona familiarità con i concetti esposti.

OBIETTIVI (Conoscenze e competenze)

Conoscere e saper usare i sistemi di numerazione nelle basi 2, 8 e 16

Conoscere e saper eseguire le operazioni fondamentali della logica binaria

Conoscere e saper utilizzare i metodi di rappresentazione (tabelle di verità e mappe di Karnaugh) delle funzioni logiche

Saper analizzare semplici circuiti combinatori e ricavare la funzione che essi rappresentano

Saper realizzare circuitalmente funzioni logiche proposte

Page 146: Alessandro Bertelli – Mariano Zanchi

1.1 Introduzione Nella parte introduttiva di questo volume si sono distinti i segnali elettrici, in base alla loro natura, in

segnali analogici e in segnali digitali. Mentre i primi possono assumere un numero qualsiasi di valori compresi in un certo intervallo,

passando da un valore all'altro con continuità o in modo discreto, i segnali digitali sono invece caratterizzati da due soli livelli, nettamente distinti tra loro.

Per quanto riguarda la loro rappresentazione, i segnali analogici vengono descritti mediante funzioni continue, più o meno complesse (legge di Ohm e carica di un condensatore, ad esempio) per il cui studio è impiegata l'analisi matematica.

I segnali digitali vengono invece rappresentati in forma numerica, come sequenza di cifre, secondo codici e sistemi di numerazione, assai simili all'aritmetica dei numeri naturali, basati sull'uso di due cifre, 0 e 1, e per questo chiamati binari.

Altri sistemi sfruttano un numero di cifre più elevato (otto o sedici), ma lo strumento fondamentale per la rappresentazione dei segnali digitali è costituito da codici binari.

La distinzione tra i segnali e tra le loro rappresentazioni porta inevitabilmente ad una diversità nel modo di operare su di essi.

Sui segnali analogici vengono compiute operazioni tradizionali di somma, prodotto, differenza oltre a quelle di derivazione e integrazione ed altre, che sono caratteristiche dell'analisi e del calcolo vettoriale.

Anche sui segnali digitali si eseguono operazioni aritmetiche di tipo tradizionale, ma su di essi si agisce inoltre con gli strumenti di una particolare struttura matematica, denominata algebra delle proposizioni. I suoi fondamenti vanno ricercati nella teoria degli insiemi e trovano una organica sistemazione nell'algebra di Boole.

Indicati gli oggetti dello studio (i segnali digitali), individuati i mezzi per la loro rappresentazione (sistemi e codici), stabilite le regole per poter operare su di essi (operazioni logiche), occorre trovare gli strumenti fisici necessari per operare concretamente sui segnali digitali. Queste mansioni sono svolte dai circuiti digitali, che sono in grado di produrre, rappresentare ed infine elaborare gli oggetti della nostra trattazione.

Per lo scopo a cui sono adibiti essi dovranno funzionare solo con due livelli di tensione:

- un livello alto, a cui verrà fatta corrispondere la cifra binaria 1; - un livello basso, al quale corrisponderà la cifra binaria 0. In alternativa alla corrispondenza ora stabilita si possono invertire le assegnazioni delle cifre binarie

ai due livelli assunti dai circuiti. Nel primo caso si parlerà di logica positiva. nel secondo di logica negativa.

La distinzione tra due soli livelli di tensione rende molto più facile la progettazione dei sistemi digitali rispetto a quelli analogici. Questi ultimi infatti, dovendo rappresentare segnali con un numero elevato di valori, devono essere costruiti con assoluta precisione per evitare che due valori vicini vengano scambiati tra loro.

I circuiti fondamentali vengono poi utilizzati per la costruzione di sistemi di livello più elevato, che sono capaci di compiere sui segnali digitali operazioni di grande complessità e costituiscono la struttura dei moderni sistemi di elaborazione computerizzata.

Page 147: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

146

Gli argomenti ora introdotti formano l'oggetto dell'Elettronica Digitale. per cui possiamo affermare che

l'Elettronica Digitale si occupa dei segnali digitali, dei sistemi di numerazione e dei codici necessari alla loro rappresentazione, dei circuiti elettronici adibiti all'elaborazione di questi segnali.

1.2 Sistemi di numerazione non decimale

Sistema di numerazione binario Per comprendere il sistema di numerazione binario è opportuno richiamare alcuni concetti di base del

più familiare sistema decimale. Il sistema di numerazione decimale è un sistema posizionale perché il valore delle cifre componenti

un numero dipende dalla posizione che esse occupano nella scrittura del numero stesso. Ad esempio il numero decimale 356 è diverso dal numero 536 a causa della diversa posizione occupata dalle due cifre comuni '5' e '3' e tutto questo si spiega se i numeri vengono scritti nella forma esplicita che la notazione tradizionale sottintende. Si ha infatti

630500106103105536650300106105103356

012

012

++=×+×+×=

++=×+×+×=

Il numero 10 rappresenta la base del sistema di numerazione, che può contare su dieci cifre (o simboli) diverse. Le potenze di 10, a partire da quella di grado 0, sono disposte in ordine crescente procedendo da destra verso sinistra e perciò ad ogni posizione esse assegnano un peso che viene assunto dalla cifra che occupa quella posizione. Per questo motivo il sistema di numerazione decimale, assieme ad altri dello stesso tipo, viene detto pesato.

Cambiando la base ed il numero di cifre a disposizione e mantenendo gli stessi criteri di rappresentazione, si possono formare sistemi di numerazione in base qualsiasi.

Per il sistema binario si stabilisce come base della numerazione il numero 2, si scelgono due cifre, 0 e 1, e si procede per la formazione dei numeri con gli stessi criteri usati per la numerazione decimale.

Ogni cifra del sistema binario viene comunemente designata con il nome di bit, contrazione del termine binary digit (= cifra binaria).

Esempio 1

Il numero binario 101 10 va interpretato come una somma di prodotti delle cifre 0 e l per le potenze della base 2 disposte in ordine crescente a partire da destra, cioè

1001234

2 222416202121202110110 =++=×+×+×+×+×=

Per la codifica del numero decimale 22, come per qualsiasi altro numero, si può procedere in modo tabulare, come indicato nello schema seguente:

N 42 32 22 12 02

22 1 0 1 1 0

Nella parte dedicata agli esercizi viene illustrato, per la codifica in binario di un numero decimale, un metodo più efficiente di quello indicato nell'esempio ora visto.

Page 148: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

147

Sistema di numerazione ottale Se la base del sistema di numerazione è il numero 8 e si adottano come simboli rappresentativi le otto

cifre decimali da 0 a 7, si crea il sistema di numerazione ottale, la cui importanza è dovuta alla facilità con cui si può passare da questo al sistema binario e viceversa e alla maggiore compattezza con cui un numero può essere scritto.

Esempio 2 I1 numero ottale 6247 rappresenta in forma sintetica la somma di prodotti delle cifre di cui è formato per le corrispondenti potenze del numero 8, cioè

100123

8 3239732128307217846425126878482866247 =+++=×+×+×+×=×+×+×+×=

Sistema di numerazione esadecimale (o hex) Nel porre come base della numerazione il numero 16 è necessario stabilire un insieme di sedici

simboli diversi uno dall'altro che rappresentino le cifre del nuovo sistema di numerazione. Tali simboli sono le dieci cifre decimali da 0 a 9, che conservano il solito valore, e le prime sei lettere maiuscole dell'alfabeto (A, B, C, D, E, F), i cui valori sono

1514

13111210

==

====

FE

DBCA

Anche questo sistema di numerazione si presta ad una veloce conversione in binario e, viceversa, ogni numero binario è facilmente trasportabile in base 16, con la quale assume una compattezza superiore anche a quella ottenibile con il sistema decimale.

Esempio 3

Il numero esadecimale 162AF , rappresenta la seguente somma di prodotti:

10012

16 68711516102562161516101622 =×+×+×=×+×+×=AF

1.3 Operazioni con i numeri binari

Con i numeri binari, ottali ed esadecimali, come con qualsiasi altro sistema di numerazione posizionale, sono possibili le quattro operazioni aritmetiche elementari e le regole per l'esecuzione di tali operazioni sono le stesse che vengono utilizzate nel sistema decimale. Tratteremo solo le operazioni nel sistema binario perché è l'unico con il quale operano effettivamente gli elaboratori, mentre i sistemi ottale ed esadecimale sono soprattutto impiegati nella memorizzazione.

Addizione

L'esecuzione di questa operazione segue le stesse regole usate per la numerazione decimale, che possono essere così riassunte :

Page 149: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

148

- dopo aver incolonnato i numeri da sommare, si esegue la somma delle cifre della prima colonna a destra; se tale somma è inferiore alla base di numerazione, cioè 10 si trascrive il risultato e si procede con le cifre della colonna successiva;

- se la somma delle cifre è uguale o superiore alla base, si trascrive l'ultima cifra del risultato e si riporta la cifra più significativa nella colonna immediatamente superiore:

- si procede poi con le stesse modalità con le colonne successive.

Applicando gli stessi criteri alla numerazione in base 2 le procedure possono essere riassunte nelle seguenti regole fondamentali:

sinistra a riporto1011110000

a

=+=+=+

(1.1)

Esempio 4

Le forme binarie dei due numeri decimali 22 e 29 sono 101l0 e 11101 rispettivamente. Per sommarli dopo averli incolonnati, si procede secondo le regole ( 1.1).

51110011

29101112201101

111

→=→+→

_________________

riporti

Sottrazione Anche in questo caso si adattano al sistema binario le procedure in uso nel sistema decimale: - quando una cifra del minuendo è uguale o superiore a quella del sottraendo è possibile la sottrazione

immediata delle due cifre secondo il seguente schema

011110000

=−=−=−

(1.2)

- quando la cifra del minuendo è inferiore a quella corrispondente del sottraendo si prende un'unità dell'ordine immediatamente superiore e si procede nel modo qui illustrato

( ) 1101 =−

con l'l tra parentesi preso in prestito dalla cifra immediatamente a sinistra.

Esempio 5

Nel sottrarre ( )102 4100 da ( )102 131101

Page 150: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

149

1001

0011011

____________=−

l'operazione si esegue senza alcun riporto perché ogni cifra del minuendo è superiore o uguale a quella corrispondente del sottraendo. Volendo invece sottrarre ( )102 151111 da ( )102 2511001 si ha

0101

111110011

101

100

_______________=−

dove si vede che la quarta cifra del minuendo, azzerata perché utilizzata dalla terza, che ne ha ceduto una 'porzione' alla seconda, deve a sua volta chiedere un prestito alla quinta, che si annulla.

I1 procedimento è molto macchinoso e in assoluto la sottrazione è la più complessa tra le quattro operazioni aritmetiche.

L'esigenza di semplificazione e di uniformità delle operazioni suggerisce di utilizzare procedure collaudate, possibilmente sfruttando un hardware già predisposto per altre operazioni. È questo il caso della sottrazione, che può essere eseguita come un'addizione, dopo aver trasformato i termini dell'operazione secondo codici opportuni.

Ai due metodi di esecuzione che ora illustreremo preponiamo due definizioni.

Prima definizione

Si chiama complemento a 1 di un numero binario il numero che si ottiene dal numero dato scambiando tutti gli 1 con 0 e viceversa.

Seconda definizione

Si definisce complemento a 2 di un numero binario il numero che si ottiene aggiungendo 1 al suo complemento a 1.

Primo metodo

Per eseguire uno sottrazione basta aggiungere al minuendo il complemento a 1 del sottraendo e aggiungere 1 al risultato.

Secondo metodo

Per eseguire una sottrazione è sufficiente sommare il minuendo con il complemento a 2 del sottraendo.

Page 151: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

150

Non esiste una differenza sostanziale tra i due metodi in quanto entrambi eseguono la somma con il complemento a 1 e aggiungono 1 al risultato parziale. È l'ordine con cui vengono eseguite queste due operazioni che è diverso nei due metodi indicati.

Esempio 6

Dall'esempio 5 si riprenda la differenza tra i numeri 75 e 15 espressi in binario. Il complemento a 1 di 01111 è 10000, con l'aggiunta della 5a cifra per uguagliare il numero di cifre del minuendo. Risulta allora

risultato

riporto

sottraendodelaocomplementminuendo

0101

1100101

10000110011

_____________________

_____________________=+

Il complemento a 2 di 01111 è 10000+1 = 10001 che sommato al numero 11001, dà

trascuraredariportorisultato

sottraendodelaocomplementminuendo

010101

21000110011

__________________=+

Moltiplicazione È sufficiente un esempio per verificare che le regole da seguire sono le stesse della numerazione

decimale.

Esempio 7 I1 prodotto di 29 per 13 dà come risultato 377. In binario l'operazione diventa

100111101

1011110111

0000010111

101110111

__________________________

__________________________=×

Page 152: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

151

Divisione Pur dovendo seguire in astratto le norme abbastanza complesse della divisione a più cifre, in realtà la

divisione fra numeri binari si riduce a stabilire se un numero è contenuto in un altro oppure no: nel primo caso nel quoziente ci sarà un 1, nel secondo uno 0.

Ogni risultato parziale, moltiplicato col divisore e sottratto al dividendo, fornirà il resto parziale che con l'aggiunta di una cifra costituirà il divisore successivo.

Vediamo qualche esempio.

Esempio 8

Il primo caso che presentiamo è dato dalla divisione di 2810 per 410. In base 2 ciò si traduce nella divisione di un numero di cinque cifre per un numero di tre cifre. Le tre cifre più significative del dividendo contengono le tre cifre del divisore e quindi si procede nel modo seguente:

finalerestodivisorenuovo

resto2divisore nuovo

resto1

00101

1111

11100100111

o

o

0

0

: =

Vediamo ora un caso in cui il divisore, di quattro cifre, è maggiore del numero rappresentato dalle quattro cifre più significative del dividendo. Nella divisione di 377 per 13 si ha

resto0

10111011

0000011

101100001

101110101

1011101111011100111101

______________

_______________

_____________

_____________

____________

:

−=

Page 153: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

152

1.4 Codici numerici e alfanumerici

Una rappresentazione in codice è una corrispondenza di numeri e lettere con un insieme di simboli. In questo senso i sistemi di numerazione visti nel paragrafo 1.2 possono essere ritenuti dei codici, in quanto per esempio al numero decimale 7 fanno corrispondere la terna binaria 111.

In senso più ristretto, parlando di codici, si sottintende l'esistenza di una chiave di interpretazione senza la quale è impossibile sia la codifica che la decodifica. Da questo punto di vista non si può ritenere codice un sistema come il binario, che ha la stessa struttura del sistema decimale e che quindi non necessita di una speciale chiave di lettura.

Vediamo ora qualcuno dei codici che, in misura più o meno accentuata, hanno una struttura diversa da quella del sistema decimale.

Codice BCD

La denominazione è un acronimo della dicitura Binary Coded Decimal che significa decimale codificato in binario e che riassume l'essenza stessa di questo codice. Infatti ogni cifra di un numero decimale viene trasformata nel suo equivalente binario a quattro bit ed i gruppi così ottenuti vengono posti uno accanto all'altro nella sequenza in cui si trovano le corrispondenti cifre del numero decimale.

Poiché con 4 bit si hanno 16 combinazioni possibili mentre le cifre decimali da rappresentare sono 10 soltanto, 6 combinazioni rimangono inutilizzate, per cui questo codice è meno efficiente del binario normale (o naturale).

Inoltre ogni rappresentazione in BCD contiene sempre un numero di cifre multiplo di 4 e quindi sovente accade che il numero BCD sia più lungo del corrispondente numero binario.

Questo codice è utilmente impiegato in tutti quegli strumenti che trasferiscono informazioni mediante cifre decimali da un sistema di elaborazione digitale al mondo esterno e viceversa, come gli orologi, i voltmetri, i termometri digitali e la tastiera delle calcolatrici.

Esempio 9

La codifica in BCD del numero 25410 è

010001010010

452↓↓↓

da cui risulta 001001010100.

Codice GRAY (o riflesso)

Si tratta di un codice non pesato e quindi assai poco adatto ad essere impiegato nelle operazioni aritmetiche. È invece di grande utilità quando si devono rappresentare in successione dei numeri consecutivi, perché ogni numero differisce dal suo contiguo per un solo bit; nel passare da un numero all'altro un solo circuito elettrico deve commutare e si evitano così problemi di sincronismo di più circuiti quando invece i bit d'uscita che devono cambiare contemporaneamente sono più d'uno come avviene per esempio nel passaggio del numero binario 0111 (= 710) al numero 1000 (= 810).

Questo codice è ad esempio impiegato nei trasduttori di posizione (encoder), che inviano informazioni digitali in corrispondenza delle posizioni occupate dall'oggetto sotto osservazione: gli spostamenti successivi sono segnalati di volta in volta dal cambiamento di un solo bit, cosicché è minimo il rischio di errate o non contemporanee commutazioni di circuiti elettrici.

I1 termine riflesso gli deriva dal modo particolare con cui questo codice può essere costruito e che è illustrato nella sequenza di operazioni rappresentate qui sotto:

Page 154: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

153

- si parte dai numeri 0 e 1 che assumono lo stesso significato del sistema binario naturale e a ciascuno di essi si antepone uno 0; nella riproduzione speculare dei due numeri, formata dalla successione 1 e 0. si antepongono invece due 1. Si ottiene così la quaterna di numeri

)3()2(

0111

''______________)1()0(

1000

cifraprimalapereriflessiondilinea

- si antepone uno 0 a ciascuno dei quattro numeri precedenti, si riproducono specularmente le due cifre a destra e a ciascuno dei quattro nuovi numeri si antepone un 1; si ottiene allora

)()()()(

''____________________)()()()(

7654

001101111011

3210

010110100000

cifrasecondalapereriflessiondilinea

Procedendo con le stesse modalità per gli otto trovati, poi per i primi sedici e così via si ottiene il codice Gray fino al numero voluto.

Codice ASCII Il codice ASCII (American Standard Code for Information Interchange = codice standard americano

per lo scambio di informazioni) è un codice alfanumerico, che rappresenta cioè lettere e numeri, adatto alla codifica delle informazioni da trasmettere dalla tastiera al computer.

È composto di 7 cifre binarie, che consentono 27 = 128 combinazioni, con le quali rappresentare le lettere maiuscole e minuscole, i numeri da 0 a 9, i segni di interpunzione ed altri simboli comunemente usati nella scrittura.

Una versione più moderna utilizza 8 bit invece di 7, mettendo quindi a disposizione dell’utente 256 combinazioni. Le prime 128, la cui cifra più significativa (MSB = most significant bit) è 0, corrispondono a quelle del codice a 7 bit, mentre l'altra metà, in cui l’MSB è 1, viene utilizzata per altri simboli particolari, come le lettere greche, assai usate in matematica, ed altri segni utili ad una migliore presentazione di testo scritto. In un computer si accede a questi caratteri dall’ambiente DOS tenendo premuto il tasto ALT e introducendo i l numero decimale corrispondente stabilito dal codice ASCII.

Esempio 10

Il numero esadecimale 4E, che corrisponde al binario 1001110 e al decimale 78, rappresenta la lettera N dell'alfabeto che si può ottenere battendo il numero decimale 78 con il tasto ALT premuto.

Page 155: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

154

Il numero 11101010, che in hex corrisponde al numero EA ed in decimale al numero 234, rappresenta la lettera greca maiuscola W.

1.5 La logica e le operazioni logiche

I segnali digitali, di cui si è finora parlato e dei quali si sono descritti alcuni sistemi di rappresentazione, vengono fisicamente prodotti e gestiti dai circuiti digitali o circuiti logici.

Le regole che presiedono al comportamento di questi circuiti costituiscono un complesso di norme che va sotto il nome di logica binaria e trovano un'organica sistemazione in una struttura matematica chiamata algebra di Boole.

L'algebra di Boole è nata nel secolo scorso, ad opera del matematico di cui porta il nome, con lo scopo di raccogliere tutte le norme che permettono di sviluppare una costruzione logica a partire dai due concetti fondamentali di vero e di falso.

Dovendo giudicare della verità o della falsità delle proposizioni, l'algebra di Boole è detta anche algebra delle proposizioni e con essa è possibile non solo analizzare una proposizione, e valutarne quindi la veridicità, ma anche progettare nuove 'costruzioni' logiche.

Essa viene perciò usata come strumento di analisi e di progetto dei circuiti logici intesi come 'proposizioni' circuitali che gestiscono i concetti di vero e di falso associati ai simboli binari 1 e 0.

I circuiti logici di cui parleremo in questo capitolo sono soltanto dei blocchi funzionali astratti e costituiscono il primo passo verso la realizzazione fisica dei sistemi adatti a trattare questo tipo di contenuti.

In un capitolo successivo vedremo i circuiti fisici nei quali i concetti di vero e di falso sono associati a livelli alti e bassi di tensione o al passaggio e all'interruzione di corrente.

In conformità alla notazione che di solito viene usata anche dalle case costruttrici per definire lo stato di un sistema, spesso, in alternativa ai valori 1 e 0, vengono usati i simboli

H (high) come equivalente di vero per indicare un livello alto di tensione L (low) come equivalente di falso per indicare un livello basso di tensione

secondo la seguente corrispondenza, detta in logica positiva:

0L1H

==

In molte applicazioni è utilizzata la corrispondenza contraria

1L0H

==

che va sotto il nome di logica negativa.

Costanti e variabili

Diamo tre definizioni fondamentali relative agli oggetti matematici sui quali possono essere eseguite le operazioni logiche.

Si chiama costante una grandezza che può assumere soltanto uno dei due valori 1 o 0; pertanto le costanti possibili sono solamente due: 1 e 0.

Page 156: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

155

Si chiama variabile una grandezza che, a seconda delle circostanze, può assumere alternativamente i valori 1 o 0.

Si chiama funzione di una o più variabili una proposizione la cui verità è condizionata dal valore delle variabili da cui dipende.

Le variabili vengono di solito indicate con le lettere maiuscole dell'alfabeto (A,C, X, Y, ecc.) mentre le funzioni sono indicate con le lettere minuscole seguite dalle variabili da cui dipendono racchiuse tra parentesi. Per esempio la funzione f delle variabili A e B si denota con il simbolo

f (A, B)

Sulle costanti, sulle variabili e sulle funzioni si possono eseguire delle operazioni logiche. Tre di queste, e cioè le operazioni NOT, AND e OR, dette operazioni fondamentali, costituiscono la base da cui tutte le altre possono essere derivate.

Operazione NOT

È detta anche operazione di inversione o di negazione oppure di complementazione.

L'operazione NOT trasforma il valore di ogni costante, variabile o funzione nel suo opposto o complementare.

Il simbolo usato per indicare questa operazione è un trattino posto al di sopra della grandezza sulla quale si opera. L'effetto sulle costanti l e 0 è allora

0110

== (1.3)

In sintesi:

A A

a)

0 1

1 0 b)

Fig. 1 Tabella di verità (a) e simbolo grafico (b) di un inverter.

Il risultato prodotto da questa operazione su una variabile è riassunto nella tabella di figura 1 detta tabella di verità.

Sempre in figura 1 è disegnato anche il blocco logico, detto invertitore (inverter), che esegue l'operazione NOT. Tale blocco prende pure il nome di porta NOT.

Quando su di una variabile si compie l'operazione NOT si dice che la variabile è negata. È ovvio che una doppia negazione riporta la grandezza al valore originario, per cui si può scrivere

AA = (1.4)

Operazione AND Chiamata anche prodotto logico, questa operazione si può compiere su non meno di due grandezze,

che possono essere costanti, variabili o funzioni.

A A

Page 157: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

156

Il risultato di un prodotto logico (AND) è 1 se e soltanto se tutti i termini dell’operazione valgono 1

Il simbolo di questa operazione è punto ( )⋅ interposto tra i diversi termini dell'operazione o, come nel prodotto dell’algebra tradizionale, nel caso di calcolo letterale le diverse lettere possono essere unite le une alle altre senza alcun segno.

Se l'operazione viene eseguita su due costanti si possono verificare i seguenti casi

111010000

=⋅=⋅=⋅

(1.5)

Se il prodotto avviene tra due variabili A e B i casi possibili sono riassunti nella tabella di verità di figura 2, nella quale è rappresentato anche il blocco logico che compie questa operazione. Il circuito logico viene chiamato operatore AND od anche porta logica AND, o semplicemente porta AND.

In particolare ogni variabile può essere moltiplicata anche per se stessa o per la sua complementare ed allora si ha

0=⋅

=⋅

AA

AAA (1.6)

In sintesi:

A B BA⋅

a)

0 0 0 1 1 0 1 1

0 0 0 1

b)

Fig. 2 Tabella di verità (a) e simbolo grafico (b) di una porta AND.

Nel caso che una variabile sia moltiplicata per una costante i casi possibili sono

AAA

=⋅=⋅

100

(1.7)

L'operazione AND gode della proprietà commutativa in base alla quale è ABBA ⋅=⋅ (1.8)

e della proprietà associativa, per cui si ha ( ) ( ) CBACBACBA ⋅⋅=⋅⋅=⋅⋅ (1.9)

Da quest'ultima proprietà si deduce che anche per il prodotto logico di tre o più variabili sussiste la condizione che tutti gli ingressi devono valere 1 affinché l'uscita valga l.

Da qui in poi nella maggior parte dei casi tralasceremo per brevità il segno di prodotto logico, a meno che non vi sia pericolo di equivoci, come nel caso di prodotto tra costanti.

Esempio 11 La tabella di verità del circuito di figura 3 è

B

ABA

Page 158: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

157

A B B BA

0 0 0 1 1 0 1 1

1 0 1 0

0 0 1 0

e l'espressione della variabile Y d'uscita del circuito logico è BAY = . A seguire viene rappresentato il circuito logico che realizza la funzione appena trovata:

Fig. 3

Operazione OR Questa operazione porta anche il nome di somma logica e, come l'operazione AND, ha bisogno di

almeno due termini. Per essa vale l'assunto:

il risultato della somma logica (OR) vale 0 se e soltanto se tutti i termini della somma valgono 0.

Il simbolo di questa operazione, in analogia con la somma algebrica, è il segno +. Se l'operazione viene eseguita su due costanti si danno i seguenti casi

111110000

=+=+=+

(1.10)

I risultati della somma di due variabili sono riassunti nella tabella di figura 4, dove si può anche osservare il simbolo dell'operatore logico OR, detto anche porta OR.

In particolare ogni variabile può essere sommata con se stessa e con la sua complementare ed allora si ha:

1=+=+

AAAAA

(1.11)

Se una variabile è sommata con una costante i casi possibili sono

110

=+=+

AAA

(1.12)

A B

BAY =

Page 159: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

158

Come il prodotto anche la somma gode delle proprietà commutativa ed associativa,che conducono alle seguenti relazioni

ABBA +=+ (1.13)

( ) ( ) CBACBACBA ++=++=++ (1.14)

Si può facilmente dimostrare che la somma di tre o più termini è uguale a 1 se anche uno solo dei termini vale 1.

Esempio 12

Se agli ingressi della porta OR di figura 4b vengono applicati i due segnali A e B di figura 5 il risultato è il segnale d'uscita Y, che rimane a livello alto in quegli intervalli di tempo durante i quali uno dei due ingressi è alto. Solamente quando A e B assumono contemporaneamente il valore O anche l'uscita si porta a livello basso.

A B BA+ 0 0 0 1 1 0 1 1

0 1 1 1

A B Y

Fig. 5

Fig. 4 Tabella di verità(a) e simbolo grafico (b) di una porta OR.

Operazioni derivate Combinando le tre operazioni fondamentali NOT, AND e OR si ottengono due nuove operazioni,

chiamate NAND e NOR, che hanno grande importanza nel progetto di circuiti logici complessi, ed altre due operazioni, EXOR ed EXNOR, che sono impiegate soprattutto nella realizzazione di circuiti aritmetici.

NAND = NOT AND. Questa operazione, composta da una AND e da una NOT, è rappresentata dal simbolo della porta AND seguito da un cerchietto che sintetizza l'inversione. La tabella di verità è disegnata in figura 6, assieme al simbolo grafico ed al circuito equivalente.

A B AB BA 0 0 0 1 1 0 1 1

0 0 0 1

1 1 1 0 a)

b)

c) Fig. 6 Tabella di verità (a), simbolo grafico (b) e circuito equivalente (c) di una porta NAND.

AB

BA

A

B

BA +

AB

BA

Page 160: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

159

NOR = NOT OR. Una porta OR ed una NOT generano l'operatore NOR. Tabella di verità, simbolo grafico e circuito logico equivalente sono rappresentati in figura 7.

A B BA + BA+ 0 0 0 1 1 0 1 1

0 1 1 1

1 0 0 0 a)

b)

c) Fig. 7 Tabella di verità (a), simbolo grafico (b) e circuito equivalente (c) di una porta NOR.

I due operatori NAND e NOR sono detti operatori universali perché con essi è possibile costruire qualsiasi circuito logico utilizzando un numero opportuno di porte di un solo tipo, cosa che invece non è possibile con gli operatori fondamentali NOT, OR e AND.

EXOR = OR esclusivo. La tavola di verità, il simbolo grafico e la realizzazione con AND, OR e NOT sono visibili in figura 8. La caratteristica fondamentale di questa porta è di avere l'uscita a l solo se i due ingressi hanno valore opposto.

Il simbolo di operazione è un segno di somma racchiuso in un cerchio (fig. 8) e l'espressione algebrica della funzione realizzata da questo blocco logico è

BABABA +=⊕ (1.15)

A B BA ⊕

0 0 0 1 1 0 1 1

0 1 1 0

a)

b)

c) Fig. 8 Tabella di verità (a) , simbolo grafico (b) e circuito equivalente (c) di una porta EXOR

EXNOR = NOR esclusivo. Si tratta della negazione dell'operazione precedente, ottenibile quindi con un operatore EXOR seguito da una porta NOT.

Tavola di verità, simbolo grafico e realizzazione del circuito relativo con le porte fondamentali sono visibili in figura 9.

In questo caso l'uscita vale 1 solo se i due ingressi hanno lo stesso valore, il che fa intravvedere interessanti applicazioni in tutti quei in cui si abbiano delle grandezze messe a confronto.

Il simbolo di operazione è lo stesso dell’EXOR con un segno di negazione e l'espressione algebrica è

ABBABA +=⊕ (1.16)

B

BA +AA

B

BA +

AB

BA ⊕

A

B

BA ⊕

Page 161: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

160

A B BA ⊕ 0 0 0 1 1 0 1 1

1 0 0 1

a)

b)

c) Fig. 9 Tabella verità (a), simbolo grafico (b) e circuito equivalente (c) di una porta EXNOR.

1.6 Proprietà, leggi e teoremi dell'algebra booleana

Di tutte le proprietà dell'algebra di Boole che stiamo per esporre qualcuna è già stata menzionata nei paragrafi precedenti.

In seguito forniremo solo alcune dimostrazioni, lasciando la giustificazione dei rimanenti enunciati come esercizio per il lettore. 1) Nel prodotto logico AND valgono:

( )0

*1

00

=⋅

=⋅=⋅=⋅

AA

AAAAA

A

2) Per la somma logica (OR) valgono:

( )1

*11

0

=+

=+=+=+

AA

AAAA

AA

Delle precedenti relazioni quelle indicate con un asterisco (*) sono anche chiamate proprietà di idempotenza.

3) La (1.8) e la (1.13) rappresentano la proprietà commutativa del prodotto e della somma

ABBAABBA+=+

⋅=⋅

4) Per le stesse operazioni la (1.9) e la (1.14) esprimono la proprietà associativa

( ) ( )( ) ( ) CBACBACBA

CBACBACBA++=++=++

⋅⋅=⋅⋅=⋅⋅

A

B

BA ⊕

A

BBA ⊕

Page 162: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

161

5 ) Come per l'algebra ordinaria, esiste la proprietà distributiva del prodotto rispetto alla somma

( )( ) ( ) BDADBCACDCBA

CABACBA+++=+⋅+

⋅+⋅=⋅+ (1.17)

Le due proprietà seguenti sono dette dell'assorbimento e rappresentano due dei teoremi più importanti per la semplificazione delle funzioni.

6) Primo teorema dell'assorbimento

( ) ABAAABAA

=+=⋅+

(1.18)

7) Secondo teorema dell'assorbimento

( ) ABBAA

BABAA

=+

+=⋅+ (1.19)

Per dimostrare la prima delle (1.18) è sufficiente applicare in modo inverso la proprietà distributiva del prodotto rispetto alla somma, operando un raccoglimento a fattor comune ed infine applicando la seconda delle (1.12) e delle (1.7); si ottiene allora

( ) AABABAA =⋅=+=⋅+ 11

Lasciamo al lettore la facile dimostrazione della seconda delle ( 1.18). Per dimostrare la prima delle ( 1.19), sfruttando in modo inverso il primo teorema dell’assorbimento,

si sostituisce A con la somma A + AB e quindi, in base ad alcune proprietà precedenti facilmente riconoscibili , si ha

( ) BABAAABABAABABAA +=⋅+=++=++=⋅+ 1

Anche la dimostrazione della seconda delle ( 1. 19) viene lasciata come esercizio al lettore. Si hanno infine due teoremi, chiamati di De Morgan, la cui conoscenza è indispensabile per la

progettazione dei circuiti logici con componenti tutti dello stesso tipo, cioè con quelle porte che nel paragrafo precedente sono state chiamate 'operatori universali '.

8) Primo teorema di De Morgan In base a questo teorema si ha

BABA +=⋅ ( 1.20)

ed il suo enunciato è

il complemento di un prodotto di due variabili è uguale alla somma dei complementi delle variabili stesse.

Per la dimostrazione di questo teorema si rimanda all’esercizio guidato EG.5.

9) Secondo teorema di De Morgan Esso rappresenta il duale del teorema precedente ed afferma che

Page 163: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

162

BABA ⋅=+ (1.21 )

e cioè

il complemento di una somma di due variabili è uguale al prodotto dei complementi delle variabili stesse.

I due teoremi di De Morgan sono estensibili al caso di un numero qualsiasi di variabili. Il lettore lo verifichi nel caso di tre variabili.

1.7 Forme canoniche e semplificazione algebrica

Tutte le funzioni booleane incontrate finora rappresentano delle combinazioni di più variabili sulle quali vengono eseguite le tre operazioni fondamentali: NOT, AND e OR. Il circuito logico che realizza una data funzione rappresenta un blocco funzionale i cui ingressi coincidono con le variabili indipendenti e l'uscita, che è funzione di quelle variabili, dipende esclusivamente dallo stato degli ingressi.

Un circuito logico di tal fatta si chiama circuito combinatorio, in quanto lo stato dell’uscita dipende esclusivamente da una particolare combinazione dello stato degli ingressi. La storia passata del sistema non ha alcuna influenza sulla sua evoluzione successiva, cioè il sistema non ha memoria.

Altri sistemi, che studieremo più avanti in questo modulo, nella loro evoluzione tengono conto, oltre che della stato degli ingressi, anche di quello precedente dell'uscita; questa pertanto esegue i suoi cambiamenti secondo una sequenza temporale, conservando la memoria della sua storia passata. Tali sistemi per questa ragione vengono chiamati sequenziali.

Limitando per il momento le nostre considerazioni ai primi, parleremo allora di logica combinatoria e di funzioni combinatorie.

Queste, come già detto, appaiono come una serie di operazioni compiute sulle variabili d’ingresso ed esiste la possibilità per ogni funzione di essere scritta in forme diverse tra loro equivalenti.

La prima di queste forme esprime ogni funzione come somma di prodotti delle variabili d'ingresso, che sono presenti in forma vera o in forma negata.

Per arrivare a questo tipo di rappresentazione a partire dalla funzione scritta in forma qualsiasi è necessario applicare i teoremi e le proprietà visti nel paragrafo precedente.

Esempio 13

Con l'applicazione dei teoremi di De Morgan e della proprietà distributiva una certa funzione viene così modificata in somma di prodotti:

( ) ( ) ( )CACBA

BCACBACACBACBACBAf

++=

=++++=+++= 1,,

Applicando il 1° ed il 2° teorema dell'assorbimento si ottiene:

CAACBACACBA +=++=++

Esempio 14

In modo del tutto simile si trasforma la seguente funzione:

Page 164: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

163

( ) ( ) ( )( )( )

( ) ( ) BCACABCBABACABCBABAACABCBA

ACABCBACBAACABCCCBBCBBA

ACABCBCBAACABCBCBACBACBCBACBAf

+++=+++=+++=

=+++=+++++=

=++++=+++⋅=+++⋅=,,

Già al quart'ultimo passaggio la funzione era posta nella forma di somma di prodotti, ma la forma finale risulta di più semplice realizzazione, perche il circuito corrispondente richiede un ingresso in meno.

Somma canonica C’è un caso particolare di somma di prodotti, chiamata somma canonica, per la quale si dà la

seguente definizione.

Quando una funzione booleana è espressa come somma di prodotti ed ogni prodotto contiene, vere o negate, tutte le variabili d'ingresso, si dice che la funzione è sotto forma di somma canonica.

Ogni funzione, dopo essere stata posta sotto forma di somma di prodotti, può essere ricondotta alla sua forma canonica procedendo secondo le fasi seguenti: a) ogni termine non completo della somma viene moltiplicato per il fattore neutro 1 dato dalla somma

della variabile mancante con la sua negata; b) si sviluppa il prodotto applicando la proprietà distributiva; c) i termini uguali vanno eliminati tutti meno uno; d) sui termini così ottenuti, se ancora incompleti, si eseguono ancora le fasi a), b) e c) rispetto alle

variabili mancanti fino a che ogni termine contiene tutte le variabili.

Esempio 15

Si consideri la funzione di tre variabili

( ) BACCBAf +=,,

II primo termine della somma, che manca di B , viene moltiplicato per BB + ; il secondo termine, che manca di A e di C , viene dapprima moltiplicato per AA + e successivamente per CC + . Seguendo quindi le procedure

illustrate nei quattro punti precedenti otteniamo la riduzione in forma di somma canonica della funzione assegnata:

( ) ( ) ( )( )CBACBACBACBACBACBACBACBACBACBACBA

CCBABACBACBAAABBBCABCA

++++=+++++=

=++++=+++=+

Uno dei due termini uguali CBA viene eliminato.

Associamo ora ad ogni variabile in forma vera il valore logico 1 ed alla stessa variabile in forma negata il valore logico 0 e con tale convenzione costruiamo la tabella di verità della funzione dell' esempio 15 appena visto. Per la sua costruzione osserviamo che la funzione è il risultato di un' operazione OR fatta sulla variabile B e sul prodotto logico AC. Ciò significa che la funzione assume il valore 1 quando:

Page 165: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

164

B=1, indipendentemente dalle altre due variabili (3a, 4a, 7a, 8a riga della tabella), oppure AC=1, cosa che può verificarsi solo quando A e C valgono contemporaneamente

1, qualunque sia il valore di B (6a e 8a riga della tabella).

A B C AC + B 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 1 1 0 1 1 1

In corrispondenza delle righe della tabella ora menzionate nella colonna della funzione scriviamo allora degli 1 ad indicare le combinazioni che determinano la verità della proposizione algebrica. Infatti anche la funzione, come le altre variabili, assume nella nostra corrispondenza il valore 1 quando si trova in forma vera ed il valore 0 quando è in forma negata.

Ora ad ogni riga in cui ( ) 1,, =CBAf facciamo corrispondere, con un procedimento inverso del precedente, un prodotto logico delle tre variabili in forma vera o negata a seconda che in quella riga compaia un 1 od uno 0 nella colonna di ciascuna di esse. Per esempio alla terza riga, in cui appare la combinazione digitale 010, faremo corrispondere il prodotto logico CBA con il seguente significato implicito:

la funzione data assume il valore 1 quando

A è negata B è vera C è negata

Sommati poi tutti i termini corrispondenti alle righe in cui ( ) 1,, =CBAf si scopre che tale somma coincide con la forma canonica della funzione data.

Tutto ciò e verificabile con qualsiasi altra funzione per cui e possibile dare la seguente definizione.

Una funzione è espressa in forma di somma canonica quando è costituita dalla somma di tanti prodotti quante sono le righe della sua tabella di verità in cui

1=f . Ogni prodotto contiene tutte le variabili ed ogni variabile appare in forma vera o negata in corrispondenza rispettivamente di 1 e 0.

Inoltre

ogni termine della somma si chiama minterm o prodotto fondamentale

per cui

un minterm rappresenta una combinazione delle variabili in: corrispondenza della quale la funzione vale 1.

Page 166: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

165

Semplificazione Dalla forma canonica di una funzione è possibile attraverso i teoremi dell'algebra booleana od anche

per mezzo della tabella di verità eseguire la semplificazione della funzione data. Vediamo il seguente esempio.

Esempio 16

La funzione

CBACBACBACBACBACBAf +++++=

può essere semplificata usando i teoremi dell' algebra e si ha

( ) ( ) ( ) ( ) +=+=++=+++++= CACAACABBA BBCA CCBACCBA f

nella quale si riconosce la funzione dell'esempio 13. Volendo seguire un metodo alternativo, si costruisca la tabella di verità della funzione a partire dalla sua forma canonica

A B C f 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

1 1 1 1 1 0 1 0

e si osservi che

1=f in tutti i casi in cui è 0=A , indipendentemente dal valore di B e C ; 1=f in tutte i casi in cui è 0=C , indipendentemente dal valore di A e di B .

Ciò permette di affermare che 1=f quando 0=A o (OR) quando 0=C e quindi, in simbologia booleana,

CAf +=

Da questo esempio si possono trarre alcune conclusioni relative alla semplificazione delle funzioni logiche, e precisamente

- è abbastanza agevole semplificare una funzione, se questa è posta in forma di somma canonica, applicando all'inverso i criteri seguiti per scrivere la forma canonica;

- in ogni caso non è possibile stabilire una procedura standard valida per tutte le funzioni e raggiungere la certezza di aver eseguito la semplificazione più conveniente. L'esperienza rimane in questo tipo di procedure la garanzia maggiore di aver compiuto un “buon lavoro”.

Prodotto canonico Si dà la seguente definizione.

Una funzione si dice data in forma di prodotto canonico quando è formata dal prodotto di somme ed ogni somma contiene, in forma vera o negata, tutte le variabili della funzione stessa.

Page 167: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

166

È possibile ridurre una funzione in forma di prodotto canonico utilizzando la tabella di verità nel modo seguente: a) si considerano solo le combinazioni di variabili in corrispondenza delle quali la funzione vale 0; b) per ognuna delle righe considerate si scrive la somma delle variabili associando ad ogni 1 la

variabile negata e ad ogni 0 la variabile vera; c) tutte le somme ottenute vanno moltiplicate tra loro.

Esempio 17

Dalla tabella di verità della funzione dell'esempio 16 si scopre che 0=f per le combinazioni delle variabili 101 e 111. In base alle indicazioni fornite si possono creare le seguenti corrispondenze:

CBA

CBA

++⇒

++⇒

111

101

e quindi la funzione diventa ( )( )CBACBAf ++++=

Ogni termine del prodotto canonico è chiamato maxterm. Sulla base della corrispondenza tra le variabili in forma vera e negata e le cifre binarie 1 e 0 è

possibile associare alla rappresentazione delle funzioni nelle due forme canoniche un'ulteriore rappresentazione, utilizzando i sistemi di numerazione binario ed esadecimale, oltre al sistema decimale. Il metodo si articola nelle seguenti norme: - ogni minterm o maxterm è associato ad un numero binario composto di tante cifre quante sono le

variabili della funzione; - ad ogni variabile in forma vera si associa la cifra binaria 1; a quelle in forma negata si attribuisce la

cifra 0; - la funzione viene allora rappresentata come somma dei numeri corrispondenti ai suoi minterm o

come prodotto dei numeri associati ad ogni maxterm; - ogni numero binario può essere sostituito con il corrispondente valore decimale o esadecimale.

Esempio 18

La funzione dell'esempio 16, data in forma di somma canonica

CBACBACBACBACBACBAf +++++=

può essere scritta nei modi seguenti (m = minterm ; M = maxterm): ( ) ( )∑∑ == 643210110100011010001000 ,,,,,,,,,, mmf

oppure come prodotto di somme ( ) ( )∏∏ == 75111101 ,, MMf

La funzione di quattro variabili

( )( )DCBADCBAf ++++++=

può dal canto suo essere rappresentata come segue, con i sistemi binario, decimale ed esadecimale: ( ) ( ) ( )∏∏∏ === 881110001011 ,,, BMMMf

Page 168: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

167

Il lettore verifichi che come somma di minterm la suddetta funzione può essere scritta ( )∑= FEDCAmf ,,,,,,,,,,,,, 976543210

1.8 Mappe di Karnaugh

Le mappe di Karnaugh (mappe K) sono delle tabelle con le quali si rappresentano le funzioni booleane e che, come le tabelle di verità, indicano le combinazioni delle variabili per le quali le funzioni valgono 1 o 0. Esse consentono inoltre una facile semplificazione delle funzioni stesse mediante un procedimento meno aleatorio di quello basato sul metodo algebrico. Ciò, se da una parte permette di raggiungere espressioni minime sicure per le funzioni, dall'altra non consente di poter scegliere tra forme alternative che potrebbero essere più convenienti in fase di realizzazione circuitale. Per questo motivo un buon progettista usa contemporaneamente sia il metodo algebrico che quello basato sulle mappe K, fidandosi della sua esperienza per ottenere il miglior risultato dal punto di vista dell'efficienza e dell’economicità.

Ci sono mappe K per funzioni da due variabili fino a sei variabili, ma solo quelle fino a quattro variabili risultano di uso conveniente, mentre per gli ordini superiori l'elaborazione delle funzioni diventa troppo macchinosa e in definitiva poco conveniente. Perciò limiteremo le nostre considerazioni alle mappe K fino a quattro variabili.

Rappresentazione delle funzioni Una mappa è costituita da una serie di caselle ognuna delle quali corrisponde ad una combinazione di

tutte le variabili della funzione. Ogni combinazione è indicata all'esterno della mappa mediante le cifre binarie 0 e 1, associate rispettivamente alle variabili in forma negata ed in forma vera. Le caselle adiacenti differiscono per il valore di una sola variabile ed in questo senso vanno considerate adiacenti anche caselle che si trovano ad estremi opposti della mappa, purché rispettino la suddetta condizione.

All'interno di ogni casella viene scritto il valore binario, 0 o 1, che la funzione assume per quella particolare combinazione delle variabili che identifica la casella in questione.

Condizione indispensabile per la rappresentazione con le mappe K è che le funzioni siano espresse in forma di somma (anche non canonica) di prodotti o mediante la tabella di verità. È possibile risalire alla mappa di una funzione anche se questa e data in forma canonica di prodotto di somme e di questo metodo, che è poco usato, parleremo quando dalla mappa ricaveremo l'espressione della funzione.

Per poter seguire agevolmente le considerazioni e gli esempi numerici che seguiranno, le caselle verranno indicate con la numerazione progressiva indicata in figura 10, procedendo dall' alto al basso e da sinistra a destra, secondo lo schema della scrittura normale.

È di uso frequente scrivere solo gli 1 all'interno della mappa, lasciando vuote le caselle in corrispondenza delle quali la funzione vale 0.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 Fig.10 Numerazione di riferimento per le mappe di Karnaugh

Page 169: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

168

Mappe a due variabili Due variabili consentono quattro combinazioni e quindi la mappa corrispondente possiede quattro

caselle: le variazioni di A creano uno spostamento in orizzontale mentre quelle di B individuano la posizione verticale delle caselle (fig. 11).

Esempio 19 La funzione

( ) BABABAf +=, assume il valore 1 quando 1=A e 0=B oppure quando 1=A e 1=B e perciò nella mappa di figura 11 il numero 1 occupa la prima e la quarta casella; la seconda e la terza saranno invece occupate da uno 0.

A B 0 1 0 1 0 1 0 1

Fig. 11 Mappa K per 2 variabili

AB C 00 01 11 10 0 1 0 1 0 1 1 1 0 1

Fig. 12 Mappa K per 3 variabili

Mappe a tre variabili Sono formate da otto caselle, quante sono le combinazioni possibili. La forma è quella di figura 12

dove la posizione orizzontale è assegnata ai valori assunti da A e B. La progressione (00, 01, 11, 10) è diversa da quella normalmente usata nelle tabelle di verità perché deve essere rispettata la condizione di variazione di un solo valore tra caselle adiacenti.

Esempio 20

La funzione

( ) CBACACBABACBAf +++=,,

assume il valore 1 nei seguenti casi: - 00 == BA , indipendentemente dal valore di C . Ciò significa che avremo degli 1 in tutta la prima colonna

della mappa di figura 12; - 10 == CA , sia per 0=B che per 1=B . Questa situazione corrisponde ad un 1 nelle caselle 5a e 6a;

- 011 === CBA ,, . Il termine di tre variabili corrisponde ad una sola combinazione possibile e quindi ad una sola casella,che in questo caso è la 3a;

- 101 === CBA ,, . È un caso simile al precedente e corrisponde alla casella 8a. Per la mappa a tre variabili è possibile anche la forma a quattro righe e due colonne, con la posizione orizzontale individuata da A e quella verticale dalla coppia (B,C) .

Mappe a quattro variabili II criterio per la loro costruzione è lo stesso che è stato usato per quelle a tre variabili. Le

combinazioni possibili sono 16 e danno luogo a quattro colonne, individuate dalle variabili A e B, e da quattro righe, che corrispondono alle combinazioni possibili di C e D.

Le norme per rappresentare correttamente una funzione di quattro variabili sono: - ad un termine della funzione che contiene tutte e quattro le variabili corrisponde una sola casella della

mappa; - ad un termine con tre variabili corrispondono due caselle, perche la variabile mancante è ininfluente;

Page 170: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

169

- un termine con due variabili occupa quattro caselle; - ad un termine costituito da una sola variabile corrispondono otto caselle nella mappa.

Esempio 21

Per la funzione ( ) CBADCBADBABADCBAf +++=,,, si può osservare che essa vale 1 quando - 00 == BA , ; 1 in tutte le caselle della prima colonna;

- 110 === DBA ,, ; 1 nelle caselle 6ae 10a;

- 0111 ==== DCBA ,,, ; 1 nella casella 15a;

- 001 === CBA ,, ; 1 nelle caselle 4a

e 8a. I risultati sono visibili in figura 13.

AB CD 00 01 11 10 00 1 0 0 1 01 1 1 0 1 11 1 1 0 0 10 1 0 1 0

Fig. 13 Mappa K per 4 variabili.

Semplificazione delle funzioni Come abbiamo potuto constatare nei paragrafi precedenti, una funzione non viene quasi mai data in

forma semplificata e quindi la sua realizzazione, a partire dalla forma primitiva, risulta per lo più ridondante e di non immediata intelligibilità.

Per poterla allora semplificare si devono tener presenti gli stessi criteri che si sono seguiti per la sua rappresentazione in mappa. Di importanza fondamentale è la constatazione che

In una mappa K un gruppo di caselle adiacenti rappresenta il prodotto di un numero di variabili tanto più piccolo quanto maggiore è il numero di caselle comprese in quel gruppo.

Data allora la rappresentazione in mappa K di una funzione, per la sua semplificazione si procede al raggruppamento del maggior numero possibile di caselle adiacenti con il metodo della cerchiatura, seguendo alcune regole di massima, che comunque non devono essere applicate in maniera rigida e che in ogni caso possono dare luogo a più soluzioni equivalenti ma non ugualmente ottimali dal punto di vista della loro realizzazione circuitale. Spetta al progettista valutare l'efficienza relativa dei diversi risultati, confrontandoli, come si è detto, con eventuali semplificazioni ottenute con il metodo algebrico o con un metodo misto basato sulle mappe e sui teoremi dell' algebra di Boole.

