RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano...

23
RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano [email protected]

Transcript of RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano...

Page 1: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

RETI NON LOCALIParte Terza

RETI SATELLITARI

Gianfranco Prini

DSI - Università di Milano

[email protected]

Page 2: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

NOTA DI COPYRIGHT

• Queste trasparenze (slide) sono protette dalle leggi sul copyright e dalle disposizioni dei trattati internazionali. Il titolo e il copyright delle slide (ivi inclusi, ma non limitatamente, ogni immagine, fotografia, animazione, video, audio, musica, testo, tabella, disegno) sono di proprietà dell'autore.

• Le slide possono essere riprodotte e utilizzate liberamente dagli istituti di ricerca, scolastici e universitari italiani afferenti al Ministero della Pubblica Istruzione e al Ministero dell'Università e della Ricerca Scientifica e Tecnologica per scopi istituzionali e comunque non a fini di lucro. In tal caso non è richiesta alcuna autorizzazione.

• Ogni altro utilizzo o riproduzione, completa o parziale (ivi incluse, ma non limitatamente, le riproduzioni su supporti magnetici, su reti di calcolatori e a stampa), sono vietati se non preventivamente autorizzati per iscritto dall'autore.

• L'informazione contenuta in queste slide è ritenuta essere accurata alla data riportata nel frontespizio. Essa è fornita per scopi meramente didattici e non per essere utilizzata in progetti di impianti, prodotti, reti, etc. In ogni caso essa è soggetta a cambiamenti senza preavviso. L'autore non assume alcuna responsabilità per il contenuto delle slide (ivi incluse, ma non limitatamente, la correttezza, la completezza, l'applicabilità, l'adeguatezza per uno scopo specifico e l'aggiornamento dell'informazione).

• In nessun caso possono essere rilasciate dichiarazioni di conformità all'informazione contenuta in queste slide.

• In ogni caso questa nota di copyright non deve mai essere rimossa e deve essere riportata fedelmente e integralmente anche per utilizzi parziali.

Page 3: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

ARGOMENTI

• Telecom satellitari

• Costo della banda

• Sistemi di indirizzamento

• Satelliti e sviluppo

Page 4: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

TIPI DI ORBITE

• Geostazionarie (GEO)– apogeo = perigeo = 35.786 km, periodo = 23h 56m

– inclinazione 0 gradi, effetto Doppler trascurabile o nullo

• Geosincrone– apogeo = perigeo = 35.786 km, periodo = 23 h 56 m

– inclinazione 0-90 gradi, effetto Doppler contenuto

• Molniya– apogeo = 39.400 km, perigeo = 1.000 km, periodo 11h 58m

– inclinazione 62.9 gradi, effetto Doppler elevato

• Bassa quota (LEO)– apogeo < 1.400 km, perigeo > 500 km, periodo 1.5-2 h

– inclinazione 0-90 gradi, effetto Doppler elevatissimo

Page 5: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

ORBITE GEOSTAZIONARIE: RITARDI DI PROPAGAZIONE

Ritardi di propagazione:– min = 0.12 sec

– max = 0.14 sec

dmin= 35.786 kmr = 6.378 km

dmax= 41.679 km

Page 6: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

ORBITE GEOSTAZIONARIE: ROUND-TRIP DELAY (Caso 1)

A

B

S

One-way path: ASB

Round-trip path: ASBSA

One-way delay = 0.28 sec Round-trip delay = 0.56 sec

Page 7: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

ORBITE GEOSTAZIONARIE: ROUND-TRIP DELAY (Caso 2a)

AB

S1 S2

One-way path: AS1MS2B

M

Round-trip path: AS1MS2BS2MS1A

One-way delay = 0.51 sec Round-trip delay = 1.02 sec

verso S3

Page 8: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

ORBITE GEOSTAZIONARIE: ROUND-TRIP DELAY (Caso 2b)

A B

S1 S2

One-way path: AS1S2B

Round-trip path: AS1S2BS2S1A

One-way delay = 0.49 sec Round-trip delay = 0.98 sec

verso S3

Page 9: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

COSTELLAZIONI DI SATELLITI LEO: ROUND-TRIP DELAY

A B

One-way delay = 0.08 sec Round-trip delay = 0.15 sec

Page 10: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

COSTELLAZIONI DI SATELLITI: ALCUNI PROGETTI IN CORSO

Narrowband

• Globalstar (Loral & Qualcomm - 1999): $2.6 B– 48 satelliti + 4 (8?) di scorta su 8 piani orbitali (1.414 km)

• Iridium (Motorola e consorziati - 1998): $4.4 B– 66 satelliti + 6 di scorta su 6 piani orbitali (780 km)

Broadband

• SkyBridge (Alcatel & Loral - 2001-2): $4.2 B– 80 satelliti + ?? di scorta su ?? piani orbitali (1.469 km)

• Teledesic (W. Gates, C. McCaw - 2002-3): $9 B– 840 satelliti + 84 di scorta su 21 piani orbitali (700 km)

