Recuperi termici nell'industria

22
I recuperi termici nell’industria Dario Di Santo, FIRE Milano, 15 luglio 2015

Transcript of Recuperi termici nell'industria

Page 1: Recuperi termici nell'industria

I recuperi termici nell’industria

Dario Di Santo, FIRE

Milano, 15 luglio 2015

Page 2: Recuperi termici nell'industria

2

www.fire-italia.org

La Federazione Italiana per l’uso Razionale dell’Energia è un’associazione tecnico-scientifica che dal 1987 promuove per statuto efficienza energetica e rinnovabil i , supportando chi opera nel settore.

Oltre alle attività rivolte ai circa 450 soci, la FIRE opera su incarico del Ministero dello Sviluppo Economico per gestire l’elenco e promuovere il ruolo degli Energy Manager nominati ai sensi della Legge 10/91.

La Federazione collabora con le Istituzioni, la Pubblica Amministrazione e varie Associazioni per diffondere l’uso efficiente dell’energia ed opera a rete con gli operatori di settore e gli utenti finali per individuare e rimuovere le barriere di mercato e per promuovere buone pratiche.

La FIRE certifica gli EGE attraverso il SECEM.

Cos’è la FIRE?

Page 3: Recuperi termici nell'industria

3

445 associati, di cui 228 persone fisiche e 217 organizzazioni.

La compagine sociale

Alcuni dei soci FIRE: A2A calore e servizi S.r.l. - ABB S.p.a. - Acea S.p.a. - Albapower S.p.a. - Anigas - Atlas Copco S.p.a. - Avvenia S.r.l. - AXPO S.p.a. - Banca d’Italia - Banca Popolare di Sondrio - Bit Energia S.r.l. - Bosh Energy and Building Solution Italy S.r.l. - Bticino S.p.a. - Burgo Group S.p.a. - Cabot Italiana S.p.a. - Carraro S.p.a. - Centria S.p.a. - Certiquality S.r.l. - Cofely Italia S.p.a. - Comau S.p.a. - Comune di Aosta - CONI Servizi S.p.a. - CONSIP S.p.a. - Consul System S.p.a. - CPL Concordia Soc. Coop - Comitato Termotecnico Italiano - DNV S.r.l. - Egidio Galbani S.p.a. - ENEL Distribuzione S.p.a. - ENEL Energia S.p.a. - ENEA - ENI S.p.a. - Fenice S.p.a. - Ferriere Nord S.p.a. - Fiat Group Automobiles - Fiera Milano S.p.a. - FINCO - FIPER - GSE S.p.a. - Guerrato S.p.a. - Heinz Italia S.p.a. - Hera S.p.a. - IBM Italia S.p.a. - Intesa Sanpaolo S.p.a. - Iren Energia e Gas S.p.a. - Isab s.r.l. - Italgas S.p.a. - Johnson Controls Systems and Services Italy S.r.l. - Lidl Italia s.r.l. - Manutencoop Facility Management S.p.a. - Mediamarket S.p.a. - M&G Polimeri Italia - Omron Electronics S.p.a. - Pasta Zara S.p.a. - Pirelli Industrie Pneumatici S.p.a. - Politecnico di Torino - Provincia di Cremona - Publiacqua S.p.a. - Raffineria di Milazzo S.c.p.a. - RAI S.p.a. - Rete Ferroviaria Italiana S.p.a. - Rockwood Italia S.p.a. - Roma TPL S.c.a.r.l. - Roquette Italia S.p.a. - RSE S.p.a. - Sandoz Industrial Products S.p.a. - Schneider Electric S.p.a. - Siena Ambiente S.p.a. - Siram S.p.a. - STMicroelectronics S.p.a. - TIS Innovation Park - Trenitalia S.p.a. - Turboden S.p.a. - Università Campus Bio-Medico di Roma - Università Cattolica Sacro Cuore - Università degli studi di Genova - Varem S.p.A. - Wind Telecomunicazioni S.p.a. - Yousave S.p.a.

La compagine associativa comprende sia l’offerta di energia e servizi, sia la domanda.

Page 4: Recuperi termici nell'industria

4

Oltre a partecipare a progetti europei, di cui a fianco sono indicati i principali in atto, la FIRE realizza studi e analisi di mercato e di settore su temi di interesse energetico, campagne di informazione e di sensibilizzazione, attività formativa a richiesta.

Il Ministero dell’Ambiente, l’ENEA, il GSE, l’RSE, grandi organizzazioni (ad esempio Centria, ENEL, Ferrovie dello Stato, FIAT, Finmeccanica, Galbani, H3G, Schneider Electric, Telecom Ital ia, Unioncamere), università, associazioni, agenzie ed enti fieristici sono alcuni dei soggetti con cui sono state svolte delle collaborazioni.

Guide FIRE

Progetti e collaborazioni

www.fire-italia.org

Page 5: Recuperi termici nell'industria

5

www.secem.eu

SECEM

SECEM, Sistema Europeo per la Certificazione in Energy Management, è un organismo di certificazione del personale facente capo alla FIRE.

Primo organismo a offrire la certificazione di parte terza per gli Esperti in Gestione dell’Energia (EGE) secondo la norma UNI CEI 11339, ad aprile 2012 SECEM ha ottenuto da Accredia l’accreditamento secondo i requisiti della norma internazionale ISO/IEC 17024.

SECEM certif ica gli EGE in virtù di un regolamento rigoroso e imparziale, basato sull’esperienza di FIRE con gli energy manager. 

Un vantaggio di chi si certifica con SECEM è la possibilità di accedere ai servizi informativi e formativi e di essere coinvolto nelle iniziative della FIRE.

SECEM inoltre riconosce corsi di formazione sull’energy management, su richiesta dell’ente erogatore.

Page 6: Recuperi termici nell'industria

Consumi finali in Italia

6

!35,0%'

!30,0%'

!25,0%'

!20,0%'

!15,0%'

!10,0%'

!5,0%'

0,0%'

5,0%'

10,0%'

2005' 2006' 2007' 2008' 2009' 2010' 2011' 2012' 2013'

Variazione)consumi)finali)rispe1o)al)2005)

INDUSTRIA' TRASPORTI' CIVILE'

Fonte:'elaborazioni'FIRE'su'daK'MiSE'

La crisi ha colpito il settore industriale. Il settore trasporti ha subito anche l’effetto del caro petrolio nell’ultimo triennio.Il settore civile ha operato in tendenziale controtendenza.

Page 7: Recuperi termici nell'industria

Consumi finali nell’industria

70,000#

2,000#

4,000#

6,000#

8,000#

10,000#

12,000#

14,000#

16,000#

18,000#

2005# 2006# 2007# 2008# 2009# 2010# 2011# 2012# 2013#

Mtep%

%Consumi%industriali%per%fonte%energe3ca%

%

Gas#naturale#

Energia#ele9rica#

Petrolio#

Carbone#

Rinnovabili#

Fonte:#elaborazioni#FIRE#su#daF#MiSE#

41,061& 40,896&39,567&

37,412&

29,955&

32,146& 32,656&

30,190&

28,175&

25&

27&

29&

31&

33&

35&

37&

39&

41&

43&

2005& 2006& 2007& 2008& 2009& 2010& 2011& 2012& 2013&

Mtep&Consumi&finali&di&energia&in&fon?&primarie&nel&se@ore&industriale&

&

Fonte:'elaborazioni'FIRE'su'da4'MiSE'

L’industria vede un andamento simile dei consumi di gas naturale ed elettricità, mentre petrolio e rinnovabili evidenziano un calo sostenuto.

La domanda che sorge spontanea è: quanto di questa riduzione dei consumi è imputabile all’efficienza energetica?

Page 8: Recuperi termici nell'industria

Consumi finali nell’industria

8

!7#

!6#

!5#

!4#

!3#

!2#

!1#

0#

1#

2#

3#

4#

2000!2001#

2001!2002#

2002!2003#

2003!2004#

2004!2005#

2005!2006#

2006!2007#

2007!2008#

2008!2009#

2009!2010#

2010!2011#

2011!2012#

Mtep%

Variazioni%annuali%dei%consumi,%della%produzione%e%%dell'efficienza%energe7ca%per%l'industria%italiana%

Variazione#dei#consumi# A;vità#(valore#aggiunto)#

Efficienza#energeEca# Altro#(inefficienza#energeEca)#

Variazioni#struFurali#della#produzione#fra#seFori# Valore#dei#prodo;#(VA/produzione)#

Fonte:#elaborazioni#FIRE#su#daE#Odyssee!Mure#

!12$

!10$

!8$

!6$

!4$

!2$

0$

2$

4$

Mtep%

Variazioni%fra%il%2000%e%il%2012%dei%consumi,%della%produzione%e%%dell'efficienza%energe;ca%per%l'industria%italiana%

Variazione$dei$consumi$ A7vità$(valore$aggiunto)$

Variazioni$stru?urali$della$produzione$fra$se?ori$ Valore$dei$prodo7$(VA/produzione)$

Efficienza$energeEca$ Altro$(inefficienza$energeEca)$

Fonte:$elaborazioni$FIRE$su$daE$Odyssee!Mure$

L’efficienza energetica ha avuto un forte impatto sui consumi industriali, in particolare dal 2004 in poi.

Il 74% della riduzione dei consumi energetici, secondo le valutazioni Odyssee-Mure, sono dovuti all’efficienza energetica.

0,27-0,80 Mtep di saving annui calcolati fra il 2010 e il 2012 secondo Odyssee-Mure VS 1,7-2,0 Mtep legati ai TEE rilasciati per l’industria fra

2013 e 2014.

Page 9: Recuperi termici nell'industria

Consumi finali nell’industria

9

!"!!!! !1.000!! !2.000!! !3.000!! !4.000!! !5.000!! !6.000!! !7.000!! !8.000!!

Metallurgia!

Meccanica!

Chimica!

Materiali!da!costruzione!

Alimentare!e!tabacco!

Carta!e!stampa!

Vetro!e!ceramica!

Tessile!e!abbigliamento!

Altre!manifaEuriere!

Petrolchimico!

Minerali!non!metalliferi!

Industria!delle!costruzioni!

Industria!estraHva!

ktep%%

Consumi%finali%di%energia%nell'industria%Totale%consumi%finali:%30,2%Mtep%

Fonte:!FIRE!su!daN!MiSE!

23,6%&

13,3%&

12,5%&11,6%&

9,0%&

8,6%&

7,8%&

4,0%&3,2%&

2,9%& 2,5%&1%& 0,4%&

Consumi(finali(di(energia(nell'industria(Totale(consumi(finali:(30,2(Mtep(

Metallurgia&

Meccanica&

Chimica&

Materiali&da&costruzione&

Alimentare&e&tabacco&

Carta&e&stampa&

Vetro&e&ceramica&

Tessile&e&abbigliamento&

Altre&manifaFuriere&

Petrolchimico&

Minerali&non&metalliferi&

Industria&delle&costruzioni&

Industria&estraIva&

Fonte:&FIRE&su&daO&MiSE&

Page 10: Recuperi termici nell'industria

Elettricità e calore

10

0,0#

1,0#

2,0#

3,0#

4,0#

5,0#

6,0#

7,0#Chimica#

Industria#delle#costruzioni#

Materiali#da#costruzione#

Alimentare#e#tabacco#

Vetro#e#ceramica#

Meccanica#

Metallurgia#Industria#estraAva#

Minerali#non#metalliferi#

Altre#manifaDuriere#

Carta#e#stampa#

Petrolchimico#

Tessile#e#abbigliamento#

Rapporto'fra'impiego'di'energia'termica'ed'ele1rica'

Fonte:#FIRE#su#daL#MiSE#

Usi elettrici: 9,4 MtepUsi termici: 18,8 MtepFonte: elaborazioni FIRE su dati MiSE 2013.

0,0#

1,0#

2,0#

3,0#

4,0#

5,0#

6,0#

7,0#Siderurgia#

Estra6ve#

Metalli#non#ferrosi#

Meccanica#

Agroalimentare#

Tessile#e#abbigliamento#

Materiali#da#costruzione#Vetro#e#ceramica#

Chimica#

Petrolichimica#

Carta#e#grafica#

Altre#manifaHuriere#

Edilizia#e#costruzioni#

Rapporto'fra'impiego'di'energia'termica'e'calore'(BEN'2013)'

Fonte:#FIRE#su#daM#MiSE#

Page 11: Recuperi termici nell'industria

Considerazioni sul recupero termico

11

Tipologia effluente

Temperatura disponibile

Disponibilità fonte

Tecnologie

Criteri di investimento

Caratteristiche utilizzatori

Andamento richiesta termica

Localizzazione utilizzatori

Fo

ntiU

tilizzato

ri

Page 12: Recuperi termici nell'industria

Considerazioni sui recuperi termici

Fonte: progetto H-Reii.

12

wasted/dispersed+heat+

internal+heat+demand+

external+heat+demand+

produc4on+cycle+

hea4ng,+DHW,+cooling+

district+hea4ng+for+industries,+building,+ter4ary+or+agriculture+

Hea4ng:+direct+use+or+upgrading+via+heat+pumps,+mechanical+vapour+recompression,+etc.+

Cooling:+absorp4on,+desiccant,+etc.+

Hea4ng+–+DHW:+direct+use+or+upgrading+via+heat+pumps,+etc.++

Cooling:+absorp4on,+desiccant,+etc.+

Hea4ng+–+DHW:+direct+use+or+upgrading+via+heat+pumps,+etc.+

Cooling:+absorp4on,+desiccant,+etc.+

electricity+genera4on+

Small:+S4rling,+ORC+

Medium+F+large:+ORC,+Kalina+

Large:+Steam+cycles+

Heat+re

covery+

hierarchy +

uses+

techno

logies+

Internal+electricity+needs+or+export+to+the+grid+

Legend:+

DHW:+Domes4c+Hot+Water+

ORC:+Organic+Rankine+Cycle+

Page 13: Recuperi termici nell'industria

Considerazioni sui recuperi termici

Fonte: “Waste heat recovery: technology and opportunities in U.S. industry”, rapporto DOE, 2008

13

                         

                    

      

                              

    

   

                                  

                        

   

   

       

          

          

  

    

             

 

                

    

  

      

                 

      

      

    

                  

                             

    

       

        

  

      

                           

         

                    

   

                  

              

          

    

        

   

        

   

    

         

          

        

            

    

       

        

          

   

              

                    

      

  

Table 4 ­ Temperature Classification of Waste Heat Sources and Related Recovery Opportunity

Temp Range Example Sources Temp (°F) Temp (°C) Advantages Disadvantages/ Barriers

Typical Recovery Methods/ Technologies

Nickel refining furnace 2,500­3,000 1,370­1,650 High­quality energy, High temperature creates Combustion air preheat Steel electric arc furnace 2,500­3,000 1,370­1,650 available for a diverse increased thermal

Basic oxygen furnace 2,200 1,200 range of end­uses with varying temperature

stresses on heat exchange materials

Steam generation for process heating or for mechanical/

Aluminum reverberatory furnace

2,000­2,200 1,100­1,200 requirements Increased chemical

electrical work

High Copper refining furnace 1,400­1,500 760­820 High­efficiency power activity/corrosion Furnace load preheating >1,200°F Steel heating furnace 1,700­1,900 930­1,040 generation [> 650°C] Copper reverberatory furnace 1,650­2,000 900­1,090 Transfer to med­low

Hydrogen plants 1,200­1,800 650­980 High heat transfer rate per unit area

temperature processes

Fume incinerators 1,200­2,600 650­1,430 Glass melting furnace 2,400­2,800 1,300­1,540 Coke oven 1,200­1,800 650­1,000 Iron cupola 1,500­1,800 820­980 Steam boiler exhaust 450­900 230­480 More compatible with Combustion air preheat Gas turbine exhaust 700­1,000 370­540 heat exchanger Steam/ power generation

Medium Reciprocating engine exhaust 600­1,100 320­590 materials Organic Rankine cycle for

450­1,200°F [230­650°C]

Heat treating furnace Drying & baking ovens

800­1,200 450­1,100

430­650 230­590

Practical for power generation

power generation Furnace load preheating, feedwater preheating

Cement kiln 840­1,150 450­620 Transfer to low­temperature processes

Exhaust gases exiting recovery devices in gas­fired boilers, ethylene furnaces, etc.