Le principali regole da rispettare per ridurre una funzione in forma di somma di prodotti sono le seguenti: - i raggruppamenti devono comprendere ogni casella almeno una volta. Questo significa che una

casella può far parte di più raggruppamenti; - si inizia dalle caselle che non sono adiacenti ad altre. Esse danno luogo ad un minterm, cioè ad un

prodotto di tutte le variabili della funzione; - si considerano successivamente le caselle adiacenti ad un'altra soltanto. I casi in cui esistano più

possibilità di formare una coppia per il momento vanno trascurati. I termini che derivano da questa

Page 171: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

170

operazione contengono tutte le variabili della funzione meno quella che nelle due caselle considerate cambia di valore in quanto non è influente sul valore della funzione;

- tra le caselle non ancora cerchiate individuare quelle che possono essere unite in gruppi di quattro in un modo soltanto. In quattro caselle solo due variabili mantengono costante il loro valore, per cui il termine risultante e un prodotto di queste due variabili. Come per il caso precedente vanno momentaneamente trascurate le possibilità non univoche;

- si individuano infine i gruppi di otto caselle adiacenti, nelle quali solo una variabile mantiene costante il suo valore. Il termine corrispondente è costituito da questa sola variabile;

- se a questo punto qualche casella non è stata ancora cerchiata, si tratta sicuramente di uno dei casi trascurati nelle fasi precedenti. Si sceglie allora una delle possibilità offerte, cercando di formare un gruppo più ampio possibile che può includere anche caselle già utilizzate;

- se la funzione presenta delle condizioni di indifferenza, ad esse va attribuito un valore arbitrario secondo la convenienza e quindi eventualmente vanno sfruttate per formare anelli col massimo numero possibile di caselle.

Il criterio sostanziale da rispettare è quello di ottenere il minor numero di termini (ogni termine nel circuito corrisponde ad una porta) e ciascun termine deve avere il minor numero possibile di variabili (ogni variabile corrisponde ad un ingresso della porta relativa al termine che contiene quella variabile).

Appare dunque chiaro che la semplicità circuitale è lo scopo primario di un progetto basato sulle mappe K, ma questo non è sempre sinonimo di economicità e praticità realizzativa. Spesso è preferibile rinunciare alla minimizzazione dei componenti e dei loro ingressi in favore dell’uniformità nel tipo di porte utilizzate.

Con alcuni esempi vogliamo ora mostrare concretamente come si procede alla minimizzazione di una funzione utilizzando le mappe K.

Esempio 22

Si voglia minimizzare la funzione dell'esempio 20 e a questo scopo si consideri la mappa di figura 12 con cui è stata rappresentata quella funzione. Si hanno i seguenti raggruppamenti (fig. 14): - la 3a casella non è adiacente ad altre e dà luogo al minterm CBA ; - la casella 8a si unisce alla 5a: le variabili che non mutano il loro valore sono 0=B e 1=C ; il termine corrispondente è CB ;

- la 1a con la 5a: BA ;

- la 6a ancora con la 5a: CA

La forma minima della funzione è allora

( ) CABACBCBACBAf +++=,,

AB C 00 01 11 10 0 1 0 1 0 1 1 1 0 1

Fig. 14

AB CD 00 01 11 10 00 1 0 0 1 01 1 1 0 1 11 1 1 0 0 10 1 0 1 0

Fig. 15

Page 172: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

171

Esempio 23

Per la funzione dell'esempio 21, rappresentata con la mappa di figura 13, si ha (fig. 15): - la casella 15a è isolata e produce il termine DCBA ;

- la 4a e l'8a con la 1a e la 5a: CB ;

- la 6a e la 10a con la 5a e la 9a: DA ; - nella 1a colonna si congloba la 13a restante: BA .

II risultato è

( ) BADACBDCBADCBAf +++=,,,

Si consideri ora attentamente l'esempio che segue.

Esempio 24

In figura 16a è visibile la minimizzazione di una funzione mediante le cerchiature:

- della terza riga (prodotto CD )

- della 1a con la 2a colonna (termine A ) - della 1a con la 4a colonna (termine B ) Il risultato è la funzione

CDBAf ++=

AB CD 00 01 11 10 00 1 1 1 01 1 1 1 11 1 1 1 1 10 1 1 1

a)

AB CD 00 01 11 10 00 0 01 0 11 10 0

b)

Fig. 16

Si consideri poi la mappa di figura 16b, nella quale sono evidenziate solo le caselle in cui la funzione ora vista assume valore 0. Si eseguano quindi le seguenti operazioni: - si raggruppino in anelli le caselle adiacenti che contengono uno zero; - ad ogni gruppo si faccia corrispondere la somma delle variabili che mantengono costante il loro valore: ogni

variabile sarà scritta in forma vera se il suo valore è 0, in forma negata se il suo valore è 1; - le somme cosi ottenute vanno moltiplicate tra loro in modo da fornire un'espressione della funzione in forma di

prodotto di somme. Nel nostro caso si hanno due gruppi di due caselle ciascuno:

- la 3a con la 7a: somma CBA ++

- la 3a con la 15a: somma DBA ++ Come risultato si ottiene

( )( )DBACBAf ++++=

Invitiamo il lettore a verificare l'equivalenza delle due espressioni mediante l'applicazione dei teoremi e delle proprietà dell'algebra di Boole.

Page 173: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

172

Da questo esempio si conclude che

da una mappa K è possibile trarre l'espressione della funzione in forma di prodotto di somme considerando le caselle in cui la funzione assume valore 0 ed associando ad ogni casella un maxterm dato dalla somma delle variabili in forma complementare a quella indicata dalle caselle. Ad un raggruppamento di più caselle adiacenti corrisponde la somma di quelle variabili, sempre in forma complementare, che mantengono costante il loro valore.

Esistono a volte delle particolari combinazioni delle variabili in corrispondenza delle quali la funzione che da esse dipende può assumere indistintamente il valore 0 o il valore 1 e ciò può verificarsi per due ragioni: o perché quelle combinazioni in realtà non si verificheranno mai, oppure perché effettivamente lo stato dell'uscita non ha alcuna importanza in quelle circostanze. Tali combinazioni sono dette di indifferenza.

Occorre precisare che una condizione di indifferenza non significa che la funzione assumerà in modo aleatorio uno dei due valori 0 e 1; infatti non è pensabile che un sistema od una parte di esso nel corso del suo funzionamento assuma casualmente livelli di tensione alti o bassi. Indifferenza invece significa che si può progettare il circuito in modo che la funzione, in corrispondenza di quelle particolari combinazioni, assuma per esempio il valore 1; in alternativa però può essere proposta una soluzione circuitale equivalente per la quale nelle medesime circostanze la funzione assuma il valore 0. In ogni caso il sistema darà in uscita sempre quel valore che è stato assegnato arbitrariamente in fase di progetto.

Questa libertà di assegnazione del valore della funzione può essere di grande utilità nella minimizzazione, come appare nell'esempio seguente.

Esempio 25

Sia data la funzione

( ) CBACBACBACBAf ++=,,

per la quale le combinazioni CBA e CBA costituiscono dei casi di indifferenza. La sua rappresentazione con la mappa K si può vedere in figura 17, dove le caselle 5a e 6a indicano con una crocetta le condizioni di indifferenza. Conviene allora assegnare arbitrariamente alla casella 5a il valore 0 e alla 6a il valore 1, cosicché è possibile cerchiare le caselle 2a, 3a, 6a, 7a nelle quali solo la variabile B mantiene costante il suo valore, che è 1. La minimizzazione della funzione porta al risultato

( ) BCBAf =,,

AB C 00 01 11 10

0 1 1

1 X X 1

Fig. 17 Condizioni di indifferenza

Ricordiamo ancora una volta che la minimizzazione non risulta sempre conveniente per la realizzazione circuitale, al punto che attualmente le mappe K hanno perso molta dell'importanza che

Page 174: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

173

avevano in passato. Insistiamo quindi sulla necessità di acquisire una buona esperienza sia delle mappe K sia del metodo algebrico e di porre a confronto le diverse soluzioni possibili.

A titolo d'esempio si consiglia di confrontare il circuito di figura P.5 del problema P-21 con quello risultante dell'esercizio P-36 (fig. P.l4). Il confronto va fatto sia relativamente alle porte impiegate sia al numero di ingressi complessivo che risulta nei due casi.

1.9 Realizzazione di funzioni booleane con porte NAND e NOR

È possibile realizzare circuitalmente una funzione booleana utilizzando solamente porte NAND oppure solo porte NOR, che per questo motivo, come e state detto in precedenza, vengono anche chiamate operatori universali.

Porte NAND Per una realizzazione con sole porte NAND é necessario per prima cosa porre la funzione in forma di

somma di prodotti, negare la funzione e applicare i teoremi di De Morgan, quindi tornare alla forma vera mediante una nuova negazione.

Esempio 26 Della funzione dell'esempio 24 in forma di somma di prodotti

CDBAf ++=

si ricavi la forma negata ed a questa si applichino i teoremi di De Morgan. Si ottiene allora

DCBADCBAf ⋅⋅=++=

e, negando una seconda volta, risulta

DCBAff ==

La realizzazione circuitale è dunque formata da una porta NAND a due ingressi e da una a tre ingressi, come risulta in figura 18.

Fig. 18

Porte NOR Se una funzione, data in forma di prodotto di somme, viene negata due volte e ad essa si applicano i

teoremi di De Morgan, é possibile realizzare il circuito relativo utilizzando solo porte NOR. Il procedimento è del tutto simile a quello usato per la realizzazione con porte NAND.

DC BA

Page 175: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

174

Esempio 27

Si riprenda la funzione dell'esempio 24 scritta in forma di prodotto di somme

( )( )DBACBAf ++++=

e si esegua la sua negazione, applicando al contempo il 2° teorema di De Morgan. II risultato di queste operazioni

è

( )( ) DBACBADBACBAf +++++=++++=

Negando l’espressione trovata si ottiene di nuovo la funzione come combinazione di operazioni NOR

DBACBAf +++++=

ed il circuito relativo e disegnato in figura 19.

Fig. 19

C B DA

Page 176: Alessandro Bertelli – Mariano Zanchi

ESERCIZI GUIDATI

EG. 1 Eseguire la conversione in binario del numero decimale 157

Soluzione Oltre al metodo basato sulla definizione di sistema di numerazione posizionale, che è stato illustrato nella parte teorica e negli esempi relativi, esiste un secondo metodo, chiamato della divisione ripetuta, che consiste nel dividere per 2 il numero da convertire e i successivi quozienti approssimati per difetto, prendendo i resti di queste divisioni come cifre costitutive del numero binario. Passando all’esecuzione si ha:

157 78 39 19 9 4 2 1 0 Quoziente approssimato :2 1 0 1 1 1 0 0 1 Resto

La cifra meno significativa (LSB = least significant bit) è quella di sinistra per cui, procedendo verso destra, si incontrano le cifre di peso sempre maggiore. Il risultato della conversione è dunque

210 10011101157 = La verifica del risultato si esegue riconvertendo il numero binario in decimale. Per questa operazione si ricorre alla definizione di numero posizionale, per cui si ha

1074320

2 157128168412222210011101 =++++=++++=

EG. 2 Convertire nel sistema ottale il numero decimale 489 e verificare il risultato mediante la sua conversione in decimale. Eseguire poi la conversione diretta da ottale a binario, e viceversa, dello stesso numero.

Soluzione Si ricorre anche in questo caso alle divisioni successive per 8 del numero e dei quozienti approssimati per difetto. Si ha allora

489 61 7 0 Quoziente approssimato :8 1 5 7 Resto

Per il calcolo del resto si può procedere nel modo seguente: - si divide il numero per la base ),:( 125618489 = ; - la parte intera del quoziente )(61 rappresenta il numero da dividere nel passo successivo; - il resto è costituito dalla parte decimale moltiplicata per la base ),( 181250 =⋅ . Applicando ad esempio questo procedimento al quoziente approssimato 61 si ottiene

6257861 ,=÷

Quoziente approssimato per difetto 586250 =⋅, resto

Concludendo si ha

Page 177: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

176

810 751489 =

La riconversione in decimale si esegue alla solita maniera, e cioè 10

2108 48944840187858751 =++=×+×+=

Il procedimento per convertire un numero ottale in binario è fondato sulla corrispondenza tra ciascuna cifra ottale ed un gruppo binario di tre bit, per cui è sufficiente convertire in binario ciascuna cifra dell’ottale per ottenere il corrispondente numero binario. Nel nostro caso si ha

base 8 7 5 1 | | | base 2 111 101 001 ⇒ 111101001

Questo procedimento va eseguito in senso inverso quando si vuole passare da sistema binario a quello ottale: si divide cioè il numero binario in gruppi di tre cifre, a partire da destra, e ad ogni gruppo si associa la corrispondente cifra ottale. Nell’eventualità che le cifre binarie non siano in quantità multipla di 3, si aggiungono all’inizio del numero uno o due zeri, così che tutti i gruppi contengano tre cifre binarie.

EG. 3 Convertire nell’ordine in esadecimale, in binario e in ottale il numero decimale 351.

Soluzione Il criterio da seguire è ancora quello delle divisioni successive, come per il binario e per l’ottale, seguendo un procedimento analogo a quello utilizzato in EG.2 per quanto riguarda il calcolo del resto. Si ha dunque

351 21 1 0 Quoziente approssimato :16 F 5 1 Resto

La corrispondenza è dunque 1610 F15351 =

Per il calcolo del resto, come accennato, si esegue la stessa procedura adottata per la conversione in ottale. Applicata alla divisione di 351 essa dà

93752116351 ,=÷

Quoziente approssimato per difetto 1610 F151693750 ==⋅, resto

La riconversione in decimale, che si esegue con il solito procedimento della somma di prodotti, è lasciata come facile esercizio per il lettore. Se si vuol convertire un numero esadecimale in binario si esegue una procedura uguale a quella usata per la conversione ottale-binario, con l’unica differenza che in questo caso ogni cifra corrisponde ad un gruppo di quattro cifre binarie. Sarà utile avere ben radicata in memoria la corrispondenza fra i simboli del sistema esadecimale ed i primi sedici numeri (da 0 a 15) del sistema binario. Passando dunque all’esecuzione si ottiene

Page 178: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

177

base 16 1 5 F | | | base 2 0001 0101 1111 ⇒ 101011111

Per il passaggio dal sistema binario a quello esadecimale si ripercorre in senso inverso la procedura ora vista. Se si vuole invece operare una conversione dall’esadecimale all’ottale conviene passare attraverso il binario, per poi convertire questo in ottale secondo i criteri esposti nell’esercizio precedente. Nel nostro caso particolare si ha

101 011 111 | | | 5 3 7 ⇒ 8537

Riassumendo si può scrivere

821610 537101011111F15351 ===

EG. 4 Eseguire la somma dei numeri hex E9B e CD8. Sottrarre quindi CD8 dal risultato dell’addizione e verificare che si ottiene il primo addendo E9B.

Soluzione Sebbene la procedura sia formalmente identica a quella usata nel sistema decimale, è opportuno esporre dettagliatamente i vari passi per evitare gli errori derivanti dalla scarsa familiarità col sistema hex. Dopo aver incolonnato i due numeri si procede nel modo seguente: - sommare le cifre di ugual peso a partire dalle meno significative; - se la somma è inferiore a 16 si riporta il risultato e si prosegue con la colonna

immediatamente a sinistra; - se la somma è maggiore di 16 si sottrae 16 al risultato, si trascrive la differenza e si riporta 1

nella colonna successiva. Sulla base di queste indicazioni si ottiene 1a cifra: 10198B =+ 3=−1619 (rip. 1) 2° cifra: 10321(r)D9 =++ 7=−1623 (rip. 1) 3° cifra: 10721(r)CE =++ 11(B)=−1627 (rip. 1) 4° cifra: solo riporto 1 e quindi tutta l’operazione può essere così riassunta

1 1 1 riporti E 9 B + C D 8 = 1 B 7 3

Per la sottrazione si procede come nel decimale, cosa che lasciamo verificare al lettore. In alternativa si propone la seguente procedura:

Page 179: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

178

- dopo aver convertito in binario il numero CD8 si calcola il suo complemento a 2 e si ritorna in hex;

- si somma 1B73 con il complemento a 2 di CD8 e si elimina il riporto. Concretamente si ottiene

0 C D 8 sottraendo in hex 0000 1100 1101 1000 sottraendo in binario 1111 0011 0010 0111 complemento a 1

1 bit di somma 1111 0011 0010 1000 complemento a 2 in binario

F 3 2 8 complemento hex

1 B 7 3 + F 3 2 8 = 1 0 E 9 B riporto da eliminare

EG. 5 Dimostrare che i circuiti di figura E.1 eseguono sulle due variabili A e B la stessa operazione, cioè sono equivalenti e quindi intercambiabili tra loro.

Fig. E. 1

Soluzione Il modo più semplice e più sicuro per dimostrare l’equivalenza di due circuiti è quello di costruire le relative tabelle di verità e confrontarle tra loro: se a combinazioni uguali degli ingressi corrispondono valori uguali delle uscite allora l’equivalenza è provata. Si ottiene dunque la seguente tabella

A B AB AB A B BA +0 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0

e le colonne in neretto testimoniano che i due circuiti di figura E.1 sono effettivamente equivalenti.

A

B

A

B

BA

Page 180: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

179

EG. 6 Le uscite delle due porte di figura E.2 siano considerate funzioni dei soli ingressi A e B. Il terzo ingresso non viene inteso come una variabile del problema alla stregua degli altri due ma è piuttosto pensato come una chiave che attiva o disattiva le due porte (E=enable=abilitare), rendendole quindi capaci di produrre in uscita il risultato delle operazioni AND e OR sulle due variabili A e B. Illustrare le modalità d’intervento dell’ingresso E sulle due porte, sapendo che E, come A e B, può assumere i valori 0 e 1.

Fig. E. 2

Soluzione La distinzione tra gli ingressi A, B e l’ingresso E è solo strumentale e dipende dal ruolo svolto dalle tre grandezze nel problema concreto di cui fanno parte. Per esempio E potrebbe rappresentare l’interruttore per l’inserimento di un sistema d’allarme, la cui attivazione dipende dallo stato di due variabili (contatti che si aprono e si chiudono, interruttori accesi o spenti, movimento o arresto di motori o altro). E’ evidente in questo caso che la logica funzionale è affidata alle variabili A e B mentre E rappresenta solo la condizione perché il sistema possa operare. Da un punto di vista puramente matematico E ha tuttavia lo stesso peso di A e B, per cui si può creare una tabella di verità nella quale sono sintetizzati i comportamenti di entrambe le porte. Si ha allora

E A B X1 X2

0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1

Si può notare che

11

00

21

21

===+===

XABXEperBAXXEper

per cui si conclude che - la porta AND esplica la sua funzione quando l’ingresso di abilitazione è posto a livello alto

( 1=E ) mentre quando 0=E è interdetta e le variabili A e B sono ininfluenti sul suo comportamento;

- la porta OR ha un funzionamento complementare ed esegue l’operazione quando 0=E . E’ invece disattivata quando 1=E .

In sintesi il comportamento dei due sistemi può essere descritto dalle seguenti tabelle

E

BA X1 X2 B

A

E

Page 181: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

180

E A B ABX1 =

0 x x 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1

E X1

0 0 1 AB

per la porta AND

E A B BAX 2 +=

0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 x x 1

E X2

0 A+B 1 1

per la porta OR

Le crocette che appaiono nelle tabelle indicano situazioni in cui lo stato delle variabili d’ingresso non ha alcuna influenza sull’uscita.

EG. 7 Realizzare circuitalmente la seguente funzione di tre variabili:

( ) ( ) ( )CBACBACBAfX +++== ,,

Dopo aver impostato la tabella di verità valutare la possibilità di esprimere e di realizzare la funzione in modo più semplice.

Soluzione Nella realizzazione di circuiti logici a partire dall’espressione di una funzione, si procede come nell’algebra tradizionale cominciando con le operazioni più interne alle parentesi e proseguendo verso l’esterno. Realizzando contemporaneamente i circuiti relativi alle operazioni man mano eseguite, si ottiene un circuito in cui sono riconoscibili diversi livelli realizzativi di ordine via via crescente. In questo problema si possono distinguere quattro fasi (o livelli). 1° livello. Nell’espressione tutte le variabili appaiono in forma vera ed in forma negata per cui è necessario prima di tutto predisporre tre invertitori che forniscano le forme complementari di A, B e C. 2° livello. Il passo successivo consiste nel realizzare le due operazioni CB e BA + mediante due porte AND e OR rispettivamente. 3° livello. Ancora attraverso una porta OR e una AND si eseguono le operazioni CBA + e ( )CBA + . 4° livello. Mancano ora due operazioni da fare: la somma delle due funzioni realizzate al livello precedente e la negazione di tale somma. Tutto ciò può essere compiuto in una volta utilizzando una porta NOR. Il circuito risultante è mostrato in figura E.3.

Page 182: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

181

Fig. E.3

La tabella di verità è di facile costruzione se si eseguono i passi compiuti nella realizzazione circuitale. Si ha allora

A B C A B C CB BA + CBA + ( )CBA + X X

0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0

Osservando l’ultima colonna si nota che l’unica combinazione degli ingressi che produce un 1 in uscita si ha nella 4° riga, con 0=A e 1== CB . Questo permette di scrivere la funzione nella forma semplificata

( ) BCACBAfX == ,,

A cui corrisponde il circuito di figura E.4 equivalente a quello assai più complicato di figura E.3.

Fig. E.4

EG. 8 Ricavare l’espressione della funzione ( )CBAfX ,,= di uscita del circuito di figura E.5 e scrivere la tavola di verità.

A

CB X

A

B

C

1° livello 2° livello 3° livello 4° livello

Page 183: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

182

Soluzione Nel circuito si possono riconoscere quattro livelli sulla base della considerazione che ogni livello agisce solo sulle uscite dei livelli precedenti.

Fig. E.5

Allora si ha che - il 1° livello comprende i circuiti che operano sulle grandezze d’ingresso A,B e C. In questo

caso ad esso appartiene solamente l’invertitore che nega la variabile A (uscita A= ); - al 2° livello appartengono tutti quei circuiti che elaborano le uscite dei circuiti del 1° livello

e le grandezze d’ingresso; sono comprese le porte NAND e NOR di figura E.5 (uscita NAND BC= ; uscita NOR BA += );

- il 3° livello è costituito dal secondo invertitore che complementa l’uscita della porta NAND (uscita BC= );

- da ultimo c’è un 4° livello che assume in ingresso i risultati del 3° e dei precedenti ed è costituito dalla porta OR (uscita BCBA ++= ).

Di seguito è presentata la tavola di verità con l’indicazione, in numeri romani, del livello a cui vanno attribuite le diverse funzioni descritte.

I II III IV

A B C A BA + BA + BC BC BCBA ++ 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1

Osservando la tavola di verità si nota che l’uscita vale sempre 1 quando 1=B e 1=C , indipendentemente dal valore di A , e poi quando 1=A e 0=B , indipendentemente da C. Tutto ciò può essere sintetizzato dalla relazione

BABCX +=

A

B

C

X

Page 184: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

183

e ci consente di semplificare il circuito di figura E.5 in quello di figura E.6.

Fig. E.6

EG. 9 Nel problema EG.7 per mezzo delle tabelle di verità si è appurato che la funzione ( ) ( ) ( )CBACBACBAfX +++== ,,

è semplificabile nella forma BCAX =

Verificare tale equivalenza sfruttando le opportune leggi dell’algebra di Boole.

Soluzione Si applica il 2° teorema di De Morgan e si ottiene

( )CBACBA +⋅+

Alle due funzioni negate si applicano rispettivamente il 2° e il 1° teorema di De Morgan, oltre alla proprietà relativa alla doppia negazione che equivale ad una affermazione. Si ha dunque

( ) ( )CBACBA ++⋅⋅ Ancora con il 1° ed il 2° teorema di De Morgan la precedente relazione diventa

( )[ ] ( )CBACBA +⋅+⋅ Sfruttando più volte la proprietà distributiva del prodotto rispetto alla somma, con l’impiego contemporaneo della proprietà commutativa del prodotto, si hanno le seguenti espressioni:

( ) ( ) CBACBACCACBAACBABBAACBACABA =+++=+++=+⋅+ 000

L’ultima relazione è resa possibile dalla proprietà 2 ( )0=AA .

EG. 10 Realizzare circuitalmente la seguente funzione nel modo più semplice possibile

( )DCCABX ++=

Soluzione Dal 2° teorema di De Morgan applicato alla somma negata si ha

( )DCCABX +⋅=

A

B

C

X

Page 185: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

184

e da questa, attraverso la proprietà associativa del prodotto e distributiva del prodotto rispetto alla somma, si ottiene

( )CDCABX +⋅=

Il termine dentro parentesi si semplifica con la proprietà dell’assorbimento e si ottiene la relazione finale

CABX =

che può essere realizzata con una porta NAND e una AND, come mostrato in figura E.7.

Fig. E.6

EG. 11 Ridurre la funzione ACBf +=

in forma canonica di prodotto di somme, utilizzando le proprietà dell’algebra di Boole

Soluzione Nell’algebra booleana, accanto alla proprietà distributiva del prodotto rispetto alla somma, esiste anche una proprietà distributiva della somma rispetto al prodotto che, a differenza della prima, non trova un’analogia nell’algebra tradizionale. Secondo tale proprietà nella funzione data ogni termine del prodotto AC viene sommata alla variabile A ed i risultati parziali ottenuti vanno moltiplicati tra loro; vale quindi l’uguaglianza

( )( )CBABACB ++=+

La forma così ottenuta per f è già un prodotto di somme ma non costituisce una forma canonica perché ogni fattore non contiene tutte le variabili della funzione. E’ allora necessario aggiungere in ogni somma le variabili mancanti sotto forma di elemento neutro rispetto alla somma, in modo da non alterare il valore della funzione. Lo scopo è raggiunto aggiungendo uno 0 sotto forma di prodotto di una variabile con il suo complemento ed ottenendo quindi, con l’aiuto anche della proprietà commutativa,

( )[ ] ( )[ ]CBAACCBA ++++

Applicando ora di nuovo la proprietà distributiva della somma rispetto al prodotto all’interno delle due parentesi quadre si ottiene

( )( )( )( ) ( )( )( )CBACBACBACBACBACBACBA ++++++=++++++++

con l’ultimo passaggio giustificato dalla proprietà di idempotenza. Il prodotto canonico indica le condizioni sotto le quali la funzione si annulla. Infatti osserviamo che la funzione data vale zero se anche uno solo dei termini del prodotto si annulla, per esempio

A

B

CX

Page 186: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

185

il termine CBA ++ , cosa che avviene quando tutte e tre le variabili sono negate. Ciò è verificabile scrivendo la tabella di verità della funzione. Così il secondo fattore, CBA ++ , ci dice che per azzerarsi, e quindi annullare tutta la funzione, deve avere nulli tutti e tre gli elementi che lo compongono, cioè 0=A , 0=B e

1=C ; e la cosa avviene puntualmente come dimostra la tavola di verità. Invitiamo il lettore a verificare l’esattezza del terzo termine. Questa forma canonica appare piuttosto artificiosa e comunque meno immediata di quella basata sulla somma di prodotti, perché manca la familiarità con questa strana proprietà distributiva. Essa risulta comunque assai utile quando le combinazioni per le quali una funzione è nulla sono meno numerose di quelle in cui la funzione vale 1; in questi casi è allora più facile e veloce esprimere la funzione mediante un prodotto di maxterm.

