28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

15
28 ottobre 201 0 Acustica degli Ambienti Chiusi 1 Acustica degli ambienti Acustica degli ambienti chiusi chiusi

Transcript of 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

Page 1: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 1

Acustica degli ambienti chiusiAcustica degli ambienti chiusi

Page 2: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 2

Ambiente chiuso: generalitàAmbiente chiuso: generalità

Un suono generato all’interno di un ambiente chiuso produce un campo acustico che è il risultato della sovrapposizione delle onde dirette e delle onde riflesse.

Le onde dirette provengono dalla sorgente e raggiungono direttamente l'ascoltatore, come se fosse in campo libero;

le onde riflesse sono invece prodotte da tutte le riflessioni sulle pareti che delimitano l'ambiente.

La porzione di energia riflessa dalle superfici di confine dipende dal loro comportamento acustico, in generale descritto dai coefficienti di assorbimento, riflessione e trasmissione (a,r e t).

ricevente

sorgente

Page 3: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 3

Meccanismi di propagazione del suono nelle sale

s o r g e n t e p u n t i f o r m e

s o r g e n t e p u n t i f o r m e

r i c e v i t o r e

s u o n o d i r e t t o

s u o n i r i f l e s s i

Suono

Diretto

Suono Riflesso

Page 4: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 4

Ambiente chiuso: coefficienti r,a,t (1)

Coefficienti di riflessione, assorbimento e trasmissione

L’equazione del bilancio energetico per un’onda che incide su una parete vale:

• Wo = Wr + Wa + Wt

dove Wo è la potenza sonora incidente, Wr è la potenza riflessa,

Wa è la potenza assorbita trasformandosi in calore e Wt è la

potenza sonora che attraversa la parete.

Page 5: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 5

Ambiente chiuso: coefficienti r,a,t (2)Ambiente chiuso: coefficienti r,a,t (2)Dividendo per Wo si ottiene: 1 = r + a + t

dove r = Wr/ Wo , a = Wa/ Wo e t = Wt/ Wo sono rispettivamente i

coefficienti di riflessione, assorbimento e trasmissione della parete nei confronti dell’energia sonora incidente.

Il valore dei coefficienti r, a, t varia tra 0 e 1: 0 r,a,t 1

e dipende dal materiale della parete oltre che dalla frequenza e dall’angolo di incidenza dell’onda della pressione sonora.

 Si può definire il coefficiente di assorbimento acustico apparente come:

• = 1 – r

L’aggettivo apparente sta ad indicare che l’energia sonora entrata nella parete, pur essendo solo in parte realmente assorbita, non ritorna nell’ambiente di origine.

Page 6: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 6

Campo Libero, Riverberante & Campo Libero, Riverberante & Semiriverberante:Semiriverberante:

All’interno di un ambiente chiuso il campo acustico può essere di tre differenti tipi :

• campo libero

• campo riverberante

• campo semiriverberante

Page 7: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 7

Campo libero:Campo libero:

Un campo si dice libero quando ci troviamo in prossimità della sorgente, dove prevale il contributo dell’energia diretta, rispetto alla quale il contributo di tutte le riflessioni risulta trascurabile.

In queste ipotesi, il campo è lo steso che si avrebbe all’aperto, e dipende solo dalla distanza dalla sorgente e dalla sua direttività Q.

Il livello di pressione sonora vale:

In cui LW è il livello di potenza sonora della sorgente, Q la sua direttività, e d la distanza fra sorgente e ricevitore. In campo libero, il livello sonoro decresce di 6 dB per ogni raddoppio della distanza d.

2wp d4

Qlog10LL

Page 8: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 8

Campo riverberante:Campo riverberante:

Un campo si dice riverberante se il numero delle riflessioni prodotte dalle pareti laterali è tanto elevato da formare un campo acustico uniforme in tutto l’ambiente (anche in prossimità della sorgente).

Si definisce l’area equivalente di assorbimento acustico A (m2) come:

• A = S = (m2)

dove è il coeff. di assorbimento medio e S è la superficie totale interna (pavimento, pareti, soffitto, etc.).

Il livello di pressione sonora vale:

Il campo riverberante è ottenibile nelle cosiddette camere riverberanti, dove vengono misurati anche i coefficienti di assorb. dei vari materiali.

ALL wp

4log10

i ii S

Page 9: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 9

Campo semiriverberante (1):Campo semiriverberante (1):

Un campo si dice semiriverberante quando al suo interno esistano contemporaneamente zone di campo libero (in prossimità della sorgente, dove prevale il contributo dell’energia diretta) e zone di campo riverberante (in prossimità delle pareti, dove prevale il campo riflesso). In ambienti di normali dimensioni, si può ipotizzare che il campo acustico sia semiriverberante.

Il livello di pressione sonora vale:

In presenza di campo acustico semiriverberante, la densità di energia sonora in un punto dell’ambiente è pertanto data dalla somma del campo acustico diretto e di quello riflesso.

A

4

d4

Qlog10LL

2wp

Page 10: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 10

Campo semiriverberante (2):Campo semiriverberante (2):

Riduzione del livello sonoro nell’ambiente attraverso un trattamento acustico delle pareti:

• vicino alla sorgente, l’attenuazione sarà molto piccola anche aumentando notevolmente il valore di R;

• lontano dalla sorgente, (campo acustico prevalentemente riverberante) la riduzione di livello sonoro potrà essere significativa.

• la retta (A = ) rappresenta il caso limite di campo libero (6 dB per raddoppio della distanza d)

• la linea tratteggiata ed ombreggiata delimita una zona alla destra della quale il campo acustico è praticamente riverberante.

Page 11: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 11

Livello sonoro in funzione della distanza dalla sorgente

Distanza critica, alla quale il suono

diretto e riflesso sono uguali

Distanza Critica

Page 12: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 12

Distanza Critica

ii2Wp S

4

d4

Qlg10LdL

Suono diretto

Suono riflesso

16

SQd

S

4

d4

Qcr2

Page 13: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 13

Tempo di riverbero (1):Tempo di riverbero (1):

Si consideri un ambiente contenente una sorgente sonora attiva, si interrompa improvvisamente l’emissione di energia sonora. Si definisce tempo di riverberazione TR (s) di un ambiente, il tempo necessario affinché la densità di energia sonora diminuisca di un milionesimo (60 dB) rispetto al valore che aveva prima dello spegnimento della sorgente.

Page 14: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 14

Tempo di riverbero (2):Tempo di riverbero (2):

Se l’ambiente è perfettamente riverberante allora il valore del tempo di riverberazione è lo stesso in tutti i punti e vale:

• (s)

dove V è il volume dell’ambiente. Tale relazione è nota come “formula di Sabine”.

Attraverso la misura del tempo di riverberazione, risulta possibile determinare:

• A= S area equivalente di assorbimento acustico

iii S

VTR

)(16.0

Page 15: 28 ottobre 2010Acustica degli Ambienti Chiusi1 Acustica degli ambienti chiusi.

28 ottobre 2010 Acustica degli Ambienti Chiusi 15

La formula di Sabine

60ii60 T

V16.0A

S

V16.0T

6060cr T

V

100

Q

T

V16.0

16

Qd

Sostituendo nella formula della distanza critica: