PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13...

58
1 PASSERELLE PEDONALI FORMA E STRUTTURA Prof. Ing. Bruno Briseghella University of Fuzhou (PRC) Prof. Ing. Enzo Siviero Università IUAV di Venezia Prof. Ing. Tobia Zordan Tongji University (PRC) Lunedì 23 Maggio 2011 Presso lo Spazio Viterbi della Provincia di Bergamo COMPORTAMENTO DINAMICO PASSERELLE PEDONALI

Transcript of PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13...

Page 1: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

1

PASSERELLE PEDONALI FORMA E STRUTTURA

Prof. Ing. Bruno BriseghellaUniversity of Fuzhou (PRC)

Prof. Ing. Enzo SivieroUniversità IUAV di Venezia

Prof. Ing. Tobia ZordanTongji University (PRC)

Lunedì 23 Maggio 2011Presso lo Spazio Viterbi della Provincia di Bergamo

COMPORTAMENTO DINAMICO PASSERELLE PEDONALI

Page 2: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

2

Azione dinamica dei pedoni

Page 3: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

3

Azione dinamica dei pedoni

a) Storia temporale della forza trasmessa da un pedone di massa di 750N; b) spettro di Fourier della forzante

Azione dinamica dei pedoni

Page 4: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

4

Azione dinamica dei pedoni

• 95% walk at a frequency between 1,6 and 2,4 Hz and 50% between 1.9 and 2.1 Hz

• Above 5 Hz, vertical modes are unlikely to be excited

• The periodic lateral force has a frequency equal to half of the vertical excitation

Azione dinamica dei pedoni

Page 5: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

5

Azione dinamica dei pedoni

Typical natural frequencies of footbridges: vertical direction

Resonance with 1° or 2° harmonic of footfall forces

Page 6: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

6

Lateral Frequency

Comfort

• The comfort feeling depends on each individual. Some person are very sensible, others not at all.

– Feeling of danger in case of large displacement

– Sea sick in case of high acceleration

• For designers, the comfort criteria is measured by the deck acceleration.

Page 7: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

7

Effect of lateralvibration on ability to walk

Acceleration /comfort criteria

• Vertical Accélération: 0,5 - 0,7 m/s²

• Horizontal acceleration: 0,15 m/s²

• Difference between vertical et and horizontal oscillations: – Vertical oscillation rarely hinders walking

– Horizontally, high acceleration causes unbalance of

pedestrian equilibrium who must adapt their walk.

Page 8: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

8

Acceleration /comfort criteria

Acceleration Limits

Page 9: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

9

Il Metodo del carico di risonanza

F= A×sin(2π fv t) dove:t rappresenta il tempo (sec)

A l’ampiezza della forzante, assunta pari a 180 N velocità con cui il carico transita sul ponte [m/s]

09.0 fvt =

Il metodo del carico di risonanza imposto dalla più conosciuta ed applicata normativa, la British Standard 5400, propone di valutare la risposta dinamica del ponte ad un carico mobile con velocità costante posto in risonanza con la prima frequenza fondamentale verticale fv (in Hz):

Il Metodo del carico di passo

])2cos(1[ 0∑ ++=i

ii tifPF φπα

Dove:P peso di una persona, ampiezza della forzante,

assunta pari a 700 Nf frequenza di passo (con valori generalmente

compresi tra 1.6 e 2.4 Hzαi coefficiente dinamico relativo all’i-esima armonica

e fi l’angolo di fase.

Il criterio del carico di passo è stato specificatamente sviluppato per lo studio delle vibrazioni di strutture flessibili, quali solai di grande luce e passerelle. Il passo umano è assimilato ad una forzante definita da uno sviluppo in serie di seni con frequenzedifferenti per i diversi termini della serie (la frequenza fondamentale ed i suoi multipli interi):

Page 10: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

10

Nella maggior parte dei casi le prime tre armoniche racchiudono le componenti dinamiche principali delle forze di passo; l’ampiezza delle forze dinamiche diminuisce al crescere della frequenza (a1=0.5, a2=0.2, a3=0.1). La velocità del pedone, nonostante sia funzione della frequenza del passo, può essere assunta in prima approssimazione, pari a 1.0 m/s (pari a 3.6 km/h), corrispondente ad una frequenza del passo di circa 2 Hz.

Page 11: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

11

Page 12: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

12

Effetto folla

The regulations and standards do not clearly define crowdloads but rather the resulting effects.• A group of pedestrian walk in a Gaussian distribution phase

• Experimental observation (Fujino-horizontal)

Page 13: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

13

Crowd loads complex structures

• For simple structures, the previous approach wassufficient.

• For very large, slender and complex structures, it is notrealistic. For example for a crowd of 1000 people, the two values are different.

• A special crowd load is necessary to evaluate the response of such structures, by including torsionnal and horizontal modes.

Vertical direction

• Footfall forces can induce excessive vibration in bridgeshaving vertical frequencies between 1.5 Hz to 2.5 Hz.

• Bridges having frequencies between 3 Hz to 5 Hz maybe susceptible to 2° harmonic response.

• Effects of walking groups requires further experimentalresearch

– Response levels above which synchronisation occurs– Effects of pedestrians on damping

Page 14: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

14

Lateral direction

• Any bridge with a lateral mode of natural frequencybelow 1.3Hz is potentially susceptible to excessivelateral vibration. There is no lower frequency cut-off.

• Large responses will arise if a critical number of pedestrians is exceeded; responses limited by people’s ability to continue walking

• The critical number of walking people depends on mass, damping and frequency of the bridge mode

• Very high damping (20%+) may be required to preventdynamic instability

Eurocodes Proposal

• Proposal for EC1• Two load models– Small group ( not necessary for single pedestrian)

– Crowd loading

Page 15: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

15

Effetto folla

Passerella pedonale Pogdorica. Accelerazioni teoriche e misurare misurate e confronti dei fattori moltiplicativi per tenere conto dell’effetto folla proposti da Matsumoto e da Setra e linee guida “Design of Footbridges”.

Alcuni modelli propongono di calcolare l’accelerazione dovuta a più pedoni semplicemente moltiplicando quella dovuta ad uno solo per un coefficiente correttivo. Fra questi il primo metodo proposto è quello del 1978 dovuto a Matsumoto et altri secondo cui come coeff. correttivo si può assumere √N,con N numero di pedoni presenti contemporaneamente sul ponte.

Tale modello si è rivelato sovrastimare gli effetti vibrazionali indotti dalla folla, mentre sembra essere più realistico, fra i modelli che propongono di utilizzare un coeff. correttivo rispetto al caso del singolo pedone, quello indicato dal documento linee guida “Design of Footbridges” e Setra, come si può notare dalla figura precedente in cui sono confrontati i valori ottenuti applicando i due metodi su un caso reale e poi verificati attraverso una campagna di prove sperimentali.Le linee guida utilizzate definiscono classi di traffico dei ponti pedonali in funzione del traffico atteso e propongono limiti diversi di accettabilità della massima accettabilità in funzione del confort che si vuole ottenere.

Effetto folla

Page 16: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

16

Design stepsGuideline “Design of Footbridges”, documento n. RFS2-CT-2007-00033. Programma di ricerca “Human induced Vibrations of Steel Structures”

Design steps

Page 17: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

17

Step 1: Evaluation of natural frequencies

There are several ways to calculate the natural frequency of a footbridgeduring design, especially for the preliminary check of the bridge vibration, e.g.:

• Finite element (FE) method

• Hand formulas e.g. for beams, cables and plates.

Properties of materials, complexity of the structure, the type of deck surfacing and furniture, boundary conditions and railings may cause discrepancies in natural frequencies between the results of calculationsand the measured data of the real structure.

It is recommended that the mass of pedestrians should be consideredwhen calculating the natural frequencies only when the modal mass of the pedestrians is more than 5 % of the modal deck mass.

Step 2: Check of critical range of natural frequencies

The critical ranges for natural frequencies fi of footbridges with pedestrianexcitation are:

• for vertical and longitudinal vibrations: 1,25 Hz ≤ fi ≤ 2,3 Hz

• for lateral vibrations: 0,5 Hz ≤ fi ≤ 1,2 Hz

Footbridges with frequencies for vertical or longitudinal vibrations of: 2,5 Hz ≤ fi ≤ 4,6 Hz

might be excited to resonance by the 2nd harmonic of pedestrian loads In that case, the critical frequency range for vertical and longitudinal vibrationsexpands to:

1,25Hz ≤ fi ≤ 4,6Hz Lateral vibrations are not effected by the 2nd harmonic of pedestrian loads.