EG. 12 Realizzare le porte fondamentali NOT, AND e OR con sole porte NAND o sole porte NOR.

Soluzione 1) Porta NOT Dalle tabelle di verità delle operazioni NAND e NOR per due variabili si osserva che, quando i due ingressi hanno lo stesso valore, l’uscita assume il valore complementare: 1 quando gli ingressi sono a 0 e 0 quando gli ingressi sono a 1.

A B AB BA +0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0

Ciò suggerisce per l’operazione NOT l’impiego delle due porte nel modo indicato in figura E.8 a e b.

Fig.E.8 a) b)

2) Porta AND Per realizzare l’operazione AND mediante porte NAND è sufficiente usare due NAND in cascata, come mostrato in figura E.9a: la prima porta realizza il NAND delle variabili e la seconda nega il risultato della prima. Applicando invece il 1° teorema di De Morgan e negando due volte la funzione ABf = si ottiene

BAf

BAABf

+=

+==

A A A A

Page 187: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

186

a cui corrisponde il circuito di figura E.9b che utilizza tre porte NOR, due delle quali come invertitori; queste ultime risultano superflue se, insieme alle variabili in forma vera, sono disponibili anche le variabili in forma negata.

Fig.E.9 a) b)

3) Porta OR Si applichi la doppia negazione ed il 2° teorema di De Morgan alla somma logica di due variabili A e B e si ottiene

BABAf

BABAf

⋅=+=

⋅=+=

Le due forme corrispondenti ad un doppio NOR (fig.E.10a) e a tre porte NAND (fig.E.10b).

Fig.E.10 a) b)

EG. 13 Nel problema P-21 una delle funzioni assegnate è

( ) CDCBADCBAf +⋅+=,,,

La cui realizzazione è mostrata in figura P.6. Utilizzando i metodi di trasformazione studiati nella teoria, proporre altre soluzioni circuitali per la realizzazione della suddetta funzione.

Soluzione

• Semplificazione algebrica Raccogliendo a fattor comune la variabile C si ottiene

( )DBACCDCBA ++=+⋅+ (E.1)

e la realizzazione circuitale è mostrata in figura E.11.

ABA B

B

A

AB

A A

B B

BA + BA +

Page 188: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

187

Fig.E.11

• Somma di prodotti Direttamente dall’espressione data, attraverso il 2° teorema di De Morgan, risulta

CDCBACDCBA +=+⋅+ (E.2)

a cui corrisponde il circuito in figura E.12.

Fig.E.12

• Prodotto di somme A partire dal secondo membro dell’uguaglianza (E.2) si disegni la mappa K della funzione (fig. E.13a) e si operi la cerchiatura delle caselle contenenti uno 0, così da ottenere la forma in prodotto di somme della funzione: - le prime otto caselle forniscono il termine C; - le caselle 2, 3, 14, 15 danno il termine DB + ; - le caselle 3, 4, 15, 16 corrispondono a .DA + La funzione risulta

( )( )DBDACf ++= (E.3)

ed il circuito relativo è rappresentato in figura E.13b.

• Porte NAND Dall’espressione (E.2) si ricava la forma negata della funzione

CDCBADCCBAf ⋅=+=

dalla quale, con una seconda negazione, si ottiene

CDCBAf ⋅= (E.4)

A

f

B

D

C

A

B

C

D

f

Page 189: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

188

Il circuito che ne deriva è disegnato in figura E.14.

AB

CD 00 01 11 10 00

01

11 1 1 1 1

10 1

Fig.E.13 a) b)

Fig.E.14

• Porte NOR Dall’espressione (E.3) si ricava

( )( ) DBDACDBDACf ++++=++=

e quindi la funzione in forma vera diventa

DBDACf ++++= (E.5)

Il circuito logico corrispondente alla (E.5) è rappresentato in figura E.15.

Fig.E.14

A

D

B

C

f

A

B

C

D

f

A

D

B

C

f

Page 190: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

189

Osservazione. Per poter valutare con realismo la convenienza offerta dalle diverse soluzioni occorre tener presente che i dispositivi logici che generano le variabili, sulle quali poi si compiono le varie operazioni, di solito offrono su due uscite le variabili in forma vera e in forma negata. Perciò gli invertitori, che nei circuiti precedenti servono a negare le variabili d’ingresso, per lo più non sono necessari e quindi il confronto tra le varie soluzioni va fatto senza tener conto di essi.

EG. 14 Realizzare circuitalmente la funzione

( ) ( )∑= 654321 ,,,,,,,, mDCBAf

in modo da usare il minor numero di porte ed il minor numero d’ingressi.

Soluzione Sappiamo che i numeri dentro parentesi rappresentano i minterm di cui è costituita la funzione. Per esempio il numero 3 corrisponde al minterm

CBA

La mappa K della funzione è disegnata in figura E.16, dove sono tracciati anche i cerchi di minimizzazione che sembrano rappresentare la forma più razionale di intervento sulla funzione. Il risultato di tale minimizzazione è

BACBCAf ++=

Che per la realizzazione circuitale richiede 3 AND a due ingressi e 1 OR a tre ingressi, per un totale di 9 ingressi, se non si vuol tener conto degli eventuali invertitori necessari nel caso non fossero disponibili le forme negate delle variabili.

Fig.E.16 Fig.E.17

In alternativa alla soluzione precedente proponiamo la cerchiatura di figura E.17 che produce il risultato

CACABACAf +++=

Pur essendo composta da 4 termini e quindi in apparenza meno vantaggiosa della precedente, in essa sono riconoscibili due operazioni di OR esclusivo (EXOR), che permettono di scrivere la funzione nella forma

( ) ( )CABAf ⊕+⊕=

e di realizzare il circuito di figura E.18, che comprende due porte EXOR ed una porta OR a due ingressi per un totale di 6 ingressi.

1

00 01 11 10

0

1

AB C

1 1 1

1 1 1

00 01 11 10

0

1

ABC

1 1 1

1 1

Page 191: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

190

La soluzione di questo problema conferma ancora una volta che per ottenere la miglior realizzazione circuitale di una funzione non è consigliabile procedere secondo schemi rigidi.

Fig.E.18

EG. 15 Data la funzione in forma canonica

( ) ( )∑= FEDCAmDCBAf ,,,,,,,,,,,,,, 8753210

trovare per essa una soluzione circuitale che utilizzi un basso numero di porte e di ingressi.

Soluzione Si procede come nell’esercizio precedente, ricavando i minterm dalla notazione numerica fornita e compilando la mappa K della funzione, come risulta in figura E.19. Nella stessa figura è mostrata una cerchiatura sicuramente efficiente, che fornisce della funzione la forma minimizzata

DADBBAf ++=

a cui corrisponde un circuito logico costituito da 3 porte AND a 2 ingressi 1 porta OR a 3 ingressi Per un totale di 4 porte e 9 ingressi, se non si contano i tre invertitori per la negazione delle tre variabili A, B, D.

Fig.E.19 Fig.E.20

Una diversa soluzione è prospettata in figura E.20 con la forma risultante della funzione

DBDBBABAf +++=

1 1

00 10 1101

01

00 1

CDAB

1 1

1

1 1 1

1 1 1

11

10

B

A

C

f

1 1

00 10 1101

01

00 1

CD AB

1 1

1

1 1 1

1 1 1

11

10

Page 192: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

191

I primi due termini del 2° membro dell’uguaglianza rappresentano l’operazione EXNOR delle variabili A e B, il terzo e il quarto indicano la stessa operazione per le variabili Be D. La funzione può allora essere scritta nella forma

DBBAf ⊕+⊕=

Il circuito corrispondente è rappresentato in figura E.21 ed è formato da

2 porte EXNOR a 2 ingressi 1 porta OR a 2 ingressi

per un totale di 3 porte e 6 ingressi.

Fig.E.21

A

B

D

f

Page 193: Alessandro Bertelli – Mariano Zanchi

ESERCIZI PROPOSTI

P-1 Convertire in binario i seguenti numeri decimali e verificare mediante una riconversione l’esattezza del risultato: 25 – 63 – 64 – 195 – 314 – 509

P-2 Convertire in decimale i seguenti numeri binari: 10101 – 11101 – 101100 – 1000001 – 10101010 – 11001100 – 10111111 – 11110000 - 101010101

P-3 Convertire in ottale e quindi in binario i seguenti numeri decimali: 55 – 78 – 511 – 1024 – 2417 – 3227

P-4 Convertire in ottale i numeri decimali del problema P-1 sfruttando i risultati binari ottenuti.

P-5 Convertire in decimale i seguenti numeri ottali: 12 – 21 – 102 – 120 – 201 – 210 – 756 – 12305 – 12345

P-6 Convertire in esadecimale i numeri decimali: 64 – 240 – 2751 – 2816 – 4106 – 5249 – 11001 – 15687 – 24000 – 61455

P-7 Convertire in esadecimale i numeri decimali del problema P-1 sfruttando i risultati binari ottenuti.

P-8 Convertire in decimale i seguenti numeri esadecimali: 1A – 2B – 200 – 20A – A00 – DCE – F99 – FA0 – 5ABC

P-9 Una calcolatrice permette la conversione dei numeri decimali in binario, ottale ed esadecimale. La conversione in binario è consentita, per i numeri positivi, solo fino al numero 511 ed appare la scritta ‘E’ (=errore) quando si tenta la conversione di un numero superiore. Dovendo convertire in binario il numero 102475 come è possibile evitare il procedimento della divisione ripetuta o quello basato sulla somma delle potenze del 2?

P-10 Si eseguano le seguenti addizioni di numeri binari: 1001 + 1100; 1111 + 1111; 10101 + 10011; 11001 + 11100; 1100110 + 1010101; 11 + 101 + 111; 1010 + 10101 +1111

P-11 Dopo aver rappresentato i sottraendi in complemento a 1 ed in complemento a 2, calcolare la differenza delle seguenti coppie di numeri binari e verificare i risultati eseguendo l’operazione in modo tradizionale: 11011 – 10111; 1000000 – 111111; 1001110 – 111111; 10101010 – 1010101; 100010100 – 1000101; 10111000 - 10111

P-12 Eseguire le seguenti moltiplicazioni in binario:

1616881010 7277277271001110001011110010110011111000 ×××××××× ;;;;;;; EEA .

P-13 Dividere i risultati binari per il secondo fattore dei prodotti proposti in P-12 allo scopo di verificare la correttezza delle operazioni eseguite in quel problema.

P-14 Usando la tabella riportata in appendice si codifichi in ASCII la relazione ( ) 5030 ,=°sen

usando la rappresentazione esadecimale. [ ]3523032930332866973 ,,,,,,,,,, CDE .

P-15 Dimostrare per mezzo della proprietà associativa del prodotto logico che è 1== CBAX

solo se 011 === CBA ,, .

Page 194: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

193

P-16 Dimostrare per mezzo della proprietà associativa della somma logica che è 0=++= CBAX

solo se 110 === CBA ,, .

P-17 Trovare l’espressione della variabile d’uscita X del circuito di figura P.1 e scrivere la relativa tavola di verità. ( )[ ]BCBAX +=

Fig.P.1

P-18 Dimostrare l’equivalenza dei circuiti di figura P.2.

Fig.P.2

P-19 Nel circuito di figura P.3 gli interruttori A, B e C e la lampada L possono essere rappresentati da variabili binarie, con ( )CBAfL ,,= . Il valore binario 1 significa che gli interruttori sono chiusi e la lampada è accesa; il valore binario 0 indica interruttori aperti e lampada spenta. Dopo aver scritto la tavola di verità relativa al circuito, si trovi l’espressione algebrica di ( )CBAfL ,,= .

( )[ ]CBAL +=

Fig.P.3

P-20 Il segnale X di figura P.4 è la risposta di un circuito logico che ha come segnali d’ingresso A e B. Disegnare il circuito e scrivere l’espressione di ( )BAfX ,= .

[ ]BAX =

A B

CX

A B

B

A

A

B C

VCC

L

Page 195: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

194

Fig.P.4

P-21 Disegnare i circuiti logici che realizzano le seguenti funzioni booleane: a) ( )DCCAB +⋅+ ; b) CDCBA +⋅+ ; c) ( ) CBDCBA +++

[ ]765 .,.,. PPPfigure

Fig.P.5

Fig.P.6

Fig.P.7

P-22 Nei circuiti ottenuti come risultati del problema precedente si eseguano le seguenti sostituzioni di porte: AND con OR NAND con NOR OR con AND NOR con NAND e si scrivano le funzioni corrispondenti.

( ) ( )( ) ( )( )[ ]CBDABCDCCABCDCBA ++++++ ;;

P-23 Semplificare le seguenti espressioni booleane: CBACBACBACBACBAX ++++=1

CBACBACBACBACBAX ++++=2

DBADCBADCBDBADBACBAX +++++=3

A

B

X

A BC

D

f

A B

C

D

f

A BC

D

f

Page 196: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

195

P-24 Trasformare la funzione: ( ) ACBACBAf ++=,,

sotto forma di somma canonica. [ ]CBACBACBACBACBACBA +++++

P-25 Trasformare in somma canonica la funzione: ( ) CBCABACBACBAf +++=,,

[ ]CBACBACBACBACBA ++++

P-26 Verificare che il prodotto canonico: ( )( )CBACBA ++++

è riconducibile alla funzione dell’esempio 13: CAf += .

P-27 Trasformare la funzione dell’esercizio proposto P-25 nella forma canonica di prodotto di somme. ( )( )( )[ ]CBACBACBA ++++++

P-28 Trasformare in prodotto canonico la funzione ( ) CABCBAf +=,, .

( )( )( )[ ]CBACBACBA ++++++

P-29 Rappresentare con le mappe di Karnaugh le funzioni del problema P-23 e minimizzarle verificando i risultati raggiunti per via algebrica in quell’esercizio. Disegnare infine i circuiti logici che realizzano le funzioni minimizzate.

[figure P.8, P.9, P.10]

Fig.P.8 Fig.P.9

Fig.P.10 Fig.P.11

P-30 Minimizzare la funzione del problema P-28 in forma di prodotto di somme mediante la mappa K e disegnare il relativo circuito logico.

[figura P.11]

P-31 Realizzare circuitalmente la funzione ( ) ( ) CDCBACBAf ++=,, .

C

B

A f

A

C

B

f

A A

BB

C

C D

ff

Page 197: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

196

Rappresentarla poi in una mappa K, minimizzarla in forma di somma di prodotti e realizzare il circuito relativo. Confrontare i due schemi circuitali.

P-32 Minimizzare in forma di prodotto di somme la funzione del problema precedente e disegnare il relativo circuito logico. Confrontare i tre circuiti.

( )( )[ ]DCADCBf ++++=

P-33 Mediante la mappa K minimizzare in forma di somma di prodotti la funzione ( )( )DCCABf ++=

e disegnare il circuito relativo. [figura P.12]

Fig.P.12

P-34 Dalla mappa del problema precedente ricavare la forma minima della funzione relativa come prodotto di somme e verificare che il risultato è ottenibile direttamente dall’espressione data mediante l’applicazione del 1° teorema di De Morgan. Realizzare quindi il circuito logico corrispondente.

[figura P.13]

Fig.P.13

P-35 Dopo aver rappresentato in una mappa K la funzione CBCACBCABAf ++++= .

verificare che la stessa forma minima si ottiene sia utilizzando le caselle in cui la funzione vale 1 (somma di prodotti) sia quelle in cui la funzione vale 0 (prodotto di somme).

P-36 Minimizzare la funzione ( )DCCABf +⋅+= .

del problema P-21 e disegnare il circuito relativo [figura P.14]

A

D

B

C

f

A

D

B C

f

Page 198: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

197

Fig.P.14

P-37 Realizzare con porte NAND la funzione CABf += .

dell’esercizio P-28. [figura P.15]

Fig.P.15

P-38 Realizzare con porte NOR la medesima funzione dell’esercizio precedente. [figura P.16]

Fig.P.16

P-39 Avendo a disposizione le variabili in forma vera ed in forma negata, dimostrare che la funzione CBCACBCABAf ++++= .

del problema P-35 è realizzabile circuitalmente con una sola porta NAND a tre ingressi.

P-40 Data la funzione di quattro variabili DCBDCADCBAf +++= .

realizzarla con 3 porte NOR a due ingressi, avendo a disposizione le variabili in forma vera ed in forma negata.

P-41 Realizzare la funzione ( ) DCBCADCDBACBADCBAf ++++=,,, .

con 1 porta OR, 1 EXOR ed 1 EXNOR tutte a due ingressi.

P-42 Realizzare la stessa funzione del problema precedente mediante una porta OR e due porte EXNOR.

A

C

B

D

f

B

A C

f

A

B

C

f

Page 199: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

198

P-43 Realizzare nel modo più semplice possibile la funzione ( ) ( )∏= CMDCBAf ,,,,,, 963

P-44 Realizzare la funzione del problema precedente mediante una porta NAND e due porte EXOR.

Page 200: Alessandro Bertelli – Mariano Zanchi

QUADRO RIASSUNTIVO

Operazioni logiche

Operazione Blocco logico Tabella di verità Mappa K Espressione equivalente

NOT

A A 0 1

1 0

AND

A B BA ⋅

0 0 0 1 1 0 1 1

0 0 0 1

BAAB +=

OR

A B BA +

0 0 0 1 1 0 1 1

0 1 1 1

BABA ⋅=+

NAND

A B BA ⋅

0 0 0 1 1 0 1 1

1 1 1 0

BAAB +=

NOR

A B BA +

0 0 0 1 1 0 1 1

1 0 0 0

BABA ⋅=+

EXOR

A B BA ⊕

0 0 0 1 1 0 1 1

0 1 1 0

BABABA +=⊕

EXNOR

A B BA⊕

0 0 0 1 1 0 1 1

1 0 0 1

ABBABA +=⊕

A

B

BA⊕

A

B

BA ⊕

A

B

BA +

A

B

BA

A

B

BA +

B

BA ⋅A

A A

AB

1 0

0 1

0 1

0

1

AB

0 1

1 0

0 1

0

1

AB

1 0

0 0

0 1

0

1

AB

1 1

1 0

0 1

0

1

AB

0 1

1 1

0 1

0

1

AB

0 0

0 1

0 1

0

1

Page 201: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Quadro riassuntivo

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

200

Proprietà e teoremi dell’algebra di Boole

Proprietà del prodotto logico ( )

( )( ) ( ) ( )aassociativCBACBACBA

acommutativABBAAA

aidempotenzAAAAA

A

⋅⋅=⋅⋅=⋅⋅⋅=⋅

=⋅

=⋅=⋅=⋅

0

100

Proprietà della somma logica

( )

( )( ) ( ) ( )

( ) ( )vadistributiCABACBAaassociativCBACBACBA

acommutativABBAAA

aidempotenzAAAA

AA

⋅+⋅=+⋅++=++=++

+=+=+

=+=+=+

1

110

Teoremi dell’assorbimento BABAA

AABA

+=+

=+

Teoremi di De Morgan BABA

BABA

⋅=+

+=⋅

Page 202: Alessandro Bertelli – Mariano Zanchi

APPENDICE

Codice ASCII

Carattere Esadecimale Carattere Esadecimale Carattere Esadecimale

NUL SOH STX ETX EOT ENQ ACK BEL BS HT NL VT FF CR SO SI DLE DC1 DC2 DC3 DC4 NACK SYN ETB CAN EM SUB ESC FS GS RS US SP ! # $ % & / ( ) *

00 01 02 03 04 05 06 07 08 09 0A 0B OC OD 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2°

+ , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U

2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55

V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

DEL

56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

Page 203: Alessandro Bertelli – Mariano Zanchi

Algebra di Boole e circuiti logici – Appendice

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

202

Significato dei caratteri di controllo

ACK BEL BS CAN CR DC1 DC2 DC3 DC4 DEL DLE EM ENQ EOT ESC ETB ETX

Acknowledge Bell Backspace Cancel Carriage Return Device Control 1 Device Control 2 Device Control 3 Device Control 4 Delete Data Link Escape End of Medium Enquiry End of Text Escape End of Transmission Block End of Transmission

FF FS GS HT NACK NL NUL RS SI SO SOH SP STX SUB SYN US VT

Form Feed Field Separator Group Separator Horizontal Tab Negative Acknowledge New Line Null Reader Stop Shift In Shift Out Start of Heading Space Start of Text Substitute Synchronous Idle Unit Separator Vertical Tab

Page 204: Alessandro Bertelli – Mariano Zanchi

Dipartimento di elettronica Istituto Tecnico Statale “Luigi Einaudi” - Montebelluna

Elettronica digitale Capitolo II – Circuiti combinatori e operatori aritmetici

Alessandro Bertelli – Mariano Zanchi

Riedizione a cura di Massimo Ballon

Page 205: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

204

Sommario

2 Circuiti combinatori e operatori aritmetici ........................................................206

2.1 Introduzione .............................................................................................................................. 207

2.2 Circuiti combinatori elementari .............................................................................................. 208 Esempio 1.................................................................................................................................. 210

Integrati ......................................................................................................................................... 211 Tempi di propagazione.................................................................................................................. 212

Esempio 2.................................................................................................................................. 213 2.3 Rappresentazione dei numeri binari con segno ..................................................................... 214

Numeri negativi in forma diretta................................................................................................... 214 Esempio 3.................................................................................................................................. 214

Numeri negativi in complemento a 1............................................................................................ 214 Esempio 4.................................................................................................................................. 214

Numeri negativi in complemento a 2............................................................................................ 215 Esempio 5.................................................................................................................................. 215 Esempio 6.................................................................................................................................. 216

2.4 Circuiti aritmetici...................................................................................................................... 217 Sommatori..................................................................................................................................... 217 Sommatori integrati....................................................................................................................... 219 Look-ahead carry .......................................................................................................................... 221 Sottrattori ...................................................................................................................................... 223 Moltiplicatori ................................................................................................................................ 225

2.5 Decodificatori e codificatori ..................................................................................................... 225 Decodificatori................................................................................................................................ 225 Abilitazione ed espansione ........................................................................................................... 226

Esempio 7.................................................................................................................................. 227 Decoder decimali .......................................................................................................................... 228 Decodificatore BCD-7 segmenti................................................................................................... 229 Codificatori ................................................................................................................................... 231

Esempio 8.................................................................................................................................. 231 Codificatore di priorità decimale-BCD 74147.............................................................................. 232

2.6 Multiplexer (MUX) e demultiplexer (DEMUX)..................................................................... 235 Multiplexer.................................................................................................................................... 235 Multiplexer integrati ..................................................................................................................... 237 Applicazioni dei multiplexer......................................................................................................... 238 Conversione parallelo-seriale........................................................................................................ 238 Generazione di funzioni logiche ................................................................................................... 238

Esempio 9.................................................................................................................................. 239 Demultiplexer (DEMUX) ............................................................................................................. 239

ESERCIZI GUIDATI ..................................................................................................................... 242

Page 206: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

205

ESERCIZI PROPOSTI .................................................................................................................. 260

LABORATORIO ............................................................................................................................ 263 ESPERIENZA 1 Sommatore completo .................................................................................... 263 ESPERIENZA 2 Decoder da 2 a 4 linee................................................................................... 264 ESPERIENZA 3 Decoder 74LS138 ed espansione a 16 bit ..................................................... 265 ESPERIENZA 4 Realizzazione di funzioni logiche con multiplexer: full adder ..................... 266 ESPERIENZA 5 Costruzione di un demultiplexer con le uscite attive a livello basso ............ 268

QUADRO RIASSUNTIVO ............................................................................................................ 270 Strutture fondamentali per la realizzazione delle funzioni combinatorie più comuni .................. 270

Page 207: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

206

2 Circuiti combinatori e operatori aritmetici

Utilizzando i componenti logici elementari analizzati nella precedente Unità di Apprendimento è possibile realizzare circuiti complessi che eseguono operazioni fondamentali, tra le quali annoveriamo − le operazioni aritmetiche − il passaggio da un codice ad un altro (codifica e decodifica) − lo smistamento dei segnali su vari canali di trasmissione (multiplexing e demultiplexing) Dato che queste operazioni ricorrono con una certa frequenza in molte applicazioni e dato che le modalità di esecuzione sono sempre uguali, si è rivelato assai vantaggioso costruire dei dispositivi integrati che eseguano tali operazioni evitando al progettista di dover ricorrere alla realizzazione di volta in volta di reti complicate, la cui affidabilità è in ogni caso inversamente proporzionale alla loro complessità. Vantaggi evidenti si hanno inoltre sull'ingombro e sul costo delle realizzazioni circuitali. Questo capitolo ha lo scopo di analizzare i principi funzionali dei circuiti combinatori più comuni e di far conoscere i prodotti commerciali di uso più frequente.

OBIETTIVI

Analizzare le funzioni combinatorie di uso ricorrente, come le operazioni aritmetiche, la codifica ed il multiplexing

Realizzare con porte logiche elementari le funzioni combinatorie sopra citate

Conoscere i componenti integrati che realizzano in un unico chip le funzioni di cui sopra

Assemblare gli integrati in piccoli sistemi per realizzare funzioni più complesse che elaborano un numero elevato di variabili

Page 208: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

207

2.1 Introduzione

Come è stato anticipato nel precedente capitolo,

i circuiti combinatori sono quei circùiti nei quali lo stato delle uscite dipende esclusivamente dalla combinazione delle variabili d’ingresso, senza alcun riferimento alla storia passata del sistema.

I circuiti combinatori più elementari sono gli operatori logici fondamentali con cui è possibile costruire circuiti più complessi e per i quali sono utilizzabili tutti gli strumenti di analisi che sono stati esposti nell'Unità di Apprendimento precedente, come le leggi dell'algebra di Boole, le tabelle di verità e le mappe di Karnaugh.

La corretta interpretazione dei problemi con la loro esatta traduzione in funzioni logiche, un'efficiente semplificazione delle funzioni stesse ed infine la loro realizzazione in circuiti costituiti da blocchi logici: sono questi i passi fondamentali da seguire nella progettazione dei sistemi sia combinatori che sequenziali.

Successivamente si deve procedere alla concretizzazione degli schemi logici in circuiti elettronici, formati per lo più da dispositivi integrati, le cui tensioni d'ingresso e d'uscita sono in corrispondenza con i valori delle variabili logiche.

Fig. 1 Corrispondenza tra livelli logici e tensioni negli integrati TTL.

Ai valori 0 e 1 delle variabili logiche verranno associati due intervalli di tensione: un intervallo alto, che corrisponderà al valore logico 1, ed un intervallo basso, associato al valore logico 0 (fig. 1).

Tali fasce non sono uguali per tutti i componenti commerciali e di questo si parlerà più in dettaglio nel capitolo dedicato allo studio delle famiglie logiche. Tuttavia sin d'ora, limitandoci a considerare le due famiglie più usate, TTL e CMOS, possiamo anticipare che i valori standard per le prime sono:

fascia alta: da 2 V a 5 V fascia bassa: da 0 V a 0,8 V

mentre per i CMOS, alimentati a 5 V, si ha fascia alta: da 3,5 V a 5 V fascia bassa: da 0 V a 1,5 V

Questi valori, riportati solo a titolo d'esempio, si riferiscono alle tensioni d'ingresso dei componenti e, per i CMOS, ad un solo tipo di alimentazione. Differenti sono i valori per le tensioni d'uscita e per i

H

L

5V

2V

0,8V

0V

Page 209: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

208

CMOS alimentati con tensioni diverse da 5V. C'è da aggiungere inoltre che l'equivalenza "fascia alta = 1, fascia bassa = 0", è adottata quando si

lavora in logica positiva; in logica negativa la corrispondenza tra livelli logici e intervalli elettrici viene invertita.

La conoscenza per ogni dispositivo dei valori esatti entro i quali un livello logico è riconducibile costituisce condizione indispensabile per un corretto dimensionamento dei circuiti digitali.

Un'ultima precisazione riguarda la complessità dei circuiti integrati. Con il progredire della tecnologia dei semiconduttori funzioni sempre più complesse sono state implementate in un unico chip, al punto che spesso una buona progettazione dipende in modo determinante dalla conoscenza dei componenti che il mercato offre. A tutt'oggi i prodotti dell'industria dei semiconduttori si possono suddividere in quattro grosse categorie, in base al livello (o scala) d'integrazione adottato:

SSI = small scale integration (piccola scala d'integrazione). Ogni chip contiene da una a 12 porte equivalenti.

MSI = medium scale integration (media scala d'integrazione). Un integrato contiene da 12 a 100 porte.

LSI = large scale integration (grande scala d'integrazione). L'integrato in questo caso contiene da 100 a 10000 porte.

VLSI = very large scale integration (grandissima scala d'integrazione). In ogni integrato sono contenute oltre 10000 porte e le funzioni svolte sono molto complesse.

Attualmente si sono ottenuti livelli d'integrazione ancora più elevati e molti sono gli sforzi che vengono compiuti per realizzare una miniaturizzazione sempre più spinta.

2.2 Circuiti combinatori elementari

I circuiti combinatori più semplici sono le porte logiche che eseguono le operazioni fondamentali: NOT, AND, OR, NAND, NOR, EXOR ed EXNOR.

Essi possono essere impiegati nella progettazione di circuiti combinatori e sequenziali complessi ma, dato che molti di quest'ultimi sono a loro volta implementati in circuiti integrati opportuni, le porte elementari servono per lo più da supporto a sistemi più complicati in operazioni di trasferimento e di controllo dei segnali digitali.

Una di queste operazioni, chiamata gating, utilizza gli operatori citati come porte di trasmissione controllate da un segnale e tale operazione consiste per esempio nel trasferimento di dati a registri di memoria, a contatori o ad altri dispositivi di elaborazione.

Vediamo ora in dettaglio il comportamento di ciascun componente elementare, con l'avvertenza che i principi di funzionamento sono gli stessi che sono stati esaminati nel capitolo precedente, ma diversa è l'ottica con cui vengono analizzati i comportamenti già descritti.

In figura 2 è illustrato il gating di un segnale digitale eseguito con una porta AND. Il segnale da trasmettere con la sua alternanza di 0 e 1 viene inviato all'ingresso A della porta mentre all'ingresso C è applicato un segnale di controllo.

Page 210: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

209

Fig. 2 Porta AND usata come gate per un segnale.

Dalle caratteristiche funzionali della porta AND, espresse nella tabella di figura 2b, si desume che

0Y0Cper =⇒= l'uscita rimane bassa qualunque sia il valore del segnale d'ingresso, che trasmissione interdetta perciò non viene trasmesso;

AY1Cper =⇒= l'uscita assume istante per istante il valore del segnale d’ ingresso e la trasmissione consentita porta risulta trasparente all'invio dell'informazione.

Un'azione analoga è esercitata dalla porta OR di figura 3a, il cui comportamento è descritto dalla tabella di verità di figura 3b. In questo caso si verificano le seguenti eventualità:

1Y1Cper =⇒= l'uscita rimane sempre alta (H) qualunque sia il valore del segnale trasmissione interdetta d'ingresso, che perciò non viene trasmesso;

AY0Cper =⇒= l'uscita assume istante per istante il valore del segnale d’ingresso e trasmissione consentita la porta risulta trasparente all’invio dell’informazione.

Fig. 3 Gating di un segnale mediante una porta OR.

Si noti allora che le due porte, pur eseguendo nella sostanza la stessa operazione, differiscono nel modo con cui la compiono. Si tratta di due situazioni complementari, nelle quali l'elemento logico viene attivato per valori opposti del segnale di controllo (basso nella porta OR, alto in quella AND) ed opposto è anche il valore costante dell'uscita quando la trasmissione è interdetta (alto per la porta OR, basso nella AND).

Nell'utilizzare questa capacità delle porte logiche nella trasmissione di segnali digitali occorre tener

C A Y

0 0 0 0 1 1

1 x 1

b)

A

C

Y

a)

C A Y

0 x 0

1 0 0 1 1 1

b)

AY

C

a)

Page 211: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

210

conto della loro specificità per la scelta dell'una o dell'altra a seconda delle ipotesi di progetto. Si invita a questo punto il lettore ad eseguire lo studio comparato delle porte NAND e NOR quando

vengono utilizzate nel gating di segnali digitali, con l'avvertenza che il segnale, nel venire trasmesso, subisce anche una inversione e che un suggerimento per una corretta impostazione dello studio è offerto nell'esercizio guidato EG.1.

È importante rilevare che le porte logiche possono trasmettere solo segnali digitali e che quindi di norma esse interagiscono con altri dispositivi logici.

Anche nei casi in cui un dispositivo digitale venga utilizzato per servire carichi non digitali, l'interazione tra i due sistemi è possibile solo se il dispositivo analogico funziona in on/off. Di solito poi tra il componente logico e il dispositivo analogico viene interposto un circuito di interfaccia che rende compatibili le esigenze di potenza del carico pilotato con le prestazioni (di solito assai modeste) del dispositivo digitale pilota.

Analizziamo ora il seguente esempio, con l'avvertenza che molti dei dati forniti devono essere per il momento accettati in attesa della loro futura giustificazione.

Esempio 1

Nel dispositivo di figura 4 si ha per il BJT

hFE min = 75 VBE sat = 0,7V VCE sat = 0,2V

e per il LED

VF =1,8V IF = 10mA

Fig. 4

La porta AND nei due stati alto e basso assume in uscita le tensioni di 4 e 0V rispettivamente. Per limiti che saranno illustrati più avanti, la porta non è in grado di fornire al LED tutta la corrente di cui ha bisogno, per cui tra il dispositivo digitale ed il diodo viene interposto un BJT che dall'uscita alta della porta preleva una corrente

ARVV

IB

satBEOB μ589

1065704

3=

⋅−

=−

=,

,

che manda in conduzione il transistor. Se si suppone che il BJT sia in saturazione, la corrente che scorre in RC è pari a

5V

5V

A 5,6kWT

100W

RC

180W

0

Page 212: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

211

mAI satC 6726180

205 ,,=

−=

e si riversa tutta nel transistor, dato che la bassa tensione di collettore non consente al LED di condurre. Eseguendo il rapporto tra IC ed IB si può verificare che il BJT è effettivamente in saturazione. Quando invece l'uscita della porta è bassa, il transistor si interdice e nel LED scorre una corrente di valore

mAI F 4311280

815 ,,=

−=

L'illuminazione e lo spegnimento del LED sono provocati dai livelli alto e basso del segnale impulsivo applicato all'ingresso A della porta ma solo quando il segnale di controllo all'ingresso C assume il valore di 5V. Allorché il segnale di controllo ha valore nullo, l'uscita della porta è bassa, . il BJT è interdetto ed il diodo è costantemente illuminato. In definitiva questo circuito rivela attraverso un lampeggio che la tensione di controllo si trova a livello alto, mentre con una luce costante indica che tale tensione è nulla.

Integrati Le porte logiche sono disponibili in forma integrata su chip diversi sia per aspetto esterno sia per

numero di elementi logici contenuti in ciascun chip. In figura 5 è visibile l'integrato SN7400, che contiene 4 porte NAND a due ingressi, ed è inoltre

mostrata la piedinatura con l'indicazione degli ingressi e delle uscite delle varie porte. I piedini 14 e 7 sono i terminali d'alimentazione e di massa per tutto l'integrato.

Fig. 5 Chip con quattro porte NAND e relativa piedinatura.

Le informazioni di carattere generale che per prime si incontrano nella lettura dei data-sheet di un integrato riguardano: - la famiglia logica di appartenenza; - il numero di porte contenute in ciascun integrato; - il numero di ingressi di ciascuna porta; - il tipo di operazione eseguita da ciascuna porta.

Sul primo punto torneremo in un prossimo capitolo, ma sin d'ora si può dire che la famiglia di appartenenza indica se il costituente di base è di tipo unipolare (JFET, MOSFET, CMOS) o bipolare (BJT).

4B 4A 4Y 3B 3A 3Y

1A 1B 1Y 2A 2B 2Y GND

VCC

1 2

14 13 12 11 10

3 4 5 6 7

8 9

Page 213: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

212

Con le altre tre informazioni è invece possibile prevedere costi ed ingombro del circuito che si sta progettando.

Queste notizie si possono desumere dallo schema a blocchi interno e da una dicitura posta all'inizio di ogni data-sheet.

Ad esempio la dicitura ‘quad 2-input positive NAND gates’, relativa al componente 7400, significa che nell'integrato 7400 sono contenute ‘quattro porte NAND a due ingressi in logica positiva’.

Rimandando ai data-sheet in fondo al volume la presentazione di altri tipi di integrati, diamo qui un breve elenco dei dispositivi più comuni che contengono gli operatori logici fondamentali relativi alle due famiglie TTL e CMOS.

NOT AND OR NAND NOR EXOR

TTL 7404 7408 7421

7432 7400 7420

7402 74136

CMOS* 81B 73B

71B 75B

11B 23B

01B 25B

* serie 4000B

Tempi di propagazione Sebbene le caratteristiche fisiche dei componenti digitali reali vengano trattate in un prossimo

capitolo, già in questa fase dello studio è opportuno parlare di un parametro la cui conoscenza è indispensabile per la corretta impostazione di un progetto con circuiti combinatori e sequenziali.

Quando ad un sistema si richiede di eseguire un'operazione su alcune variabili, si presume che al momento dell'esecuzione tutte le variabili siano contemporaneamente presenti agli ingressi nella forma stabilita.

Nel caso che qualcuno dei segnali si renda disponibile con un certo ritardo, è possibile che gli ingressi del circuito assumano in alcuni istanti delle configurazioni non previste e che quindi la risposta del sistema abbia un andamento temporale diverso da quello desiderato.

È necessario pertanto conoscere gli eventuali ritardi che possono verificarsi nella trasmissione dei segnali da un punto all'altro dei circuito e a questo scopo sono forniti dal costruttore i tempi di ritardo di propagazione (propagation delay time tP) con cui un segnale transita dall'ingresso all'uscita di una porta o, equivalentemente, una porta fornisce la risposta ad una sollecitazione in ingresso.

I tempi di ritardo forniti dal costruttore sono due: tPHL = tempo di ritardo nel passaggio dell'uscita dal livello alto al livello basso tPLH = tempo di ritardo nel passaggio dell'uscita dal livello basso al livello alto.

Vengono inoltre distinti i tempi a seconda che l'uscita sia in fase col segnale d'ingresso oppure sia in opposizione di fase.

Il ritardo di propagazione viene calcolato convenzionalmente dall'istante in cui il segnale d'ingresso assume il 50% del suo valore massimo fino all'istante in cui anche il segnale d'uscita raggiunge il 50% del suo massimo. Tutto ciò è sintetizzato in figura 6.

I valori dei tempi di propagazione variano moltissimo in funzione della famiglia logica a cui l'integrato appartiene e, all'interno di ogni famiglia, dipendono dal tipo di componente e di tecnologia usata.

Page 214: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

213

Fig. 6 Ritardi di propagazione

Ad esempio per l'integrato TTL 7408 (quad 2-input positive AND gates) si ha tPLH = 17,5 (tip) e 27 (max) ns tPHL = 12 (tip) e 19 (max) ns Per capire l'importanza dei tempi di ritardo consideriamo il seguente esempio.

Esempio 2

Al circuito di figura 7a sono applicati i due segnali digitali A e B di figura 7b. Dai diagrammi temporali ideali e reali della risposta del circuito NOT si deduce quanto segue: - idealmente i due ingressi della porta NAND non si trovano mai contemporaneamente a livello alto per cui,

ricordando la tabella di verità dell'operatore NAND, l'uscita teoricamente assume sempre lo stato logico 1;

Fig. 7

- nella realtà il segnale B si porta a livello 0 quando A ha già assunto il suo valore alto e perciò esiste un intervallo di tempo durante il quale entrambi gli ingressi della NAND sono alti e l'uscita di conseguenza assume lo stato 0, come si può vedere nell'ultimo dei diagrammi temporali.

Per una maggiore chiarezza nel mostrare le conseguenze dei tempi di ritardo si è trascurato quello introdotto dalla porta NAND, in base al quale l'impulso in uscita avviene in tempi posteriori a quelli indicati in figura 7b.

A

B

Y A

Y

B

B

B

ideale

reale

a)

b)

Page 215: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

214

2.3 Rappresentazione dei numeri binari con segno

In vista della trattazione degli operatori aritmetici che verrà fatta nei prossimi paragrafi e nella prospettiva che tali operatori agiscano su numeri sia positivi che negativi, passeremo in rassegna i vari metodi utilizzati per rappresentare i numeri negativi e, più in generale, i numeri relativi nel sistemi binario.

Innanzi tutto la distinzione tra numeri positivi e negativi viene fatta convenzionalmente anteponendo al modulo di ogni numero

0 per indicare i numeri positivi 1 per indicare i numeri negativi

Naturalmente deve essere chiaro quale sia il bit di segno; perciò si stabilisce in fase preliminare di quante cifre è costituito il modulo e tutti i numeri dovranno contenere la stessa quantità di cifre. Se per caso il numero è piccolo ed il suo modulo è formato da un numero di bit inferiore a quello stabilito, si antepongono tanti zeri quanti sono sufficienti a completare la serie di bit assegnata al modulo. Davanti a tutto si pone infine il bit di segno.

Vediamo ora in dettaglio i vari metodi utilizzati per rappresentare i numeri negativi.

Numeri negativi in forma diretta

È la forma più semplice ed immediata, ma anche la meno utilizzata nei calcolatori e nelle calcolatrici tascabili che prevedono la rappresentazione dei numeri in binario.

Essa consiste nel rappresentare nello stesso modo il modulo dei numeri positivi e negativi e nell' anteporre ad essi il bit di segno.

Esempio 3

In una rappresentazione in binario di numeri negativi e positivi si utilizzano dispositivi a 7 bit, di cui 6 destinati alla rappresentazione del modulo. Allora per i numeri 42 e -42 si ha

4210 = 01010102 -4210 = 11010102

ed i numeri 5 e -5 sono rispettivamente rappresentati da 510 = 00001012

-510 = 10001012

Numeri negativi in complemento a 1 Per ottenere la forma in complemento a 1 di un numero negativo si seguono le stesse regole usate

per la complementazione dei numeri positivi, cioè si scambia ciascun bit del modulo con il suo complementare. Si badi bene che il bit di segno non va complementato.

Esempio 4

Si consideri il numero decimale -13. In binario la sua forma diretta, nell'ipotesi di utilizzare 6 cifre per il modulo, è

-1310 = 10011012 mentre il suo complemento a 1, ricordando di non complementare il bit di segno, risulta

-1310 = 11100102 Il lettore si eserciti con altri numeri negativi utilizzando anche una quantità diversa di bit per il modulo.

Page 216: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

215

Numeri negativi in complemento a 2 Analogamente a quanto visto per i numeri positivi, per ottenere il complemento a 2 di un numero

negativo è sufficiente aggiungere 1 al complemento a 1 dello stesso numero.

Esempio 5

Si riprenda il numero -13 dell'esempio precedente. Se al suo complemento a 1 si aggiunge un'unità si ottiene

1110010 + 1 =

1110011 che rappresenta il numero -13 in complemento a 2.

Questa rappresentazione è molto comoda perché consente di effettuare la somma di due numeri di segno qualsiasi ed ottenere immediatamente il risultato, che sarà in forma diretta se positivo, in complemento a 2 se negativo.

Nel caso che i due numeri siano opposti, si può verificare che la loro somma dà per risultato 0, come è da aspettarsi.

Una particolarità ulteriore, che differenzia la rappresentazione in complemento a 2 dalle altre due forme, consiste nella presenza in essa di un solo 0! Questa osservazione apparentemente paradossale è dovuta al fatto che con la forma diretta e con quella in complemento a 1 si possono avere per così dire ‘due zeri’, uno positivo ed uno negativo.

Consideriamo infatti come esempio un sistema di rappresentazione con quattro bit di modulo più un bit di segno. Il numero 0, indicato con

00000 può anche essere rappresentato nelle due forme

10000 diretta 11111 in complemento a 1

entrambe con il bit di segno dei numeri negativi. Se si aggiunge 1 al complemento a 1 per ottenere il complemento a 2, si ha il numero a 6 bit

1 00000 dal quale, togliendo la prima cifra (1) che non trova posto in una rappresentazione con 5 bit, si riottiene la forma originaria, ed unica, dello zero.

Ci si pone allora la seguente domanda:

in una rappresentazione in complemento a 2 di numeri negativi con quattro bit per il modulo ed un bit di segno, che cosa rappresenta il numero binario 10000?

Osserviamo che con quattro bit di modulo il massimo numero positivo che si può rappresentare è 15 (01111) e si può dedurre che il numero negativo di modulo massimo potrebbe essere -15, che in complemento a 2 è 10001, come il lettore può facilmente verificare. Se però a -15 sottraiamo il numero 1 si ottiene il numero -16 ed in binario dal numero 10001 si passa a 10000, configurazione che per l'appunto non è utilizzata da alcun altro numero di quelli compresi tra -1 e -15.

L'abbinamento tra il numero decimale -16 ed il numero binario 10000 in complemento a 2 si accorda

Page 217: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

216

perfettamente con tutte le proprietà degli altri numeri rappresentati allo stesso modo e crea una specie di asimmetria nella rappresentazione, dato che di numeri positivi se ne ha uno in meno rispetto a quelli negativi. È come se lo zero facesse parte dei numeri positivi, che perciò dispongono di una combinazione in meno.

Il discorso è estensibile ad un numero qualsiasi di bit, per cui si può affermare che in una rappresentazione con segno di numeri binari positivi e negativi (con questi ultimi in complemento a 2), se N è il numero di bit del modulo, il campo di rappresentatività di un sistema siffatto ha come limiti

2N - 1 per i numeri positivi

-2N per i numeri negativi

Il complemento a 2 di un numero negativo si può ottenere direttamente dal corrispondente positivo complementando anche il bit di segno e poi aggiungendo 1. Si ha dunque come risultato l'opposto del numero positivo di partenza per cui si può generalizzare il discorso ed affermare che

ogni numero positivo può essere trasformato nel corrispondente negativo con una semplice complementazione a 2 che comprenda il bit di segno.

Vale però anche il viceversa e cioè che complementando a 2 un numero negativo si ottiene il corrispondente positivo, purché nella variazione sia compreso anche il bit di segno.

Esempio 6

Si consideri una rappresentazione di numeri con 5 bit per il modulo ed 1 bit di segno. Si ha

1010 = 0010102

Eseguendo il complemento a 2 di questo numero, compreso il bit di segno, si ottiene

110101 + complemento a 1

1 =

110110 complemento a 2

Si esegua ora la complementazione a 2 (con il bit di segno) del numero appena calcolato:

001001 +

1 =

001010

e si è ritrovato così il numero +10 scritto in forma diretta.

Page 218: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

217

2.4 Circuiti aritmetici

Sommatori

L'operazione più semplice è la somma di due bit, che va eseguita tenendo presenti le regole dell'addizione di numeri binari riassunti nella seguente tabella di verità:

A B Ê C

0 00 11 01 1

0 1 1 0

0 0 0 1

La colonna della somma Ê ci dice che questo risultato può essere ottenuto mediante un operatore EXOR mentre il riporto C (carry) si ottiene con un'operazione AND sui due bit d'ingresso. In sintesi si ha

Ê = A∆B (2.1) C =AB (2.2)

Tutta l'operazione è eseguita da un blocco logico con due ingressi e due uscite (fig. 8) denominato half-adder (HA), cioè semisommatore, la cui struttura interna è rappresentata in figura 9. Il nome deriva dal fatto che questo blocco logico non tiene conto di un eventuale riporto generato da una somma di bit di peso inferiore.

Fig, 8 Simbolo di un semisommatore (half-adder). Fig. 9 Struttura di un semisommatore.

Di un precedente riporto può invece tener conto il dispositivo di figura 10a, detto full-adder (FA) o sommatore completo, che presenta tre ingressi, per i bit da sommare e per il riporto precedente, e due uscite come l'half-adder. La sua costituzione si ricava dalla tabella di verità, relativa a tre variabili, riportata in figura 10b.

Invece di procedere alla'minimizzazione con la mappa K, traiamo le nostre conclusioni direttamente dalla tabella di verità ed osserviamo che l'uscita Ê è alta se

BA ≠ e 00 =C ⇒ ( ) 0CBA⊕ oppure se

BA = e 10 =C ⇒ ( ) 0CBA⊕

HAA Ê

B C

A

C

Page 219: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

218

Fig. 10 Simbolo di un sommatore completo (full-adder) (a) e tavola della verità (b).

L'espressione completa di Ê risulta allora

( ) ( ) ( ) oCBACBACBA ⊕⊕=⊕+⊕=Σ 00 (2.3)

e con due porte EXOR connesse come in figura 11 si realizza la funzione desiderata.

Fig. 11

Per il riporto possiamo osservare che esso si verifica in due occasioni:

per 1== BA (A and B)

per BA ≠ e 10 =C ( 0CandBA⊕ )

Vediamo dunque che la funzione BA⊕ si combina con C0 in un'operazione AND per generare una parte del riporto e in un'operazione EXOR per generare la somma.

Assieme a C0 essa può pertanto costituire gli ingressi di un half-adder mentre un primo semisommatore opererà sui bit A e B. In sintesi si ha

primo HA variabili: A e B operazioni: AB e BA⊕

secondo HA variabili: C0 e BA⊕

operazioni: ( ) 0CBA⊕ e ( ) 0CBA ⊕⊕

In figura 12 ed in figura 13 è rappresentato un FA come schema a blocchi e nel dettaglio con le porte che lo compongono.

C0 A B Ê C

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 1 1 0 1 0 0 1

0 0 0 1 0 1 1 1

FAA Ê

B

CC0

A

B

C0Ê

BA ⊕

Page 220: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

219

Fig. 12 Schema a blocchi di un sommatore completo.

Fig. 13 Struttura interna di un full-adder.

Per eseguire allora la somma di due numeri di N bit ciascuno è sufficiente porre in cascata N FA. Le uscite Ê forniranno i bit del numero che rappresenta la somma dei due addendi mentre ognuna delle uscite C dei primi N-1 FA verrà collegata all'ingresso carry del FA successivo, in una propagazione dei riporti che è la principale causa dei ritardi con cui viene eseguita la somma di due numeri. Nel primo FA, che non deve ricevere alcun riporto precedente, l'ingresso C0 verrà collegato a massa in modo che sia sempre uguale a 0.

Come esempio di sommatore a più bit in figura 14 è disegnato lo schema a blocchi di un sommatore per numeri di 4 bit.

Fig. 14 Sommatore parallelo per numeri di 4 bit.

Sommatori integrati Con l'avvento del microprocessore (µP) i circuiti sommatori hanno perso molta della loro

HA1

HA2

A

B

C0

C

Ê

C’

C’’Ê’

A

B

C0

C

Ê

C’

C’’Ê’

FA0 FA1 FA2 FA3

C3C2C1C0

A1 Ê1 B1

C4

A2 Ê2B2 A3 Ê3B3 A4 Ê4 B4

Page 221: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

220

importanza, in quanto le operazioni aritmetiche attualmente vengono eseguite per mezzo della logica programmata. Gli integrati sommatori sono perciò diventati per lo più obsoleti ma in una panoramica delle reti combinatorie riteniamo opportuno citarli a scopo didattico.

In figura 15 è mostrata la piedinatura del sommatore a 2 bit 7482.

Si tratta di un componente a 14 pin tra i quali si distinguono

5 ingressi Ad essi vanno applicati il riporto precedente C0 e le due coppie di due bit da sommare, Al e A2, B1 e B2.

3 uscite Su questi piedini si rendono disponibili le due somme Ê1 di Al e B1, Ê2 di A2 e B2 ed il riporto C2 della coppia di bit più significativi. Il riporto C1 non è disponibile perché viene utilizzato internamente per collegare il primo FA al secondo.

2 pin di alimentazione Più precisamente al piedino 4 è collegata l'alimentazione Vcc mentre l'altro (pin 11) viene posto a massa (GND).

4 NC Si tratta di quattro piedini non connessi internamente (no internal connnection).

Fig. 15 Piedinatura del sommatore 7482.