150­450 70­230 Large quantities of low­temperature heat contained in numerous

Few end uses for low temperature heat

Space heating

Domestic water heating Process steam condensate Cooling water from:

130­190 50­90 product streams. Low­efficiency power generation Upgrading via a heat pump to

furnace doors 90­130 30­50 increase temp for end use Low annealing furnaces 150­450 70­230 For combustion exhausts, <450°F air compressors 80­120 30­50 low­temperature heat Organic Rankine cycle [<230°C] internal combustion

engines 150­250 70­120

recovery is impractical due to acidic condensation and heat

air conditioning and refrigeration condensers

90­110 30­40 exchanger corrosion

Drying, baking, and curing ovens

200­450 90­230

Hot processed liquids/solids 90­450 30­230

8

Page 14: Recuperi termici nell'industria

Considerazioni sui recuperi termici

Fonte: “Waste heat recovery: technology and opportunities in U.S. industry”, rapporto DOE, 2008

14

       

  

  

    

  

   

  

  

   

  

   

  

  

  

  

 

  

  

   

  

  

   

 

  

                                            

                              

                                                  

                      

                       

                                          

              

                   

                                                                     

                                                                      

                                               

                                    

                                    

Table A – Research, Development, and Demonstration Needs for Addressing -Waste Heat Recovery Barriers -

RD&D Opportunity Barriers Addressed

Long

Pay

back

Perio

dsMa

terial

Cons

traint

s and

Cos

tsMa

inten

ance

Costs

Econ

omies

ofSc

ale

Lack

of E

nd­u

se

Heat

Tran

sfer R

ates

Envir

onme

ntal C

once

rns

Proc

ess C

ontro

lan

d Pro

duct

Quali

tyPr

oces

s­spe

cific

Cons

traint

s

Inacc

essib

ility

Develop low­cost, novel materials for resistance to corrosive contaminants and to high temperatures x x Economically scale­down heat recovery equipment (value­engineer) x x x Develop economic heat recovery systems that can be easily cleaned after exposure to chemically active gases x x x Develop novel manufacturing processes that avoid introducing contaminants into off­gases in energy­intensive manufacturing processes

x x x x x

Develop low­cost dry gas cleaning systems x x x x x Develop and demonstrate low­temperature heat recovery technologies, including heat pumps and low­temperature electricity generation.

x x

Develop alternative end­uses for waste heat x Develop novel heat exchanger designs with increased heat transfer coefficients x x x

Develop process­specific heat recovery technologies x x x x x x Reduce the technical challenges and costs of process­specific feed preheating systems x x x x x Evaluate and develop opportunities for recovery from unconventional waste heat sources (e.g., sidewall losses) x x Promote new heat recovery technologies such as solid­state generation x x Promote low­cost manufacturing techniques for the technologies described above x x x x x x x x x x

xv -

Page 15: Recuperi termici nell'industria

Heat recovery nel Regno Unito

Fonte: “The potential for recovering and using surplus heat from industry”, rapporto Ecofys per DECC, 2014.

15

The potential for recovering and using surplus heat from industry

Final Report

17

(iii) Cost engineering equations were used to be able to scale costs to the size of the equipment. The parameters used in the costs engineering equations were matched with the data obtained from the manufacturers as a reality check.

3.3 Characteristics of UK industrial waste heat supply and demand

3.3.1 UK industrial heat sources and heat sinks The total energy in waste heat sources in the database is identified as 48 TWh/yr and 20 TWh/yr in sinks. These databases contain 73 sites, for which in total 467 sources and 1091 sinks are included.

What is immediately apparent is the higher absolute level of heat sources than sinks within the largest industrial emitters. This suggests that the available demand for low grade heat is likely one of the key limiting factors for the reuse of heat, i.e. local demand is likely to be quickly saturated. This would require external sink options such as heat networks and heat to power conversion. This is also consistent with the experience of industrial players, who often indicated in site visits that although waste heat is available, there is limited low grade heat demand.

To understand the supply of waste heat and the characteristics of sinks, Figure 4 differentiates heat sources and heat sinks into differentiated temperature bands and the medium in which heat is available (sources) or required (sinks). The waste heat source bands are ambient-250°C (low),250-500°C (med), and >500 °C (high). The heat sink bands are ambient-150°C (low), 150-250°C (med), and >250 °C (high).

Figure 4 Breakdown of source and sink heat flows in database (data rounded where necessary)

Inspection of Figure 4 reveals that the majority of energy in waste heat sources is found in low grade streams (31TWh/yr out of a total of 48 TWh/yr). Although 14 TWh/yr is available from high temperature heat sources, the majority of this is from hot solids (primarily iron/steel from blast furnace steel production), for which heat recovery is challenging. In

Sources in database (TWh/yr) Sinks in database (TWh/yr)

The potential for recovering and using surplus heat from industry

Final Report

26

Caution should be taken when interpreting the results and using these for policymaking. In particular, the analysis is not designed to provide site and technology specific assessments. Hence, using this analysis for site and technology specific analysis is discouraged.

The relative contributions of different modes of heat reuse can be ranked in the following order:

1. Heat reuse on site 2. Heat delivery over-the-fence, to another site 3. Conversion of heat to electricity

This ranking is reflected in Figure 7, where heat re-use on the same site represents almost 61% of the technical potential. The delivery of heat from sources to sinks at other sites and the conversion of heat to electricity contribute 30% and 9% respectively.

If there is the potential for on-site re-use of heat, then this is usually more favourable in terms of CO2 abatement potential. The estimation of the technical potential is based on maximising system abated CO2. Heat delivery over-the-fence generally has a lower specific abatement potential than on site re-use, due to heat losses in transport and power requirements for pumping. The specific abatement potential of heat to electricity technologies is significantly lower still, due to the low heat to electricity efficiency at the low temperatures of rejected heat.

Figure 7 Application type of recovered heat in the technical potential, for different technology categories and on-site, over-the-fence and electricity-production applications. Base case. Data have been rounded where necessary.

The dominant technologies for heat recovery are heat exchangers, with heat pumps and heat to electricity technologies providing a significant lower contribution to the technical potential.

Page 16: Recuperi termici nell'industria

Heat recovery nel Regno Unito

Fonte: “The potential for recovering and using surplus heat from industry”, rapporto Ecofys per DECC, 2014.

16

The potential for recovering and using surplus heat from industry

Final Report

31

5.2 UK economic potential for waste heat recovery in industry The economically recoverable heat and CO2 abatement for the private and the social scenario are depicted in Figure 11. The economic potential in the social case (3.5% discount rate) is the highest in terms of both recoverable heat potential and CO2 abatement, being 8 TWh/yr and 1.9 Mt/yr, respectively. The potential of economically recoverable heat, under private investor assumptions (10% discount rate), is approximately 7 TWh15 which corresponds to 1.6Mt of CO2 abatement per year. The commercial potential takes into account only those source-sink-technology combinations with a payback time less than two years. This results in 5 TWh/yr source heat utilised and 1.1 Mt CO2 abated/yr.

The main reduction of the recoverable heat potential going from the technical to the private economic potential are the heat to power and heat pump projects. These are technically feasible but are not economic under the private base case assumptions.

The economic potential is primarily made up of heat re-use options on site, as shown in Figure 12.

The main bottleneck that reduces the economic attractiveness of over-the-fence heat delivery are the costs for the heat transport infrastructure. While the technical potential includes also a significant number of over-the-fence heat delivery options and heat to electricity conversion, these are mostly not economically viable under the base case private assumptions. Taking into account only the commercial potential of projects with a 15 To put these figures into context, the economic potential of 7 TWh reflects 2.4% of overall UK industrial heat energy use (ca. 291 TWh/yr) and ca. 4% of heat energy use within the leading eight heat intensive sectors (164 TWh/yr excl. power).

Figure 11 The economic potential for recoverable heat in UK industry, displayed for the social, private and commercial base case.

WACC 3,5% WACC 10% PBT < 2%

The potential for recovering and using surplus heat from industry

Final Report

32

payback time of less than two years, the relative contribution of over-the-fence heat delivery reduces even further.

Figure 12 Application type of recovered heat in the technical, economic and commercial potential. Private base case.

The contributions to the technical and economic potentials of different types of sources and the type of applications of the recovered heat at the sinks are summarised in Figure 13a and Figure 13b respectively. The source heat is recovered from waste steam, flue gases, exhaust gases and cooling water with similar contributions. The main downward changes going from the technical potential to the economic potential, are from waste steam, exhaust gases and cooling water.

Pre-heating boiler water is, similar as in the technical potential case, the dominant sink heat application in the economic potential. Producing electricity is rarely economic.

Page 17: Recuperi termici nell'industria

Heat recovery nel Regno Unito

Fonte: “The potential for recovering and using surplus heat from industry”, rapporto Ecofys per DECC, 2014.

17

The potential for recovering and using surplus heat from industry

Final Report

37

5.3 Sensitivity analysis of UK economic potential By varying exogenous parameters, we found that the economic potential for heat recovery is most sensitive to the commercial requirement of maximum two year payback, fuel prices, capex changes and the amount of waste heat available from industry.