– 288 satelliti + ?? di scorta su 12 piani orbitali (1.375 km)

Page 11: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

COSTELLAZIONI DI SATELLITI LEO: ASPETTI ECONOMICI

• Globalstar– servizio fonia/dati al minuto (2.4/9.6 kbps): $1.25-1.5 (*n)

– download di un giornale (1 MB, 0.9 h): $260-320

• Iridium– servizio fonia al minuto (2.4 kbps): $2-5.5

– download di un giornale (1 MB, 3.5 h): $420-1150

• Teledesic– servizio fonia/dati al minuto (16/64 kbps/Mbps): $0.04 (*n)

– download di un giornale (1 MB, 4 s): $0.32 (32 cent)

Kenia e Tanzania– servizio fonia al minuto: $8.95 + 25% tasse

Page 12: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

TELEDESIC VERSIONE 1: MATERIALE IN ORBITA

• Numero di chip (GaAs, 20-30 GHz): 500.000

• Numero di antenne (phased-array): 180.000

• Numero di batterie di alimentazione: 12.000

• Superficie totale delle celle solari: 1.3 kmq

• Potenza totale erogata (efficienza 4%): 10 MW

• Potenza di calcolo totale: 282.000 MIPS

• Dimensioni totali memoria RAM: 1 TB

Page 13: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

TELEDESIC VERSIONE 1: PRESTAZIONI PREVISTE

• Bit-rate (standard): da 16 kbps a 2 Mbps (E1)– Versione 2: fino a 2 Mbps uplink, fino a 64 Mbps downlink

– SkyBridge: fino a 2 Mbps uplink, fino a 20 Mbps downlink

• Bit-rate (special): fino a 1.24 Gbps (OC-24)– Versione 2: nessuna informazione disponibile

• Bit-rate (intersatellite link): 155 Mbps (OC-3)

• Error rate: minore di 1.0e-9 a 155 Mbps

• Disponibilita' servizio: superiore a 99.9%

• Utenti simultanei (1:100 d, 16 kbps): 2 milioni

• Copertura: 95% superficie, 100% popolazione

Page 14: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

COMUNICAZIONI TERRESTRI E SATELLITARI: CONFRONTI

• Trasmissioni terrestri– Distanze da coprire: 0-30.000 km

– Round-trip delay: 0-0.3 sec

• Trasmissioni satellitari (LEO)– Distanze da coprire: 2.800-25.500 km

– Round-trip delay: 0.02-0.17 sec

• Trasmissioni satellitari (GEO)– Distanze da coprire: 71.500-157.500 km

– Round-trip delay: 0.48-1.05 sec

• OK per client-server, meno per NCing

Page 15: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

APPLICAZIONE TIPO CON NC: TEMPI DI ESECUZIONE

• Ipotesi sulla applicazione tipica del futuro– Numero di chiamate di funzione per applicazione: 10.000

– Percentuale di chiamate di funzione remote: 10%

– Numero di chiamate di funzione per secondo: 100.000

– Contributo delle chiamate in funzione della distanza

» 90.0% entro i 100 km - round-trip delay = 3 sec

» 9.0% entro i 1000 km - round-trip delay = 3 sec

» 0.9% entro i 10000 km - round-trip delay = 3 sec

» 0.1% oltre i 10000 km - round-trip delay = 3 sec

– Contrazione dei tempi per caching/interleaving: 70%

• Tempo di esecuzione asintotico per ciascuna applicazione tipo: 1.5 sec

Page 16: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

COSTO DEGLI IMPIANTI FISSI (STIME A VALORI CORRENTI)

• Ultimo miglio: Lire 1.000.000 una tantum– Ex-progetto Socrate: Lire 1013 per cablare 107 famiglie

• Switching locale: Lire 4-500.000 a 10 Mbps– Recente impianto no. 1: Lire 5108 per 103 punti

– Recente impianto no. 2: Lire 1.3109 per 3.3103 punti

• Long distance: Lire 1-4.000 Mbit/seckm– SeaMeWe-3: $1.37 mld per 20.000 km a 40 Gbit/sec

– Altri progetti: costi comparabili per km a 160 Gbit/sec

Page 17: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

COSTO DELLA BANDA (STIME A VALORI CORRENTI)

• Interconnessione locale: Lire 1.000 al giorno– Lire 1.5 milioni totali ammortizzati su 5 anni (1825 giorni)

• Telecomunicazioni fisse: Lire 1.000 al giorno– Assunzione: prodotto bandadistanza rimane costante

– Lire 400.000 per banda entro i 100 km, Lire 1.6 milioni tot

– Lire 1.6 milioni totali ammortizzati su 5 anni (1825 giorni)

• Telecomunicazioni satellitari: Lire 5.000 al giorno (inclusive di interconnessione)

– Lire 16.200 mld ammortizzati su 5 anni (1825 giorni)