I sommatori a 2 bit sono utilizzati per completare catene di sommatori per un numero di bit non contemplato fra i prodotti disponibili in commercio.

La figura 16 mostra come devono essere collegati due integrati 7482 per formare un sommatore a quattro bit.

Questi sommatori integrati vengono chiamati sommatori binari parallelo perché eseguono in parallelo, cioè contemporaneamente, la somma di tutti i bit degli addendi. La propagazione del riporto dal primo FA fino all'uscita del sistema, lo abbiamo già detto, costituisce l'unica vera causa di ritardo, che però può essere evitato, o per lo meno contenuto entro i tempi di esecuzione delle somme, mediante un accorgimento che permette di generare simultaneamente tutti i riporti (look-ahead carry) senza attenderne la propagazione attraverso i FA.

La figura 17 mostra la piedinatura del sommatore a 4 bit 7483, con carry veloce, a 16 piedini, fra i quali sono distinguibili:

9 ingressi Si tratta del riporto iniziale Co e delle quattro coppie di bit dei due addendi

5 uscite Forniscono le quattro somme ed il riporto finale 1 pin di alimentazione

1

2

3

4

5

6

7

14

13

12

11

10

9

8

Ê1

A1

B1

VCC

C0

NC

NC

A2

B2

Ê2

GND

C2

NC

NC

Page 222: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

221

1 pin GND

Fig. 16 Sommatore a 4 bit ottenuto con 2 bit integrati 7482.

Fig. 17 Piedinatura del sommatore a 4 bit 7483.

Altri integrati a 4 bit sono il 74283, simile al 7483, ed il 4008B della famiglia CMOS nelle versioni ripple-carry e look-ahead carry.

Vediamo ora in dettaglio come viene realizzato il look-ahead carry (o carry veloce) per la generazione simultanea del riporto.

Look-ahead carry Per semplificare la spiegazione facciamo riferimento ad un circuito a due bit per poi estendere le

conclusioni ad un numero qualsiasi di bit. Si consideri il circuito sommatore di figura 18a, formato da due FA, dove a tratto pieno sono indicate

le parti che generano la somma dei bit e a tratteggio quelle che gestiscono il riporto. Sono inoltre posti in evidenza per ciascun FA due terminali, ai quali sono disponibili due funzioni G

e P che, nel trattare il sommatore ripple-carry, non erano state definite. Esse hanno il seguente significato:

G: funzione di generazione. Rappresenta il riporto generato dal FA quando A e B valgono entrambe 1. La sua espressione per il generico i-esimo FA è

1

2

3

4

5

6

7

16

15

14

13

12

11

10

A4

Ê3

A3

B3

VCC

Ê2

B2

B4

Ê4

C4

C0

B1

A1 8 A2

9 Ê1

Ê1

Ê2

A2

VCC

7482

A1

B2

B1

A4

A3

B4

B3 Ê3

Ê4

7482

14

2

13

3

14

2

13

3

4

12

1

10

11

4

11

12

1

10 C

GND

Page 223: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

222

iii BAG = (2.4)

P: funzione di propagazione. Allorché o A o B, ma non entrambe, valgono 1 ed esiste un riporto all'ingresso C del FA, il sommatore in questo caso si limita a trasmettere, o propagare, il riporto che è presente all'ingresso, senza generarne uno nuovo. La funzione che determina la propagazione di un riporto `vecchio' (cioè proveniente da una somma precedente) dipende dunque solo dagli addendi nel modo ora descritto e quindi può essere espressa dalla relazione:

iii BAP ⊕= (2.5)

In figura 18a il riporto C2 è disponibile dopo quattro livelli di porte e si intuisce che all'aumentare del numero di bit aumenta anche il numero di livelli da superare per ottenere il riporto finale.

Si osservi allora che C2, attraverso C1, dipende da G1, da P1 e da C0 per cui è possibile prelevare queste variabili e con esse formare C2, senza aspettare che prima esse formino C1. Queste considerazioni sono del resto formalizzabili rigorosamente con le regole delle operazioni sulle variabili booleane. Tenendo presenti la (2.4) e la (2.5), valgono infatti le seguenti relazioni

( ) 101110111 PCGBACBAC +=⊕+= ( ) 222221222 PCGBACBAC +=⊕+=

e sostituendo a C1 l'espressione precedente si ottiene

2102122 PPCPCGC ++= La realizzazione circuitale di C1 e C2 è visibile in figura 18b.

B1

C0

P2

C2

C0 P1 G1 P2 G2

C2C1

P1

Ê1

Ê2

A2

B2A1 G1

G2

C1

a)

b)

Fig. 18 Generazione del riporto ripple-carry (a) e look-ahead carry (b).

Page 224: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

223

Fig. 19 Sommatore a 4 bit con generatore look-ahead carry perla generazione simultanea dei riporti.

Le conclusioni raggiunte possono essere estese ad un numero qualsiasi di bit. Nel caso di 4 bit si ha

1011 PCGC += (2.6) 2102122 PPCPGGC ++= (2.7)

32103213233 PPPCPPGPGGC +++= (2.8) 4321043214324344 PPPPCPPPGPPGPGGC ++++= (2.9)

Realizzate dunque per ogni bit solo le parti a tratto continuo di figura 18a, tutti i riporti vengono poi generati in uno schema come quello di figura 18b, per il quale valgono alcune considerazioni di carattere generale: - i termini generici P. e Gi si ottengono dagli ingressi con un solo livello di porte (AND ed EXOR) e

tutti i prodotti vengono generati contemporaneamente con altri due livelli di porte AND e OR; - l'insieme dei riporti è prodotto dal LAC Generator (look-ahead carry generator) che può essere in

forma integrata e venire utilizzato con FA semplificati (fig. 19). Tra i LAC vanno ricordati gli integrati 74182 (TTL) e i CMOS 4582B e 40182B.

Sottrattori

A partire dalle proprietà della sottrazione e dalle regole che presiedono alla sua esecuzione è possibile costruire dei circuiti combinatori che eseguono la differenza di due numeri binari. Tali circuiti però sono poco usati e la gran parte dei sistemi di elaborazione digitale sfrutta la rappresentazione dei numeri negativi in complemento a 2 per trasformare la differenza di due numeri nella somma del minuendo con l'opposto del sottraendo.

Per l'esecuzione corretta di questa operazione è opportuno ricordare che: - con un sommatore a N bit si possono sottrarre numeri di N-1 bit, perché 1'N-simo bit è quello del

segno; - per la complementazione del sottraendo bisogna complementare anche il bit di segno; solo così si

ottiene direttamente il suo contrario qualunque sia il segno del numero originario; - se il risultato dell'operazione è positivo, la differenza è data in forma diretta; - se il risultato è negativo, la differenza viene fornita in complemento a 2;

C1C0 C2 C3

G1

A1

C0

B1

P1 C0 C4

G2 P2 G3 P3 G4 P4

Ê1 A2 B2 Ê2 A3 B3 Ê3 A4 B4 Ê4

Page 225: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

224

il carry va sempre scartato qualunque sia il suo valore; il bit di segno è rappresentato dalla N-sima cifra del risultato.

Un esempio pratico di esecuzione di una sottrazione è dato in EG-6, dove viene anche fornito lo schema di principio e lo stato degli ingressi e delle uscite in base ai numeri particolari sui quali si opera.

Esistono degli integrati (come il 74385) che possono eseguire la somma o la differenza di due numeri. La scelta è resa possibile dalla presenza di due pin, ADD e SUB, ai quali si applica un segnale di opzione.

Il principio di funzionamento è molto semplice ed è basato sul fatto che di solito gli operandi sono contenuti in dispositivi di memoria (registri) che presentano due uscite, una per la forma vera ed una per la forma negata, per ciascun bit contenuto in essi.

Attivando allora l'ingresso ADD si trasferisce nel sommatore il numero nella sua forma originaria e lì si esegue la somma con il primo addendo prelevato da un altro registro.

Fig. 20 Sommatore - sottrattore.

Se invece è attivato l'ingresso SUB, nel sommatore vengono inviati i bit complementati (sottraendo in complemento a 1) ed insieme si applica anche la cifra 1 al carry iniziale C0 così da trasformare il complemento a 1 in complemento a 2.

La figura 20 mostra lo schema di principio di un sommatore-sottrattore.

SUBADD /4B 4B 3B 3B 2B 2B 1B 1B

4B 3B 2B 1B

4A 3A 2A 1A

4A 3A 2A 1A

0C

C sommatore a 4 bit

Page 226: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

225

Moltiplicatori A conclusione di questa panoramica sui sommatori e loro derivati citiamo brevemente i moltiplicatori,

rimandando ai fogli tecnici per una maggiore conoscenza delle modalità di funzionamento ed eventualmente per uno schema elettrico interno di questi operatori, la cui comprensione sarà più agevole dopo che saranno stati studiati i circuiti sequenziali ed in particolare i registri, cui abbiamo già accennato.

In sostanza il funzionamento dei moltiplicatori è basato sulla somma successiva dei prodotti parziali del moltiplicando per ciascun bit del moltiplicatore, con spostamenti opportuni dei diversi prodotti in modo che ad ogni bit venga conferito il peso che gli compete.

Per sommare due numeri di quattro bit ciascuno è necessario usare un sommatore ad 8 bit e ciò dà un'idea della complessità di questi circuiti.

Tra gli integrati moltiplicatori citiamo il 74274 (TTL) ed il 4554B (CMOS).

2.5 Decodificatori e codificatori

L'uso da parte degli elaboratori di sistemi di numerazione non decimali e di vari codici binari presuppone l'esistenza di dispositivi che permettano di passare da un sistema di rappresentazione ad un altro.

Tale compito viene svolto da due categorie di circuiti combinatori: i decodificatori e i codificatori.

Decodificatori Il dispositivo di figura 21a ai due ingressi A1 e A0 accetta le quattro configurazioni possibili di due bit

e per ogni combinazione attiva una delle quattro uscite. Il suo funzionamento può essere descritto da una tabella di verità (fig. 21 b) in cui ogni uscita viene indicata come una funzione delle variabili d'ingresso. Si ha dunque

010 AAY = 011 AAY = 012 AAY = 013 AAY = ed ogni funzione rappresenta pertanto un minterm delle variabili d'ingresso.

a) b)

Fig. 21 Decodificatore da 2 a 4 linee (a) e tavola della verità (b).

Un dispositivo siffatto rappresenta un decodificatore 1 di 4 (che seleziona 1 linea su quattro) oppure da 2 (d'ingresso) a 4 linee (d'uscita).

L'esempio illustrato ci consente di generalizzare il discorso e di dare la seguente definizione.

A1 A0 uscita

0 0 0 1 1 0 1 1

Y0 Y1 Y2 Y3

1A

0A

2Y 1Y 0Y

3Y

Page 227: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

226

Il decodificatore (decoder) è un dispositivo con un numero N di ingressi ed un numero M di uscite, ciascuna delle quali è selezionata da una particolare combinazione degli N bit d’ingresso.

È evidente che il numero di uscite non può superare il numero di combinazioni possibili delle variabili d'ingresso e perciò dovrà essere uguale o minore di 2N.

Tornando al nostro decoder 1 di 4, la sua struttura interna è rappresentata in figura 22 ed è costituita da quattro porte AND, una per ciascuna delle linee di uscita.

Il realizzarsi di una combinazione rende attiva la porta corrispondente e la selezione della linea è segnalata dalla presenza di un livello alto sull'uscita in questione.

Spesso è preferibile che l'attivazione della linea avvenga a livello basso e questa soluzione frequentemente è adottata dalle case costruttrici di integrati. In tali casi le porte AND sono sostituite con porte NAND mentre i collegamenti rimangono uguali.

Fig. 22 Struttura interna di un decoder da 2 a 4.

Abilitazione ed espansione Molto spesso i circuiti di decodifica integrati sono muniti di uno o più ingressi di abilitazione che ne

condizionano il funzionamento, per cui ciascuna uscita è funzione non soltanto di una particolare combinazione delle variabili d'ingresso ma anche dello stato degli ingressi di enable.

Se le linee d'uscita fanno capo a porte AND, allora ciascuna porta deve possedere un ingresso in più rispetto a quelli previsti dalle variabili di selezione e tutti gli ingressi addizionali sono collegati a quello di enable (fig. 23). Il terminale di abilitazione, oltre a consentire l'attivazione o meno del disposi tivo, permette anche di usare contemporaneamente più dispositivi per formare sistemi con un numero maggiore di ingressi e di uscite.

Consideriamo ad esempio il circuito proposto in figura 24. Due decoder a 4 uscite formano un sistema a 8 uscite che vengono selezionate dai tre ingressi A0, Al ed A2. Le variabili A0 e Al sono comuni ai due decoder 1 di 4 mentre la variabile A2 seleziona l'uno o l'altro dei chip agendo sul loro

A1

A0

Y3

Y2

Y1

Y0

Page 228: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

227

ingresso di abilitazione, cosicché A2 risulta essere il bit più significativo del codice binario d'ingresso.

Fig. 23 Ingresso di abilitazione di un decoder.

Fig. 24 Espansione di un decoder da 4 a 8 uscite.

Esempio 7

Nel circuito di figura 24 si vogliono attivare in successione le uscite Y2 e Y6. In entrambi i casi gli ingressi A0 e Al devono assumere i valori 0 e 1, come risulta dalla tabella di verità del decoder l di 4. Attribuendo dapprima ad A2 il valore 0 si seleziona il chip 1 e quindi l'uscita Y2; successivamente si attiva il chip 2 e l'uscita Y6 facendo assumere ad A2 il valore 1 e lasciando invariate A0 ed A1.

A1

A0

Y3

Y2

Y1

Y0

E

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

E

B B A A

E

A0

A1

A2

Page 229: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

228

Fig. 25 Ingressi di abilitazione in un decoder.

Gli integrati normalmente dispongono di più di un ingresso di abilitazione, come è esemplificato in figura 25, con due ingressi di cui uno attivo alto e l'altro attivo basso. Ciò consente una varietà di opzioni con un minimo di dispositivi ausiliari, come è possibile verificare nell'esercizio EG.7.

Decoder decimali Una categoria particolare di decoder è costituita dai decoder decimali che, ad ogni configurazione di

4 bit in BCD, fanno corrispondere una linea di uscita su 10, corrispondenti alle cifre decimali, come è mostrato nella tabella di verità seguente.

A3 A2 A1 A0 uscita attivata

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 ………………………. ……………………….. ………………………..

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

……………. nessuna

……………..

Integrati. In figura 26 è rappresentato il chip 7442. Si tratta di un decoder BCD-decimale a 16 pin, di cui

E2

A1

Yx

.

.

.

.

.

.

.

.

.

1E

A0

.

.

.

.

.

.

Page 230: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

229

Fig. 26 Piedinatura del decoder 7442.

4 ingressi attivi a livello alto

10 uscite attive a livello basso

2 pin per l'alimentazione e per la massa

Si tratta di un integrato senza ingresso di abilitazione. In figura 27 è invece mostrata la piedinatura dei decoder 1 a 8 74138. È un integrato a 16 pin di cui

3 ingressi per i dati digitali

3 ingressi per l'abilitazione: uno agisce a livello alto, gli altri due a livello basso

8 uscite attive a livello basso

2 pin per l'alimentazione e per la massa

Altri integrati contengono un doppio decoder (74139) così da rendere più agevole un'eventuale espansione del numero delle uscite.

Fig. 27 Piedinatura del decoder 74138.

Esistono anche integrati con un numero più elevato di uscite, come il 74154 che ne possiede 16.

Decodificatore BCD-7 segmenti Un caso tutto particolare di decoder è costituito da questo dispositivo, di cui esistono vari modelli

integrati, per il quale a rigore non è applicabile la definizione di decodificatore. Infatti ad una

A0

A2

1E

E3

VCC

Y0 A1

GND

OUTPUTS

OUTPUTS

Y1

Y2

Y3

Y4

Y5

Y6

Y7

SELECT

2E ENABLE

0

2

3

4

5

6

VCC

A

B

C

D

9

8

INPUTS

1

GND 7

OUTPUTS

OUTPUTS

Page 231: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

230

configurazione degli ingressi non corrisponde in genere una sola uscita e, viceversa, ogni uscita è funzione di più combinazioni delle variabili d'ingresso. In altri termini per esso non sussiste la corrispondenza biunivoca tra le combinazioni degli ingressi e le uscite come negli altri decoder, il cui funzionamento è sintetizzabile nella frase: una combinazione, un'uscita; un'uscita, una combinazione.

Il suo funzionamento è finalizzato alla visualizzazione delle cifre decimali sui display a sette segmenti mediante l'accensione di alcuni LED in corrispondenza delle combinazioni del codice BCD.

Normalmente ogni LED viene denotato con le lettere indicate in figura 28 e sulla base di tale notazione possiamo scrivere la tabella di verità per ciascuno dei segmenti contenuti nel display:

Fig. 28

Vediamo allora per esempio che, se la combinazione d'ingresso è 0010, si accendono i LED a, b, d, e, g così da formare la cifra decimale 2.

Nella tabella non appaiono le configurazioni da 1010 a 1111 perché non corrispondono ad alcuna cifra decimale. Tuttavia spesso le sei rimanenti combinazioni vengono utilizzate per formare le lettere A, B, C, D, E, F, usate nel sistema hex per i numeri da 10 a 15.

Integrati. In funzione dei display che devono essere pilotati si hanno due tipi di integrati:

- decoder ad uscita bassa. A questa categoria appartengono gli integrati 7446 e 7447, che possono pilotare i display ad anodo comune. Questi sono costituiti da 7 LED collegati tra loro come in figura 29: tutti gli anodi sono alimentati alla tensione VCC mentre il catodo viene portato ad un livello basso solo quando viene attivata la linea corrispondente. La d.d.p. che si instaura ai capi del diodo permette il passaggio della corrente e quindi l'accensione del LED;

- decoder ad uscita alta. Un integrato di questo tipo è il 7448 e serve a pilotare i display a 7 segmenti a catodo comune. Tutti i LED sono collegati tra loro con il catodo e questo è posto a massa. Ogni linea del decoder è collegata ad un anodo e, quando viene attivata, mette in conduzione il diodo corrispondente. I display a cristalli liquidi, di uso più recente ed ormai quasi universalmente diffusi soprattutto per i

sistemi di piccola potenza (calcolatrici da tavolo, orologi digitali, piccoli schermi visualizzatori), devono essere pilotati con una tensione variabile a frequenza piuttosto bassa (qualche decina di Hz). Per questo motivo non possono essere messi in funzione direttamente da un decoder BCD-7 segmenti, che fornisce solo livelli continui di tensione. Tali livelli servono invece come segnali di controllo di una rete combinatoria alla quale vengono applicati dei segnali ad onda quadra, che vanno ad eccitare i segmenti del display sotto il controllo del decoder.

A3 A2 A1 A0 a b C d e f g

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

1 0 1 1 0 1 1 1 1 1

1 1 1 1 1 0 0 1 1 1

1 1 0 1 1 1 1 1 1 1

1 0 1 1 0 1 1 0 1 1

1 0 1 0 0 0 1 0 1 0

1 0 0 0 1 1 1 0 1 1

0 0 1 1 1 1 1 0 1 1

a

b

c

f

e

g

d

Page 232: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

231

Fig. 29 Pilotaggio di display a 7 segmenti ad anodo comune.

Codificatori Questi dispositivi presentano un comportamento esattamente complementare rispetto ai decoder e per

essi si può dare la seguente definizione.

Si chiama codificatore (encoder) (fig. 30) un sistema con M ingressi ed N uscite che all'attivazione di una ed una sola linea d’ingresso fa corrispondere una particolare configurazione degli N bit d’uscita.

Ad ogni linea d'ingresso deve corrispondere una diversa configurazione delle uscite, per cui tra il numero M degli ingressi ed il numero N delle uscite deve sussistere la relazione

NM 2≤

Fig. 30 Encoder.

Esempio 8

In figura 31 è rappresentato un encoder a 4 ingressi e 2 bit d'uscita. L'attivazione di un ingresso produce una particolare configurazione in uscita e il comportamento del dispositivo è sintetizzabile dalle seguenti funzioni

A1 = X2 + X3 A0 = X1 + X3

ricavabili dalla tabella di verità

VCC

a b c d e f g

A3 A2 A1 A0

7446

X1

XM

AN-1

A0

|

|

|

|

|

|

Page 233: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

232

X3 X2 X1 X0 A1 A0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 1 0 1 1

Fig. 31 Fig. 32 Encoder a 2 bit d'uscita.

La linea X0 è indifferente perché non contribuisce alla formazione delle configurazioni dei bit d'uscita. Ciò avviene per qualsiasi numero di ingressi per cui negli integrati l'accesso corrispondente non è neppure previsto. La rete combinatoria che realizza le funzioni desiderate è costituita da due OR a due ingressi ed è rappresentata in figura 32.

Un codificatore decimale-BCD possiede 9 linee d'ingresso per i numeri da 1 a 9 (lo 0 è ottenuto non attivando alcuna linea) e 4 uscite, quanti cioè sono i bit necessari per rappresentare le cifre suddette in BCD. Dalla tabella di verità, che il lettore è invitato a scrivere come esercizio, si ricavano le espressioni per ciascuna uscita. Si ha allora

A0 = X1 + X3 + X5 + X7 + X9 A1 = X2 + X3 + X6 + X7 A2 = X4 + X5 + X6 + X7 A3 = X8 + X9

e la rete che realizza queste funzioni è disegnata in figura 33.

Codificatore di priorità decimale-BCD 74147

In questo encoder il numero in codice BCD è determinato dall'attivazione della linea di ordine più elevato. In questo modo le linee di ordine inferiore diventano irrilevanti ai fini della determinazione dell'uscita.

Ad esempio nell'encoder normale per ottenere in uscita il numero 0110 è necessario attivare soltanto la linea X6 e nessun' altra, mentre nel nuovo dispositivo è sufficiente che non siano attivate le linee di ordine superiore (X7, X8, X9).

L'utilità di una tale soluzione si rivela per esempio nei casi di attivazione involontaria di linee non

X0

X1 A1

A0 X2

X3

X0

X2

X3

X1

A1

A0

Page 234: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

233

desiderate oppure in alcune situazioni in cui non è possibile attivare un ingresso senza che lo siano anche tutti quelli di ordine inferiore.

Fig. 33 Codificatore decimale - BCD.

Per chiarire meglio quest'ultima ipotesi e per capire come il codificatore citato funzioni, consideriamo il seguente problema.

Nove sensori (fig. 34) sono posti in un recipiente ad altezze opportune allo scopo di indicare, mediante un segnale elettrico, il livello raggiunto dal liquido nel recipiente. Ogni sensore è attivato quando giunge a contatto col liquido e in quel caso invia un segnale elettrico ad un dispositivo digitale. È chiaro allora che ad esempio il sensore numero 6 non potrà inviare il suo segnale senza che anche gli indicatori di livello inferiore inviino il loro; d'altra parte in un eventuale display numerico dovrà apparire soltanto il numero 6 o qualsiasi altro simbolo equivalente che indichi inequivocabilmente il raggiungimento del livello corrispondente.

In situazioni di questo tipo solo un encoder con priorità potrà svolgere efficacemente la funzione richiesta.

Anche in questo caso si tratterà di un dispositivo con 9 ingressi (si ricordi che la prima linea è irrilevante) e 4 uscite, ma la logica funzionale dovrà tener conto della non attivazione delle linee di ordine superiore a quella desiderata. Si ha dunque:

A3 (MSB) questo bit apparirà solo nel caso che siano attivate le linee X8 e X9; allora

983 XXA +=

A2 questo bit corrisponde all'attivazione di

X4 senza attivare X8 e X9 X5 senza attivare X8 e X9 X6 senza attivare X8 e X9 X7 senza attivare X8 e X9

A0

A1

A2

A3

1 2 3 4 5 6 7 8 9

Page 235: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

234

e quindi

( )7654982 XXXXXXA +++=

A1 si attiva con X2 , X3 , X6 , X7 e precisamente

X2 senza attivare X4, X5, X8, X9 X3 senza attivare X4, X5, X8, X9 X6 senza attivare X8 e X9 X7 senza attivare X8 e X9

e perciò

( ) ( ) 98769854321 XXXXXXXXXXA +++=

A0 (LSB) si attiva con X1, X3, X5, X7, X9 ma con la disattivazione di X2, X4, X6, X8. Procedendo come nei casi precedenti risulta

9878658643864210 XXXXXXXXXXXXXXXA ++++=

In figura 35 è disegnato schematicamente il chip 74147, che ha sia gli ingressi che le uscite attivi a livello basso.

Per l'esempio del recipiente con i nove sensori si può ipotizzare una soluzione a blocchi come quella di figura 36.

Fig. 34 Fig. 35 Codificatore di priorità decimale - BCD 74147.

X1

X2

X3

X4

X5

X6

X7

X8

X9

A0

A1

A2

A3

74147

VCC

X8

X7

X6

X5

X4

X3

X2

X1

X9

Page 236: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

235

Fig. 36 Sistema per il rilevamento del livello in un recipiente.

2.6 Multiplexer (MUX) e demultiplexer (DEMUX)

Multiplexer

Si chiama multiplexer (MUX) (fig. 37) un dispositivo dotato di un’uscita, di M ingressi di dati e di N ingressi di selezione; per ogni combinazione dei bit degli ingressi di selezione, all’uscita vengono trasmesse le informazioni provenienti da uno degli ingressi di dati.

Dato che per ogni ingresso da collegare all'uscita è necessaria una diversa combinazione dei bit di selezione, tra il numero N ed il numero M deve sussistere la relazione

NM 2≤

Fig. 37 Multiplexer. Fig. 38 Multiplexer a 2 canali.