The total net benefit is strongest impacted by fuel prices, applying the non traded sector CO2 prices and social investment criteria. The latter two parameters have a significant impact on the revenue, as expressed in Figure 19, but not sufficiently to turn the business case of many options negative, under the private economic scenario assumptions.

Figure 18 Impact of high and low sensitivities on the economic potential for heat recovery17.

Low and high scenarios for industrial waste heat availability are provided in the appendix, and are based on possibilities for efficiency improvement at constant overall output. Low or high energy price scenarios for prices refer to the DECC low or high energy or carbon price scenarios for 2020. Base scenario is 2020 private economic potential base case.

Figure 19 Impact of high and low sensitivities on the total net benefit of heat recovery measures. Low and high scenarios for industrial waste heat availability are provided in the appendix. Low and high scenarios for prices refer to the DECC low and high price scenarios. Base scenario is 2020 private economic potential base case17.

17 The “Non traded CO2 price” is the DECC price curve used in analysis for valuing CO2 emissions outside the ETS, and represents the societal cost of CO2 emissions.

The potential for recovering and using surplus heat from industry

Final Report

5

Executive Summary In its paper, “The Future of Heating: Meeting the Challenge”, The Department for Energy and Climate Change (DECC) committed to assessing the potential for recovery and re-use of industrial waste heat to contribute to meeting the UK’s energy challenges and legally binding CO2 reduction target.

The potential for heat recovery is governed by multiple factors. These include the characteristics of waste heat source(s) and heat sink(s), the compatibility of sources and sinks (i.e. temperatures, capacity, timing, location), the available heat recovery technologies (costs and efficiency), energy/carbon prices, investor priorities and site- or industry-specific issues. To understand these drivers, databases of industrial waste heat sources, heat sinks and heat recovery technologies have been constructed based on literature data and updated following discussions with industry.

A novel techno-economic model framework identifies a potential for industrial heat recovery in the UK in the range of 5TWh/yr to 28TWh/yr, consisting of hundreds of source-sink-technology combinations. The lower range of this estimate consists of measures that already comply with commercial payback requirements, while the higher end of this range would require significant development of heat networks and district heating, in order to be realised.

The analysis identifies a technical potential of 11 TWh/yr from heat sources, based on projects that are projected to save 2.2 MtCO2/yr. The technical potential includes contributions from on-site heat re-use, over-the-fence supply to another large industrial user and conversion to power. All heat-intensive industrial sectors examined (refineries, iron & steel, ceramics, glass, cement, chemicals, food and drink, paper and pulp) contribute to this potential. The technical potential is sensitive to industrial heat demand and supply, and CO2 savings are also sensitive to assumptions on avoided fuel use.

Page 18: Recuperi termici nell'industria

Certificati bianchi

18

Miglioramento continuo

INTERVENTI AMMESSI

TARGET

SOGGETTI OBBLIGATI E VOLONTARIVERIFICHE

ADDIZIONALITÀ E BASELINE

COSTI E COSTO/EFFICACIA

MISURA DEI RISPARMIRAPPORTI CON ALTRI INCENTIVI

Page 19: Recuperi termici nell'industria

Efficienza: un intervento, molti benefici

Source: IEA, Capturing the multiple benefits of energy efficiency. 1919

Vale anche per i recuperi termici. Che impatto hanno sulla value proposition e sul core business?

Page 20: Recuperi termici nell'industria

20

Enermanagement 2015

www.enermanagement.it

Se vi interessano l’energy

management e la produttività energetica, l’appuntamento è il 1

dicembre a Milano per Enermanagement 2015!

Page 21: Recuperi termici nell'industria

21

http://pressroom.fire-italia.org

I prossimi appuntamenti FIRE

I prossimi incontri FIRE:Forum Energy Manager, Verona, ottobre 2015Convegno TEE, Rimini, 5 novembre 2015 Enermanagement, Milano, 1 dicembre 2015

I prossimi corsi:energy manager ed EGE;diagnosi energetiche in azienda;certificati bianchi.

Premio FIRE:Certificati bianchi per un’industria

energeticamente efficienteInvio domande entro il

31 luglio 2015!!!

Page 22: Recuperi termici nell'industria

Nome relatore, FIRE

Grazie!

www.facebook.com/FIREenergy.manager

www.linkedin.com/company/fire-federazione-italiana-per-l'uso-razionale-dell'energia

www.twitter.com/FIRE_ita

www.dariodisanto.com