– Ripartiti su 2 milioni di utenti simultanei supportati

Page 18: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

TARIFFAZIONE DELLA BANDA (STIME A VALORI CORRENTI)

• Telefonia urbana: Lire 35.000 al giorno– Lire 35 al minuto per 10 ore, Lire 17 al minuto per 14 ore

• Telefonia interurbana: Lire 330.000 al giorno– Lire 340 al minuto per 10 ore, Lire 150 al min. per 14 ore

• Radiomobile urbano: Lire 405.000 al giorno– Lire 280 al minuto per 24 ore (Telecom Italia, City)

• Tratte intercontinentali: Lire 145.000 al giorno– Lire 100 al minuto al netto dell'interconnessione (Omnitel)

– Lire 395 al minuto (Ita-US) meno Lire 295 al minuto (City)

• Telefonia satellitare: Lire 105.000 al giorno– Lire 72 al minuto per 24 ore (Teledesic, dal 2002)

Page 19: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

ERRORI DEL PASSATO E MANCANZA DI PROSPETTIVA

• Costruzione di Michelangelo e Raffaello

• Costruzione del Quinto Centro Siderurgico

• Scarico di sostanze inquinanti nelle acque

• Rappresentazione dell'anno a due cifre (Y2K)

• Implementazione di Unix a 7 bit per carattere

• Migrazione di Unix verso 8 bit per carattere

• Definizione di Unicode a 16 bit per carattere

• Rappresentazione indirizzi IPv4 a 32 bit

• Rappresentazione indirizzi Ethernet a 48 bit

Problema: bastano 128 bit per gli indirizzi IPv6?

Page 20: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

"COSI" CHE SI TOCCANO E"COSI" CHE NON SI TOCCANO

• "Cosi" che si toccano– Sistemi utente (desktop, laptop, handheld, wearable, etc.)

– Sistemi condivisi (storage server, database server, code server, compute server, object server, cache server, etc.)

– Sistemi di interconnessione (layer-n switch, router, etc.)

– Le singole parti di quanto sopra (processori, memorie, porte, interfacce, periferiche, moduli ambientali, etc.)

• "Cosi" che non si toccano– Documenti in un sistema di archiviazione (file system)

– Processi, thread e altri oggetti e/o dati attivi in un sistema multiprogrammato (eventualmente multiprocessore)

– Oggetti e/o altri dati passivi creati "dentro" un sistema di programmazione con allocazione dinamica della memoria

Page 21: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

QUANTI SONO I "COSI"

• Quelli che si toccano già oggi sono centinaia di milioni, e nell'arco di pochi anni potranno diventare decine/centinaia/migliaia di miliardi

– 700 milioni di linee telefoniche oggi installate nel mondo

– metà dell'umanità si appresta a "subire" la sua prima fase di telefonizzazione con tecnologia cellulare digitale

– miliardi di carte si apprestano a diventare intelligenti

– miliardi di esseri umani e di altri animali si apprestano a essere "anellizzati" (cfr. JavaRing, JavaCard e simili)

• Quelli che non si toccano variano da alcune migliaia ad alcuni miliardi per ciascuno dei "cosi" che si toccano (e creazione dinamica)

– Già un'agenda elettronica contiene migliaia di oggetti

Page 22: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

INDIRIZZAMENTO DEI "COSI": LIMITI DEL MODELLO DI OGGI

• FIFOMON (Filename-in-folder-on-machine-on-network) è un modello che mostra la corda

– Associazione tra contenuto e una sequenza di ben 4 nomi

– Difficile da memorizzare e da ricordare nel lungo periodo

– Creazione di dangling pointer (page not found on system)

• Meglio un indirizzo monolitico e univoco per ogni oggetto e un name server che risolva i nomi, assegnati dall'utente a suo piacimento

– Oggetti che vivono fintantoché sono referenziati

– Vita degli indirizzi identica a quella degli oggetti

– Indirizzi generati al ritmo di generazione degli oggetti

• Necessario spazio di indirizzi inesauribile?

Page 23: RETI NON LOCALI Parte Terza RETI SATELLITARI Gianfranco Prini DSI - Università di Milano gfp@dsi.unimi.it.

ARCHITETTURA DEGLI INDIRIZZI: IL CASO IPv6

• IPv6 usa 128 bit per indirizzo (32 bit in IPv4)– Totale indirizzi possibili: 3.41038 (2.71024 addr/m2 t.e.)

• Efficienza di assegnazione: circa 73% dei bit– Totale indirizzi assegnabili: 1.51028 (1.11014 addr/m2 t.e.)

• Numero dei "cosi" hard pro capite (stima): 104

– Totale indirizzi assegnabili per "coso" hard: 2.51014

• Numero dei "cosi" soft generabili per sec: 105

– Autonomia generativa per "coso" hard: 2.5109 sec, pari a 2.9104 giorni, pari a poco meno di 80 anni

• Adottando l'architettura degli indirizzi di IPv6 per il NCing avremo un nuovo anno 2000 in assenza di "IPv6 address garbage collection"