X1

XM

uscita

ingressi di selezione

|

|

|

|

ingressi dati Y

VCC

encoder dipriorità

A3

A2

A1

A0

DecoderBCD-7

segmenti

X1

S

Y

X0

Page 237: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

236

Il caso più semplice è costituito dal MUX di figura 38, dove una sola variabile di selezione S, con i due possibili valori che essa può assumere, è sufficiente per stabilire quale dei due ingressi X0 e X1 debba essere collegato con l'uscita Y. Si ha allora

per S = 0 Y = X0 per S = 1 Y = X1

ed in sintesi

10 SXXSY += In figura 39a è rappresentato un multiplexer a 4 ingressi per il quale sono necessari due ingressi di

selezione A e B. Il suo funzionamento può essere riassunto nella tabella di verità di figura 39b o anche con l'espressione

3210 ABXBXAXBAXBAY +++= Alcuni multiplexer, oltre ai normali ingressi di dati e di selezione, possiedono uno o più ingressi di abilitazione (enable) ed altri anche due uscite, una per la variabile in forma vera, l'altra per quella complementata. Un esempio di questo tipo è offerto dal MUX 74151, integrato a 16 pin, con un ingresso di abilitazione attivo a livello basso. Ciò significa che

per 0=E il dispositivo invia all'uscita uno dei canali d'ingresso

per 1=E nessun canale viene attivato e si ha Y = 0 per qualsiasi combinazione dei bit di selezione.

Fig. 39 Multiplexer a 4 canali (a) e tavola della verità (b).

In figura 40a è presentato lo schema semplificato degli ingressi e dell'uscita del 74151 ed in figura 40b è indicata la sua piedinatura.

B A Y

0 0 0 1 1 0 1 1

X0 X1 X2 X3

X3

X2

X1

X0

B A

Y

a) b)

Page 238: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

237

Fig. 40 Multiplexer 74151 a 8 ingressi (a) con relativa piedinatura (b).

Multiplexer integrati

Oltre al 74151 precedentemente illustrato, possiamo citare:

74150 - Integrato a 24 pin, così distribuiti:

16 ingressi dati 4 ingressi di selezione 1 ingresso di abilitazione E attivo sul livello basso 1 uscita Y attiva a livello basso 2 pin di alimentazione e di massa (VCC e GND)

74157 - Integrato a 16 pin che contiene quattro MUX a 2 ingressi. I pin (fig. 41) sono perciò così distribuiti:

8 ingressi dati. Sono quattro coppie di due ingressi, una per ciascun MUX 4 uscite, una per ciascuno dei quattro MUX 1 ingresso di selezione che agisce sui quattro MUX contemporaneamente 1 ingresso di abilitazione E , attivo a livello basso 2 pin per l'alimentazione e per la massa

Fig. 41 Multiplexer quadruplo a 2 ingressi 74157.

X1D X1C

YC

YB

X1B X1A

X0D X0C X0B X0A

74157

E S

YD

YA

1

2

3

4

5

6

7

16

15

14

13

12

11

10

X3

X2

X1

X0

Y Y

E

VCC

X4

X5

X6

A

B 8 GND 9 C

74151 X7

b)

X7 X6

Y

Y

X5 X4 X3 X2 X1 X0

74151

E B A C

a)

Page 239: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

238

Il funzionamento di questo particolare integrato è riassunto nella tabella seguente.

E S YA YB YC YD

H L L

X L H

L X0A X1A

L X0B X1B

L X0C X1C

L X0D X1D

La particolarità di questo dispositivo consiste dunque nella possibilità di trasmettere contemporaneamente quattro bit su quattro uscite. Può risultare molto comodo per inviare in alternativa due gruppi di dati in codice BCD ad un decodificatore BCD/decimale e quindi ad un visualizzatore che renderà noto uno alla volta il contenuto delle due sorgenti di dati.

Applicazioni dei multiplexer

Oltre alla normale funzione di smistamento di dati di cui si è fin qui parlato, i MUX possono essere usati nella conversione parallelo-seriale e nella generazione di funzioni logiche.

Conversione parallelo-seriale Questa tecnica è spesso usata nella trasmissione di dati a lunga distanza per evitare l'impiego di

molti canali quando si devono trasmettere informazioni binarie elaborate in parallelo. La tecnica è esemplificata in figura 42, dove una parola è presente con tutti gli 8 bit di cui è

formata all'ingresso del MUX. Applicando agli ingressi di selezione una sequenza di configurazioni progressive si selezionano nell'ordine tutti gli ingressi del MUX e i bit della parola da trasmettere vengono inviati all'uscita uno alla volta, a cominciare dal bit meno significativo (LSB).

Fig. 42 Conversione parallelo - seriale.

Generazione di funzioni logiche Si tratta di un'applicazione molto interessante dei multiplexer perché consente di realizzare con

pochi componenti funzioni logiche anche molto complesse per le quali occorrerebbero molte porte e di tipo diverso.

La tecnica utilizzata risulta in modo chiaro dall'esempio seguente.

X7 X6

Y

X5 X4 X3 X2 X1 X0

M U X

E

B A C

A7 A6 A5 A4 A3 A2 A1 A0

r e g i s t r o

Page 240: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

239

Esempio 9

Sia data la funzione di tre variabili

( ) CBACBACBACBACBAY +⊕=++=

Dalla mappa K, data in figura 43a, è evidente che la funzione non è minimizzabile e l'uso di una porta EXNOR, suggerito nella relazione precedente, non migliora di molto la situazione. Osserviamo invece la figura 43b in cui degli 8 ingressi di un MUX alcuni sono collegati ad un livello alto di tensione, altri ad un livello basso. Allorché gli ingressi di selezione assumono le configurazioni indicate dalla funzione, cioè quella dei suoi minterm, vengono attivati proprio quei canali che sono collegati a VCC e l'uscita assume di conseguenza il valore logico 1. Nel nostro esempio sono collegati a livello alto gli ingressi

X0 attivato con CBA

X5 attivato con CBA

X6 attivato con CBA

Fig. 43 Il MUX come generatore di funzioni.

Altri esempi ed altre tecniche di realizzazione di funzioni sono illustrati o proposti nella parte dedicata agli esercizi.

Demultiplexer (DEMUX)

Questo dispositivo compie un'operazione che può ritenersi complementare rispetto a quella compiuta da un MUX. Infatti la sua struttura è in un certo senso speculare di quella del dispositivo precedente, con un ingresso e più uscite per i dati e un opportuno numero di ingressi di selezione. Per questo circuito si può dare la seguente definizione.

Si chiama DEMUX (fig. 44) un dispositivo logico che, per ogni combinazione dei bit dei suoi N ingressi di selezione, attiva una delle sue M uscite e ad essa invia i dati provenienti da un unico canale d'ingresso. Tra il numero delle uscite e quello degli ingressi di selezione deve sussistere la relazione

NM 2≤

1kW VCC

X0 X1 X2 X3 X4 X5 X6 X7

YCBA

b)

0 0 1

00 01 11 10

0

1

CB A

1 0 1 0

0

a)

E

Page 241: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

240

Fig. 44 Demultiplexer. Fig. 45 Demux a 2 uscite.

Per capire il suo funzionamento facciamo riferimento al DEMUX a due uscite di figura 45, che rappresenta il caso più semplice che si possa immaginare. La scelta dell'uscita è affidata ad un'unica variabile di selezione, che attiva l'una o l'altra delle due porte AND. Le variabili d'uscita assumono allora la forma

SXY =1 XSY =0

Se al posto delle porte AND vengono impiegate porte NAND le uscite sono attive a livello basso e i dati provenienti dall'ingresso appaiono in uscita nella forma complementata.

Dato che la struttura di base di un DEMUX è simile a quella di un decoder, spesso uno stesso dispositivo viene classificato sia come decodificatore sia come demultiplexer. La sua reale funzione dipende da come vengono utilizzati i suoi ingressi. Si consideri ad esempio in figura 46 il decoder 7442, che ha 4 ingressi di selezione e dieci uscite.

Fig. 46 Decoder 7442 usato come DEMUX.

Conservando per A, B, C la funzione di ingressi di selezione e non utilizzando le uscite Y8 e Y9, se si assume D come ingresso dati si ottiene un DEMUX a 8 uscite attive a livello basso.

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

A

B

C

D

7442

ingresso dati

selezione

uscite

non utilizzate

X

YM-1

Y0

.

.

.

.

.

. . .

AN A1

Y1

X

S

Y0

Page 242: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

241

In codice BCD tutte le uscite considerate, quelle cioè da Y1 a Y7, sono attivate per 0=D mentre 1=D seleziona le ultime due uscite, che però non sono prese in consi derazione. Avviene allora che

per D = 0 tutte le porte sono abilitate e la porta generica Yl, selezionata per mezzo di un opportuno codice d'ingresso, viene attivata e si pone a livello basso, cosicché anche l'uscita è nulla, come l'ingresso;

per D= 1 tutte le porte sono disabilitate e lo è in particolare quella selezionata dallo stato dei bit agli ingressi. Essa assume pertanto un livello alto uguale a quello dell'ingresso D.

Page 243: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

242

clock

A

B

Y

X

ESERCIZI GUIDATI

EG. 1 Realizzare un dispositivo a porte logiche che, sollecitato da due segnali digitali A e B con andamento temporale come quello visibile in figura E.1, dia in uscita il segnale Y rappresentato nella stessa figura.

Fig. E. 1

Soluzione

Dall'esame dei diagrammi temporali correlati degli ingressi e dell'uscita si può dedurre che: per A ∫ B il segnale d'uscita è costituito da un treno di impulsi per A = B l'uscita si mantiene costantemente a livello alto.

Si può allora pensare ad una porta di trasmissione che lasci passare un treno di impulsi prodotto da un generatore quando A e B assumono valori diversi ed interdica il passaggio degli stessi impulsi, mantenendosi a livello alto, quando i due segnali d'ingresso sono uguali. Il comando della porta deve essere affidato ad un dispositivo capace di stabilire l'uguaglianza e la diversità tra A e B e di produrre in uscita il segnale di controllo della porta. I circuiti logici capaci di operare la distinzione suddetta sono due: la porta EXOR e la EXNOR e, a seconda della scelta dell'una o dell'altra, si possono avere due soluzioni.

• 1 a soluzione Si utilizzi una porta EXOR che dà un segnale alto in uscita solo quando i due ingressi sono diversi (tabella di verità di figura E.2a). Se l'uscita X della EXOR ed il treno di impulsi costituiscono gli ingressi della porta di trasmissione, quest'ultima dovrà assicurare il rispetto delle seguenti condizioni:

uscita Y = 1 per X = 0 (segnali A e B uguali) uscita Y = impulsi per X = 1 (segnali A e B diversi)

a) b) Fig. E. 2 Fig. E. 3

A B X

0 0 0 1 1 0 1 1

0 1 1 0

X clock Y

0 0 0 1 1 0 1 1

1 1 1 0

A

B

Y

Page 244: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

243

La prima condizione porta alla scrittura delle prime due righe della tabella di verità di figura E.2b. La seconda condizione non specifica se gli impulsi di uscita debbano essere in fase o in controfase con gli impulsi del clock, per cui scegliendo la seconda possibilità si può completare la tabella di figura E.2b nel modo indicato e stabilire così che la porta di trasmissione sia rappresentata da una NAND. La soluzione circuitale corrispondente è data in figura E.3.

• 2a soluzione Per generare il segnale di controllo della porta di trasmissione si scelga ora una porta EXNOR, la cui tabella di verità è data in figura E.4a. In questo caso la porta di trasmissione dovrà essere trasparente quando l'uscita della porta di controllo è a livello basso (X = 0 e segnali A e B diversi) mentre con la stessa uscita a livello alto (X = 1, cioè A e B uguali) il segnale risultante deve valere sempre 1.

a) b)

Fig. E.4 Fig. E. 5

Partendo da questa seconda condizione si possono impostare le ultime due righe della tabella di verità della porta di trasmissione (fig.E.4b) e, facendo coincidere per X = 0 gli stati dell'uscita Y con i livelli del clock, si ottiene la tabella di verità di una porta OR. Il risultato finale è rappresentato in figura E.5.

EG.2 Date due serie di numeri binari di due bit, progettare un circuito combinatorio che assuma un livello alto in uscita quando nel confrontare le due serie si incontrano due numeri uguali.

Soluzione Siano Al ed A2 le cifre dei numeri della prima serie e B1 e B2 quelle dei numeri della seconda serie.

Fig. E.6 Fig. E. 7

A B X

0 0 0 1 1 0 1 1

1 0 0 1

X clock Y

0 0 0 1 1 0 1 1

0 1 1 0

0 0 0

00 10 11 01

01

00 1

A1B1

0 1 0

0

1 0 1 0

0 0 0 0

11

10

A2B2

A1

B1

A2

B2

Y

clock

B

A

Y

X

Page 245: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

244

L'uguaglianza fra due numeri si ha quando sono uguali i bit dello stesso peso, cioè quando è

11 BA = 22 BA = Sulla base di queste considerazioni si può disegnare la mappa di Karnaugh di figura E.6, al posto di una tabella di verità di 16 righe. Le caselle che contengono un 1 non sono raggruppabili in alcun modo, per cui la funzione può essere espressa solo come somma di quattro minterm e semplificata con i teoremi dell'algebra booleana nel modo seguente:

( ) ( )( )( ) 221122221111

222211222211

2211221122112211

BABABABABABA

BABABABABABA

BABABABABABABABAY

⊕⋅⊕=++=

=+++=

=+++=

Come risultato si ha il circuito di figura E.7 formato da due porte EXNOR e da una porta AND. Allo stesso risultato si poteva arrivare anche con considerazioni di tipo intuitivo, tenendo presente che l'operatore che rivela con un'uscita alta quando i due bit d'ingresso sono uguali è proprio la porta EXNOR. Predisponendo dunque due di queste porte per il confronto a due a due delle quattro cifre, una porta AND alla fine è in grado di rivelare quando si ha l'uguaglianza di entrambe le cifre.

EG.3 Tre interruttori A, B e C comandano tre lampade LA, LB e LC , che devono rimanere accese solo una alla volta. In caso di chiusura contemporanea di più interruttori le lampade devono accendersi secondo le seguenti priorità: A è prioritario su B B è prioritario su C C è prioritario su A B è prioritario sugli altri due assieme.

Disegnare una rete logica che esegua l'operazione richiesta.

Soluzione Con le indicazioni fornite dal testo possiamo costruire la tabella di verità con la convenzione di attribuire il valore logico 1 agli interruttori chiusi ed alle lampade accese. Il valore 0 indicherà quindi gli interruttori aperti e le lampade spente.

A B C LA LB LC

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0

Page 246: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

245

• Lampada LA. Questa è accesa solo quando è attivato l'interruttore A e l'interruttore C, che ha priorità su A, è chiuso. La posizione di B non è influente perché A è prioritario su di esso. Per l'uscita LA si può allora scrivere

CALA =

relazione alla quale si può giungere anche attraverso la mappa K o per mezzo dei teoremi dell'algebra di Boole, cosa che può essere facilmente verificata dal lettore.

• Lampada LB. Per questa uscita utilizziamo un metodo che finora non abbiamo mai usato ma che spesso semplifica di molto i circuiti, e per questo verrà impiegato in alcuni circuiti futuri sia combinatori che sequenziali. Utilizzabile solo nei sistemi che presentano più uscite, tutte funzioni delle medesime variabili d'ingresso, tale metodo sfrutta le funzioni già codificate e minimizzate di alcune uscite come variabili di ingresso per altre uscite dello stesso sistema. È ovvio che una tale procedura non può essere validamente usata impiegando mezzi meccanici di rappresentazione, come le mappe K, ma deve affidarsi all'intuizione ed alla capacità dell'operatore di scoprire nessi logici tra le variabili d'ingresso e tra queste ed alcune variabili di uscita. Nel nostro caso particolare possiamo osservare che la lampada LB è sempre accesa con B attivato, purché contemporaneamente non sia accesa la lampada LA. Nella tabella di verità ciò si traduce nella presenza di un 1 nella colonna di LB ogni volta che B=1 ed LA=0 (3a, 4a e 8a riga) ma non quando è B=1 ed LA=1 (7a riga). In questo caso dunque LA, assieme a B, diventa variabile d'ingresso per LB e permette di costruire la seguente tabella di verità

B LA LB

0 0 0 1 1 0 1 1

0 0 1 0

dalla quale si ricava AB LBL =

• Lampada LC. Si accende se viene attivato l'interruttore C, purché contemporaneamente sia aperto l'interruttore B, che ha priorità su C. Ciò si traduce nell'espressione

CBLC =

Il risultato algebrico fornisce le indicazioni per la costruzione del circuito combinatorio a tre ingressi e tre uscite di figura E.8.

Fig. E. 8

B

A

C

LA

LB

LC

Page 247: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

246

EG.4 Realizzare un circuito capace di confrontare due numeri binari A e B di due bit ciascuno e di fornire su tre uscite distinte l’indicazione se sia A=B, A>B o A<B.

Soluzione Un circuito siffatto si chiama comparatore e ne esistono anche versioni integrate. Ogni uscita è funzione delle quattro variabili d'ingresso A1, A2, B1 e B2, le quali forniscono una tabella di verità a 16 righe, che invitiamo il lettore a tracciare e con la quale egli dovrà verificare la conclusioni a cui ora perverremo attraverso alcune considerazioni pratiche.

Fig. E.9 Comparatore per numeri a 2 bit.

• A = B. Questo caso è già stato trattato nel problema EG.2: l'uguaglianza di due bit è rivelata da un operatore EXNOR e l'uguaglianza dei due numeri si verifica quando sono uguali contemporaneamente le due coppie di numeri. Perciò la soluzione di questa parte del problema è ancora quella proposta in figura E.7. Indicata con X1 l'uscita che si attiva quando A=B, si può scrivere

11221 BABAX ⊕⋅⊕= (E.1)

• A < B. Procedendo secondo la logica che presiede alla disuguaglianza di due numeri si può osservare che A è minore di B quando

- il bit più significativo di A è inferiore al corrispondente bit di B, ossia quando A2< B2 e quindi se

A2 = 0 and B2 = 1

o anche

22 BA

- essendo A2 = B2 (cioè 22 BA ⊕ ), insieme (AND) è anche Al < B1, ovvero

A1 = 0 and B1 = 1 11BA⇒

Indicata con X2 l'uscita relativa ad A < B si ha

A = B

A > B

A < B

A1

B1

A2

B2

Page 248: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

247

1122222 BABABAX ⋅⊕+= (E.2)

• A > B. Quest'ultima circostanza pub essere dedotta per esclusione delle due precedenti e pertanto l'uscita X3 può essere intesa come funzione di X1 ed X2 ed assume quindi l'espressione

213 XXX += (E.3)

Le espressioni (E.1), (E.2) ed (E.3) si realizzano mediante il circuito di figura E.9, che il lettore è invitato ad analizzare per verificarne il corretto funzionamento.

EG.5 Agli ingressi di un sommatore di numeri a due bit sono presenti i segnali digitali di figura E.10. Disegnare le forme d’onda dei segnali d’uscita Ê1, Ê2 e C del sommatore.

Fig. E.10

Soluzione Disegnato lo schema a blocchi del sommatore, i segnali vanno applicati agli ingressi dei due FA nel modo indicato in figura E.11. Per dedurre l'andamento di Ê1 è sufficiente tener conto delle forme d'onda assegnate, mentre per Ê2 e per il riporto finale C è necessario tracciare l'andamento temporale di C1, cioè del riporto del primo FA.

Fig. E.11

In figura E.11 i sommatori completi sono disposti in modo da fornire con le loro uscite Ê1 e Ê2 il risultato dell'addizione come appare nella scrittura normale, con l'LSB a destra. Tale è anche la disposizione con cui solitamente appaiono questi dispositivi nelle pubblicazioni che li riguardano.

FA2 FA1

C1C

A2

Ê1

B2

Ê2

C0

A1

B1

A1

C0

B2

A2

B1

Page 249: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

248

L'andamento dei segnali richiesti è tracciato in figura E.12 ed è stato ricavato applicando le regole dell'addizione dei numeri binari ad ogni intervallo di tempo durante il quale nessun segnale d'ingresso cambia il suo valore.

Fig. E.12

Ad esempio nel primo intervallo si ha

100

110111

0

11 ==++=Σ⇒=

==CCBA

CBA

011

01222

1

22 ==++=Σ⇒=

==CCBA

CBA

Procedendo nello stesso modo per tutti gli intervalli successivi si ricavano i diagrammi di figura E.12, come il lettore può facilmente verificare.

EG.6 Utilizzando un 7483 eseguire la differenza tra i numeri decimali 5 e 2 e successivamente tra 2 e 5.

Soluzione Dato che il 7483 è un sommatore, è necessario trasformare il sottraendo in un numero negativo in complemento a 2. In pratica si trasforma il sottraendo in complemento a 1 mediante una inversione di tutti i suoi bit e si carica il riporto d'ingresso C0 con un 1, che poi verrà sommato completando così l'operazione di trasformazione del sottraendo.

B2

Ê2

C1

Ê1

C

Page 250: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

249

Fig. E.13

Per la complementazione dei bit del numero 210 si premettono degli invertitori agli ingressi B del sommatore, come indicato in figura E.13, per cui la configurazione dei bit sui vari pin dell'integrato è quella che appare nella figura citata. La somma viene eseguita nel modo qui indicato:

scartaredariportodiretta) forma in (3 differenza

ingressod' riporto1)aocomplementin (-2sottraendo

diretta)formain(5minuendo

1100110111010

1=++

Il quarto bit, che è uno 0, ci dice che il risultato è positivo e come tale compare in uscita in forma diretta. Per eseguire la differenza tra 2 e 5 si procede nello stesso modo. Il complemento a 1 di -5 si ottiene complementando tutti i bit di 5, compreso quello del segno, si aggiunge un 1 al carry C0 e si applicano agli ingressi A i bit del numero decimale 2 (0010). La differenza (o meglio la somma) allora diventa

riporto2)aocomplementin3(differenza

ingressod'riporto1)aocomplementin5(sottraendo

diretta)formain(2minuendo

−=++

10110101010100

Si osservi che questa volta il quarto bit indica che il risultato è, come era da aspettarsi, negativo e quindi è espresso in complemento a 2. Per conoscere il suo valore è sufficiente calcolare il suo complemento a 2, compreso il bit di segno, ottenendo così la differenza cambiata di segno. Nel nostro caso si ha dunque

0

1

0

1

1

0

0

1

0 1 0 1 1

0 0 1 1

C4

A4 A3 A2 A1 C0

B4 B3 B2 B1 Ê4 Ê3 Ê2 Ê1

7483

Page 251: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

250

segnodicambiatorisultato

aocomplement

risultato

1

110010100

1011

=+

↓↓↓↓

Si deduce quindi che la differenza è proprio -3.

EG.7 Si dispone di alcuni decodificatori a 4 uscite con ingressi di abilitazione 1E ed E2, attivi sul livello basso e su quello alto rispettivamente, e con essi si vuole realizzare un decoder a 16 uscite. Disegnare lo schema circuitale e le connessioni necessarie per il funzionamento del sistema, ricordando che ogni singolo integrato viene abilitato solo se entrambi gli ingressi 1E ed E2 sono attivati.

Soluzione

È intanto evidente che per poter disporre di 16 uscite sono necessari 4 chip, ognuno dei quali fornirà una quaterna di uscite secondo la seguente distribuzione

chip 1 uscite: da Y0 a Y3 ingressi: configurazioni da 0000 a 0011

chip 2 uscite: da Y4 a Y7 ingressi: configurazioni da 0100 a 0111

chip 3 uscite: da Y8 a Y11 ingressi: configurazioni da 1000 a 1011

chip 4 uscite: da Y12 a Y15 ingressi: configurazioni da 1100 a 1111

I due bit meno significativi possono essere inviati agli ingressi Al e A0 di tutti e quattro gli integrati, mentre agli ingressi di abilitazione possiamo inviare le quattro combinazioni dei bit A3 ed A2 mediante una semplice rete logica che per ogni combinazione consenta di selezionare uno dei quattro chip; i quattro gruppi di uscite saranno allora attivati secondo la seguente tabella di verità

A3 A2 uscite selezionate

0 0 0 1 1 0 1 1

Y0 π Y3

Y4 π Y7

Y8 π Y11

Y12 π Y15

La soluzione circuitale del problema è disegnata in figura E.14

Page 252: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

251

Fig. E.14 Decodificatore da 4 a 16 linee.

EG.8 Progettare una rete combinatoria per l'accensione del numero 1 in una conversione BCD-7 segmenti, sapendo che i bit d’ingresso non assumono mai le combinazioni comprese tra 1010 e 1111.

Soluzione

Per la formazione del numero 1 sul display devono accendersi i segmenti b e c, di cui riportiamo le tabelle di verità e le corrispondenti mappe K (fig. E.15 a, b e c). Le condizioni d'indifferenza, denotate con una crocetta nelle caselle relative, consentono le minimizzazioni indicate nelle stesse figure E.15 e portano alla definizione delle funzioni per i segmenti b e c. Si ha dunque

012

01201012

AAAc

AAAAAAAAb

++=

⊕+=++=

a) b) c)

Fig. E.15

L'espressione per il segmento c è stata ottenuta sfruttando l'unica condizione in cui la funzione vale 0.

A3 A2 A1 A0 b c

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1

x0 1

00 101101

01

00 1A1A0

A3A2

1x1

1

11

1

xx

x010

11

x

x1 1

00 101101

01

00 1 1x1

1

11

0

xx

x110

11

x

A3A2

A1A0

A0

A1

A2

A3

A1 A0 A1 A0 A1 A0 A1 A0

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

E2 1E

E2

1E

E2

1E

E2

1E

Page 253: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

252

Il circuito risultante è disegnato in figura E.16.

Fig. E.16

EG.9 Costruire un convertitore di codice Gray/binario a 4 bit.

Soluzione

I1 circuito avrà quattro ingressi, corrispondenti alle variabili del codice Gray, e quattro uscite che forniscono i bit del codice binario. Dalla tabella di verità, che riportiamo nella pagina seguente, si ricavano direttamente le espressioni delle uscite del convertitore osservando che: i valori assunti da B3 coincidono sempre con quelli assunti da G3, per cui si può scrivere

33 GB =

B2 assume gli stessi valori di G2 quando G3=0, mentre è complementare a G2 quando G3=1; in formule ciò viene espresso dall'OR esclusivo delle variabili G2 e G3

3232322 GGGGGGB ⊕=+=

B1 risulta poi uguale a G1 quando G2 e G3 sono uguali, ovvero quando B2 è uguale a 0, ed è complementare a G1 quando G2 e G3 sono tra loro diversi, ovvero quando B2 vale 1; si può dunque scrivere

( ) ( ) ( )32132132121211 GGGGGGGGGBGBGB ⊕⊕=⊕+⊕=+=

un ragionamento del tutto analogo può essere fatto per B0 nei confronti di G0, avendo come riferimento B1; si ha infatti che B0=G0 quando B1=0, e B0=G0 quando B1=1, da cui si ricava l'espressione

( ) ( )321010100 GGGGBGBGB ⊕⊕⊕=+=

A2

A1

A0

al segmento b

al segmento c

Page 254: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

253

Tabella E.1

Una possibile soluzione circuitale è mostrata in figura E.17.

Fig. E.17

In questo schema si nota che per giungere alle varie uscite occorre seguire percorsi diversi e, a causa dei tempi di propagazione, i bit in uscita al convertitore di codice generalmente non sono disponibili contemporaneamente. Ciò può creare delle letture errate se la trasmissione di dati avviene in tempi abbastanza rapidi. Questo problema di solito si risolve ricorrendo, come è suggerito in figura E.17, ad un dispositivo di memoria capace di immagazzinare i dati ricevuti e di renderli disponibili tutti insieme in seguito ad un comando opportuno di abilitazione. Di tali dispositivi si parlerà nella parte di questo modulo dedicata alle reti logiche sequenziali.

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

G3

G2

G1

G0

B3

B2

B1

B0

LATCH

Page 255: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

254

EG.10 Nello schema di figura E.18 gli interruttori a, b, ..., l si possono chiudere uno alla volta soltanto. Illustrare il funzionamento del circuito.

Soluzione

Se si fa eccezione. per la linea a, quando un interruttore viene chiuso almeno un diodo è posto in conduzione, permettendo il passaggio della corrente nella resistenza a cui è collegato. Su questa si ha allora una c.d.t. e qualcuna delle uscite A, B, C e D assume un livello alto di tensione. Ad esempio la chiusura dell'interruttore f mette in conduzione due diodi collegati alle uscite B e D, che perciò assumono un potenziale che dipende dal valore delle resistenze RB ed RD o meglio dal loro rapporto con la resistenza da 1kW visibile in figura. Se RB ed RD sono molto maggiori di 1kW, tale rapporto risulta elevato e le tensioni VB e VD si avvicinano ai 5V. Dal punto di vista logico questo indica un livello alto. Lo stesso discorso vale anche per RA ed RC, che saranno uguali a RB ed RD in modo che su tutte le uscite si abbia la stessa situazione elettrica.

Fig. E.18

Si può dunque costruire la tabella di verità dalla quale si deduce che il circuito proposto rappresenta un convertitore di codice decimale/BCD. La struttura esaminata è chiamata matrice di diodi.

RA RB RC RD

A

1kW

5V

B C D

a

b

c

d

e

f

g

h

i

l

Page 256: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

255

a b c d e f g h i l A B C D

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

EG.11 Due registri [A] e [B], con 4 locazioni di memoria, contengono ciascuno una serie di 4 bit A0 , A1, A2, A3 e B0, B1, B2, B3 rispettivamente ed ognuno di essi viene caricato di una nuova serie di dati ad intervalli regolari di tempo. Le due serie di bit rappresentano in codice BCD due numeri da 0 a 9 che si desidera far apparire su di un unico display a 7 segmenti. Disegnare uno schema circuitale che permetta di visualizzare il contenuto dei due registri.

Soluzione Per mezzo di un multiplexer 74157 possiamo inviare alternativamente i contenuti dei due registri ad un decoder BCD-7 segmenti e da questo ad un display. Se viene utilizzato il decoder 7447 è necessario impiegare un display ad anodo comune perché le uscite del decodificatore sono attive a livello basso.

Fig. E.19

Lo schema circuitale è disegnato in figura E.19. L'ingresso di abilitazione è tenuto a livello basso per attivare il MUX e all'ingresso di selezione si può inviare un segnale ad onda quadra di

Y3

Y2

Y1

Y0 B0

B1

B2

B3

A0

A1

A2

A3

X0A

X0B

X0C

X0D

X1A

X1B

X1C

X1D

A

B

E S

74157 7447

a

b

c

d

e

f

g

DISPLAY (anodo comune)

DECODER

MUX

Page 257: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

256

valore compreso tra 0 e 5 V (TTL compatibile): quando il segnale è basso viene trasmesso il contenuto del registro [A], mentre le informazioni del registro [B] vengono inviate al decoder quando il segnale di clock assume il valore alto. Naturalmente il clock deve essere sincronizzato sui tempi di variazione del contenuto dei due registri.

EG.12 Agli ingressi del multiplexer di figura E.20a è presente il gruppo di bit 1001 ed agli ingressi di abilitazione E e di selezione S0 e S1 vengono applicati i tre segnali indicati in figura E.20b. Disegnare la forma d’onda del segnale d’uscita Y.

a) b)

Fig. E.20

Soluzione

Quando 1=E il dispositivo viene disattivato e l'uscita si porta a livello basso qualunque sia il valore presente ai due ingressi di selezione; si ha cioè

per LYE ==1

Allorché invece è 0=E , il MUX è abilitato al funzionamento e l'uscita presenta il contenuto di uno dei quattro ingressi in funzione della combinazione delle due variabili di selezione S0 ed S1. Più precisamente la funzione Y può essere espressa mediante la relazione

310210110010 XSSXSSXSSXSSY +++=

e la forma d'onda risultante del segnale d'uscita appare nella quarta riga di figura E.20b.

EG.13 Realizzare circuitalmente la funzione logica di quattro variabili

DCBADCBADCBADCBADCBAY ++++=

avendo a disposizione un multiplexer a 8 ingressi.

Soluzione Dapprima si trascuri la variabile D e si assumano A, B, C quali variabili di selezione del MUX. I

1

Y

0

0

1

E S0 S1

MUX

X3

X2

X1

X0

E

S0

S1

Y

Page 258: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

257

cinque termini della funzione, privati di D, danno luogo alle seguenti corrispondenze con gli ingressi del MUX:

011=ABC ingresso 3 000=ABC ingresso 0 110=ABC ingresso 6 101=ABC ingresso 5 100=ABC ingresso 4

Valutando ora l'influenza della variabile D possiamo osservare che 1=Y quando 1=D ed insieme sono verificate le combinazioni di A, B, C

corrispondenti agli ingressi 0, 5, 6; 1=Y quando 0=D ed insieme sono verificate le combinazioni di A, B, C

corrispondenti agli ingressi 3 e 4; 0=Y quando A, B, C formano tutte quelle combinazioni che non compaiono

nell'espressione della funzione e che corrispondono agli ingressi 1, 2, 7.

Con la soluzione circuitale di figura E.21 si soddisfa alle richieste del problema perché avremo 1== DY per 1=D , se vengono attivati X0, X5, X6 1== DY per 0=D se vengono attivati X3, X4

0=Y se vengono attivati X1, X2, X7 Dalla tabella di verità e dalla mappa K si può facilmente constatare che la funzione non è minimizzabile e che quindi la sua realizzazione con le tradizionali porte logiche è molto più complessa e richiede l'uso di più integrati. Si noti la semplicità della soluzione, per la quale all'integrato basta aggiungere un solo invertitore.

Fig. E.21

EG.14 Con un multiplexer a 4 ingressi realizzare la funzione

( ) BCBACBAY ++=,, dell’esercizio EG.8 del’Unità di Apprendimento precedente relativa ai circuiti logici.

X0 X1 X2 X3 X4 X5 X6 X7

Y

C

B

A

ED

Page 259: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

258

Soluzione

Si trasformi dapprima la funzione in somma di prodotti. Applicando i teoremi di De Morgan si ottiene

( ) BCBABCBACBAY +=++=,, Si tenga ora presente che il MUX possiede due soli ingressi di selezione A e B e che pertanto il 1° termine è immediatamente ottenibile ( 10 == AB , ) collegando all'alimentazione (livello alto) l'ingresso X1 che corrisponde alla combinazione di selezione 01. Il secondo termine BC può essere trasformato nella somma di due termini che contengono anche la variabile A; la funzione allora diventa

( ) ( )CABBABAABCBCABACBAY ++=++=,,

Le due combinazioni dentro parentesi sono associate agli ingressi X2 e X3 rispettivamente. Se questi vengono collegati alla variabile C in forma vera, una volta attivati, ne trasmetteranno il valore. La soluzione dunque adotta gli stessi criteri già utilizzati nel problema precedente e la proposta circuitale relativa a questo modo di procedere è rappresentata in figura E.22.

Fig. E.22

EG.15 Indicare in quale modo il decoder 74138 può essere usato come demultiplexer.

Soluzione

Si faccia riferimento alla figura E.23 in cui sono posti in evidenza • i 3 ingressi di selezione • le 8 uscite, attive a livello basso • i tre ingressi di abilitazione, due attivi a livello basso ed uno attivo a livello alto. Si ricordi

che tutti e tre gli ingressi devono essere attivati affinché l'integrato possa svolgere il suo lavoro.

Nel funzionamento come DEMUX gli ingressi di selezione conservano la loro funzione; quando però un'uscita viene attivata occorre fare in modo che essa non assuma automaticamente il valore basso, come è stabilito che avvenga nel funzionamento come decoder, ma che riproduca, non importa se in forma vera o complementata, un segnale digitale qualsiasi proveniente da un ingresso. Per espletare questa funzione non vi è altra possibilità se non quella di impiegare uno degli ingressi di abilitazione.

VCC

C

B

A

X0 X1 X2 X3

Y

E

Page 260: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi guidati

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

259

Se si sceglie ad esempio l'ingresso 2E , attivo a livello basso, come prima cosa è necessario fissare gli altri due ad un potenziale fisso (VCC per E3 e 0V per 1E ) in modo da predisporre il dispositivo al funzionamento che poi sarà deciso definitivamente da 2E . Si avrà allora che:

• se 02 =E l'uscita Yi, selezionata da A0, A1, A2, va a livello basso ( 0=iY ) e riproduce così il

valore presente all'ingresso dati, costituito da 2E ;

• se 12 =E il chip non è abilitato. Tutte le uscite sono alte e lo è in particolare anche quella selezionata da A0, A1, A2 che perciò anche in questo caso assumerà il valore dell'ingresso.

Fig. E.23

VCC

ingressodati

1E 2E E3

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

A2

A1

A0

selezione

uscite

Page 261: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

260

ESERCIZI PROPOSTI

P-1 Proporre una soluzione per il problema EG.1 con la variante che il sistema deve oscillare quando i due ingressi A e B assumono livelli logici uguali (o entrambi a 1 o entrambi a 0).

P-2 Realizzare il circuito dell’esercizio EG.2 utilizzando porte EXOR al posto delle EXNOR ed indicare quali altri cambiamenti è necessario apportare al circuito di figura E.7.

[sfruttare il 1° teorema di De Morgan]

P-3 In un sistema di rappresentazione con segno di numeri positivi e negativi con 5 cifre di modulo, trasformare in forma diretta i seguenti numeri negativi scritti in complemento a 2 e stabilire il valore decimale:

110101; 100000; 111111; 101010 110000; 111000; 111100 111110; 110011; 100110

P-4 Trasformare in numeri positivi i seguenti numeri negativi con 5 bit di modulo ed 1 bit di segno e calcolare il valore decimale:.

110101; 111101; 101010; 100010; 100101; 110001 101111; 101110; 100000 110000; 111000; 111100

P-5 Una calcolatrice tascabile consente la rappresentazione dei numeri interi positivi e negativi in binario, con i numeri negativi espressi in complemento a 2. Se la calcolatrice ha una capacità di 10 digit, quali sono i numeri decimali interi che possono essere rappresentati in binario?

[da -512 a +512]

P-6 Realizzare un comparatore simile a quello del problema EG.4 nel quale sia la condizione di minoranza (A<B) ad essere ottenuta per esclusione delle altre due, cioè di A=B e A>B.

P-7 Usando degli integrati opportuni costruire un sommatore binario parallelo a 10 bit e disegnare i collegamenti tra i piedini dei chip utilizzati.

P-8 Utilizzando sommatori integrati 7483 eseguire la differenza tra i numeri decimali 64 e 86. Disegnare i bocchi rappresentativi degli integrati e lo stato degli ingressi e delle uscite, oltre allo schema con i collegamenti tra i vari pin degli integrati.

[11101010]

P-9 Con lo stesso tipo di decodificatore a 4 uscite utilizzato in EG-7 realizzare un decoder a 8 uscite indicando in particolare come vanno utilizzati gli ingressi 1E ed E2 di abilitazione.

[figura P.1]

A2 A1 A0 VCC

Y4Y5Y6Y7 Y0Y1Y2Y3

A1 A0 A1 A01E 1EE2 E2

Page 262: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

261

Fig. P.1

P-10 Spiegare il funzionamento del circuito di figura P.2 che utilizza un decoder integrato 74138 a 8 uscite e 3 ingressi di abilitazione, due attivi sul livello basso ( 1E e 2E ) ed uno sul livello alto (E3).

[ 0123201231 AAAAXAAAAX == ; ]

P-11 Completare la tabella di verità per il decoder BCD-7 segmenti in modo che esso possa realizzare tutte le sedici cifre del codice hex, tenendo presente che le cifre A,B,C,D,E,F sono visualizzabili nel modo seguente:

P-12 Disegnare la rete logica per un convertitore di codice binario-Gray a 4 bit. [ ];;;; 10021132233 BBGBBGBBGBG ⊕=⊕=⊕== .

P-13 Al blocco logico di figura P.3° vengono applicati i segnali digitali A, B, C di figura P.3b e come risposta si ottiene il segnale Y disegnato nella stessa figura. Disponendo di un multiplexer a 4 ingressi, 1 uscita e 1 ingresso di

abilitazione E , disegnare un circuito che effettui l’operazione indicata, dopo aver scritto l’espressione booleana di Y.

Fig. P.3 a) b)

[ ;CBACBACBACBAY +++= figura P.4]

VCC

A2 A1 A0

X1

X2

A3

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

2E 1EE3

74138

C

B

A

Y

A

B

C

Y

Page 263: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Esercizi proposti

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

262

Fig. P.4

P-14 Stabilire quale funzione logica è realizzata dal circuito di figura P.5, che impiega due MUX a 8 ingressi. [full-adder]

Fig. P.5

P-15 Con un MUX a 4 ingressi realizzare la funzione ACBf +=

[figura P.6]

Fig. P.6

X0 X1 X2 X3E

C

B

A

Y

CB A

VCC

X0 X1 X2 X3 X4 X5 X6 X7 X0 X1 X2 X3 X4 X5 X6 X7

Y2Y1

E E

1kW C

B

A

VCC

X0 X1 X2 X3

E

Y

Page 264: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Laboratorio

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

263

LABORATORIO

ESPERIENZA 1 Sommatore completo

Obiettivi Verifica del funzionamento di un sommatore completo. Analisi delle corrispondenze tra livelli logici e tensioni elettriche.

Dimensionamento di un semplice circuito di interfaccia tra componenti digitali e analogici.

Materiali resistori: da determinare come esercizio di dimensionamento di una rete di interfacciamento e strumentazione transistor: 2 x 2N2222

diodi: 2 x LED rossi integrati: 74LS08 (AND a due ingressi)

74LS32 (OR a due ingressi) 74LS86 (EXOR a due ingressi)

alimentazione: 5V costanti multimetri per la misura di tensioni e correnti continue

Fig.L.1

Procedimento

a Osservando la figura L.1 dimensionare la rete di polarizzazione dei due BJT sapendo che per la sua accensione un LED richiede una corrente di circa 10 mA e che la corrente di base deve avere un valore tale da assicurare la saturazione dei transistor (hFEmin = 75 per il 2N2222).

b Montare il circuito di figura L.1 in modo da rendere facilmente accessibili le uscite delle porte logiche per le misure di tensione a livello alto e basso.

c Applicare tensioni di 5V e 0V agli ingressi A e B (addendi) e C0 (riporto) realizzando le diverse combinazioni possibili e verificare il corretto funzionamento del sommatore secondo il seguente schema:

presenza del riporto D1 on presenza della somma D2 on

74LS3274LS08

1/4

74LS08

74LS86 1/4

74LS86

RB

RB

RC

RC

D1

D2

T1

T2

A

B

C0

5V

5V

1/4

1/4

1/4

Page 265: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Laboratorio

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

264

d Per ogni configurazione degli ingressi rilevare le tensioni in uscita alle porte logiche così da verificare punto per punto la presenza dei corretti livelli logici, alti e bassi, in ogni parte del circuito per ogni situazione imposta agli ingressi.

Note L'esecuzione ha confermato tutte le previsioni. Si sono scelti dei resistori da 1,8kW per il collegamento alla base dei BJT e da 150W per il collettore, che hanno determinato nei LED correnti di 22mA. Per le porte finali che pilotano i BJT sono state rilevate tensioni a livello alto di circa 3,5V mentre per le altre porte le medesime tensioni si aggiravano sui 4,5V.

ESPERIENZA 2 Decoder da 2 a 4 linee

Fig.L.2

Obiettivi Realizzazione di un decodificatore utilizzando porte logiche elementari.

Acquisizione di una buona familiarità con la piedinatura degli integrati allo scopo di conferire razionalità e chiarezza al montaggio del circuito.

5V

150W

2N22221,8kW

5V

(1)

(2) (3)

(4)

(5) (6)

(12)

(13) (11)

(9)

(10) (8)

(11)

(10)

(13)

(12)

A1

A0

Page 266: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Laboratorio

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

265

Materiali resistori: 150W; 1,8kW e strumentazione diodi: LED rosso

transistor: 2N2222 integrati: 74LS04 (NOT); 74LS08 (AND) alimentazione: 5V costante multimetri per la misura di tensioni e correnti continue

Procedimento a Montare il circuito di figura L.2 rispettando le indicazioni sulla piedi-natura. Cercare di conferire

la massima razionalità ai collegamenti in modo da poter accedere con facilità ai punti più significativi del circuito.

b Montare separatamente il circuito di rilevazione, composto dal BJT con la sua rete di resistori e dal LED, in modo da poterlo collegare alle varie uscite del decoder per verificarne il funzionamento.

c Posizionare gli ingressi successivamente nelle quattro configurazioni possibili e verificare, tramite l'accensione del LED, l'attivazione del canale corrispondente ad ogni combinazione dei bit d'ingresso.

d Testare con il multimetro le uscite delle diverse porte per avere un quadro dei livelli logici presenti nei vari punti del circuito. Confrontare le tensioni alte e basse rilevate sulle uscite delle porte.

Note La prova non presenta difficoltà, anche se i numerosi collegamenti richiedono la massima concentrazione e una certa diligenza allo scopo di evitare intrecci confusi tra i cavetti. Per quanto concerne le tensioni e le correnti si sono ritrovati i valori già misurati nell'esperienza precedente.

ESPERIENZA 3 Decoder 74LS138 ed espansione a 16 bit

Obiettivi Conoscenza della piedinatura dell'integrato 74138 e della funzione di ciascun pin.

Verifica della funzione degli ingressi di abilitazione sia nell'attivazione del singolo chip sia nell'espansione del decoder da 8 a 16 bit mediante l'impiego di due integrati.

Verifica della possibilità di pilotaggio diretto di un LED senza circuito di interfaccia.

Materiali resistori: 470W e strumentazione diodi: LED rosso

integrati: 2 x 74LS138 (DECODER) alimentazione: 5V costante multimetro digitale

Procedimento

a Assemblare il circuito di figura L.3 lasciando momentaneamente scollegato dai chip l'ingresso A3 e prevedendo il suo collegamento dopo aver verificato il funzionamento di un singolo integrato.

Montare separatamente il circuito di rilevazione composto dal LED e dal resistore in modo che possa facilmente essere collegato alle varie uscite del decoder.

b Predisporre l'alimentazione di 5V verificandone la precisione con il multimetro.

c Far assumere agli ingressi A0, Al A2 le diverse combinazioni dopo aver attivato gli ingressi di abilitazione collegando i pin 4 e 5 a 0V e il pin 6 a 5V. Mediante il collegamento del catodo del LED alle varie uscite, verificare la loro attivazione in corrispondenza delle diverse combinazioni

Page 267: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Laboratorio

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

266

degli ingressi.

d Variare successivamente la tensione ai pin di abilitazione (4, 5 e 6) e verificare che la non corretta eccitazione di questi piedini interdice il funzionamento del decoder.

e Collegare l'ingresso dati A3 ai due chip nel modo indicato in figura L.3 e far assumere alle quattro variabili d'ingresso tutte le configurazioni possibili. Verificare la capacità di A3 nel selezionare i due chip e quindi la corrispondenza delle 16 uscite con le 16 possibili combinazioni d'ingresso. L'accensione del LED segnalerà l'attivazione a livello basso delle diverse uscite.

Fig.L.3

Note Nella prova da noi eseguita il LED è stato attivato con una corrente di 6,5mA (verificati). Una corrente troppo elevata, sul tipo di quella ottenuta nelle due prove precedenti, avrebbe superato i limiti imposti dal costruttore per le correnti assorbite dall'uscita di un componente TTL e avrebbe probabilmente compromesso il corretto funzionamento del decoder. Si è allora preferito lavorare con una corrente piuttosto bassa, anche se con ciò si è ottenuta una luminosità ridotta del LED. Si invita il lettore a dimensionare un circuito opportuno di interfaccia per poter pilotare il LED con correnti dell'ordine di 20 mA. Si ricordi che le uscite del decoder sono attive a livello basso e che quindi non sono utilizzabili i circuiti adoperati nelle prove precedenti.

ESPERIENZA 4 Realizzazione di funzioni logiche con multiplexer: full adder

Obiettivi Verifica del funzionamento del MUX a 8 ingressi 74LS151. Realizzazione e verifica di un generatore di funzioni.

A2 A1 A0

Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8

2E 1E E3

5V

A2 A1 A0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

2E 1EE3

5V

470W

A2

A1

A0

A3

GND GND VCC VCC

7 9 10 11 12 13 14 15 7 9 10 11 12 13 14 15

8 816 16

123 123 4 5 6 456

Page 268: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Laboratorio

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

267

Materiali resistori: 2 x 150W; 1kW; 2 x 1,8kW e strumentazione diodi: 2 LED rossi

transistor: 2 x 2N2222 integrati: 2 x 74LS151 (MUX a 8 ingressi) alimentazione: 5V costante

Procedimento

a Montare il circuito di figura L.4 collegando i circuiti di rilevazione alle uscite vere dei MUX.

b Attribuire ai tre ingressi di selezione la funzione di addendi e di riporto secondo le indicazioni contenute nella figura citata.

c Attribuendo ad A, B e C0 i valori 1 e 0 tali da simulare le varie situazioni in cui ci si può trovare quando si esegue la somma di numeri binari, verificare che il 1° chip esegue la somma dei bit d'ingresso e che all'uscita del 2° è presente l'eventuale riporto. Il funzionamento di questo sistema deve ricalcare quello sperimentato nell'esperienza 1.

Fig. L4

Note Dopo aver eseguito la prova, l'unica raccomandazione che ci sembra di dover dare è ancora una volta quella relativa alla diligenza nel montare il circuito. Il gran numero di collegamenti può creare delle difficoltà nell'individuare i punti importanti dello schema e quindi nel trovare le cause di eventuali disfunzioni. Per il resto l'esperienza ha confermato tutte le previsioni.

C0 B A

5V

4 3 2 1 15 14 13 12

Σ C

1kW

5V 5V

5V

150W

2N22221,8kW

5V

150W

2N22221,8kW

4 3 2 1 15 14 13 12

9 10

11

9

10

11

5 6 5 6

Σ C

16

8

7

8

7

16

Page 269: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Laboratorio

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

268

ESPERIENZA 5 Costruzione di un demultiplexer con le uscite attive a livello basso

Obiettivi Fissare le nozioni relative ai principi di funzionamento di un DEMUX.

Verificare la possibilità di trasmettere un segnale digitale su un canale scelto in base ad un codice binario.

Utilizzare porte NAND a tre ingressi.

Materiali resistori: 470W e strumentazione diodi: LED rosso integrati: 2 x 74LS10 (NAND a tre ingressi) 74LSO4 (NOT) alimentazione: 5 V costante multimetro generatore di segnali TTL compatibili oscilloscopio a doppia traccia (eventualmente a memoria con stampante)

Procedimento

a Montare il circuito di figura L.5 rispettando le indicazioni sulla piedinatura fornite nella stessa figura. Predisporre dei punti di collegamento per le uscite in modo da poter rilevare il segnale con il LED o in alternativa con l'oscilloscopio.

b Applicare all'ingresso dati X un segnale ad onda quadra che varia da 0 a 5V di frequenza f = 2Hz. Nella maggior parte dei generatori di segnali è disponibile un'uscita TTL compatibile dalla quale è prelevabile un segnale del tipo descritto, per il quale è sufficiente regolare solo la frequenza.

X

B A

Y3

Y2

Y1

Y0

0

5V 74LS10

74LS10

(1) (2)

(13)

(3) (4) (5)

(9) (10)(11)

(2) (1)

(13)

(12)

(12)

(6)

(8)

04LS7461

Fig.L.5

Page 270: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Laboratorio

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

269

c Far assumere agli ingressi di selezione le 4 configurazioni possibili e verificare che ogni combinazione dei bit d'ingresso attiva il corrispondente canale d'uscita.

Note La prova, eseguita secondo le indicazioni ed utilizzando un oscilloscopio a memoria con stampante termica, ha fornito i risultati visibili in figura L.6 con il segnale d'uscita in controfase rispetto a quello d'ingresso a causa delle uscite attive a livello basso.

Fig.L.6

Signal parameter

CH1 – volts/div: 2V CH2 – volts/div: 2V timebase – sec/div: 2ms

Page 271: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Quadro riassuntivo

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

270

QUADRO RIASSUNTIVO

Strutture fondamentali per la realizzazione delle funzioni combinatorie più comuni

funzione circuito

Semisommatore

Sommatore completo

Generatore simultaneo di riporto (look-ahead carry)

C0 P1 G1 P2 G2

C2C1

A

B

C0

C

Ê

C’

C’’ Ê’

A

C

Page 272: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Quadro riassuntivo

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

271

funzione Circuito

Decodificatore

Codificatore

Multiplexer

X1

S

Y

X0

X0

X2

X3

X1

A1

A0

A1

A0

Y3

Y2

Y1

Y0

Page 273: Alessandro Bertelli – Mariano Zanchi

Circuiti combinatori e operatori aritmetici – Quadro riassuntivo

Dipartimento di elettronica I.T.S. “L. Einaudi” - Montebelluna

272

funzione Circuito

demultiplexer

Y1

X

S

Y0