Page 18: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

18

Step 3: Assessment of Design Situation

Step 3a: Assessment of traffic classes

Page 19: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

19

Step 3a: Assessment of traffic classes

Step 3b: Assessment of comfort classes

Page 20: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

20

Step 4: Assessment of structural damping

Damping ratios for service loads

Damping ratios for large vibrations

Intentional loads can produce large levels of oscillation in light footbridges, which lead to higher damping ratios

Step 4: Assessment of structural damping

Page 21: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

21

Step 5: Determination of maximum acceleration

Various methods for calculating the acceleration

Harmonic load models

A uniformly distributed harmonic load p(t) [N/m²] represents the equivalentpedestrian stream for further calculations:

where- P x cos (2nfst) is the harmonic load due to a single pedestrian, - P is the component of the force due to a single pedestrian with a

walking step frequency fs, - fs is the step frequency, which is assumed equal to the footbridge

natural frequency under consideration, - n’ is the equivalent number of pedestrians on the loaded surface S, - S is the area of the loaded surface, - ψ is the reduction coefficient taking into account the probability that

the footfall frequency approaches the critical range of naturalfrequencies under consideration.

Page 22: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

22

Harmonic load models

Application of a harmonic load according to mode shape Φ(x)

Harmonic load models

The load model for pedestrian groups (TC1) takes into account a freemovement of the pedestrians. Consequently, the synchronization among the group members is equal to a low density stream. In the case of dense streams (TC4 and TC5) walking gets obstructed, the forward movement of the stream gets slower and the synchronisation increases. Beyond the upper limit value of 1,5 P/m² walking of pedestrians is impossible, so that dynamiceffects significantly reduce. When a stream becomes dense, the correlationbetween pedestrians increases, but the dynamic load tends to decrease.

Page 23: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

23

SDOF methodThe basic idea is to use a single equivalent SDOF system for each naturalfrequency of the footbridge in the critical range of natural frequencies and to calculate the associated maximum acceleration for a dynamic loading. The maximum acceleration amax at resonance for the SDOF system iscalculated by:

Where:p* is the generalised loadm* is the generalised (modal) mass ξ is the structural damping ratio and δ is the logarithmic decrement of damping.

FE method

ANSYS 11.0 NOV 11 201012:02:53 DISPLACEMENTSTEP=1 SUB =1 FREQ=2.241 PowerGraphicsEFACET=1AVRES=MatDMX =.008953

1

X

Y

Z

DSCA=142.416 ZV =1 DIST=14.025 XF =12.75 YF =.6375 Z-BUFFER

Page 24: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

24

Response Spectra Method for pedestrian streams

At the design stage it is not necessary to apply a time domain analysis in every case. The aim of a spectral design method is to find a simple way to describethe stochastic loading and system response that provide design valueswith a specific confidence level. The system response – “maximum peak acceleration” – was chosen asthe design value. In the design check, this acceleration is compared withthe tolerable acceleration according to the comfort class to be proofed. For different pedestrian densities, the characteristic acceleration, which isthe 95th percentile of the maximum acceleration, can be determinedaccording to the formulas and tables given below. This maximum acceleration is defined by the product of a peak factor ka,d and a standard deviation of acceleration σa:

Response Spectra Method for pedestrian streamsBoth factors are derived from Monte Carlo simulations based on numerical time step simulations of various pedestrian streams on various bridges geometries. The result is an empirical equation for the determination of the varianceof the acceleration response:

where: a1, a2, a3, b1, b2, b3 are constantsfi is the considered natural frequency that coincides with the mean step

frequency of the pedestrian streamξ is the structural damping ratio C is the constant describing the maximum of the load spectrumσ2 is the variance of the loading (pedestrian induced forces) kF is a constantn = d×L×B number of pedestrians on the bridge, withd: edestrian density, L: bridge length, B: bridge widthm*i is the modal mass of the considered mode i

Page 25: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

25

Step 7: Check of comfort level

The non-compliance with those limits implies the need of measures thatimprove the dynamic behaviour of the footbridge. These measures include:

• modification of the mass • modification of frequency• modification of structural damping• addition of damping

Evaluation of dynamic properties of footbridges

The experimental characterisation of the dynamic behaviour of a footbridge may be an important component of the project and can beperformed based on two different levels of complexity:

• Level 1- Identification of structural parameters, with the purpose of calibrating numerical models and eventually tuning control devices. Natural frequencies, vibration modes and damping coefficients are the parameters of interest;

• Level 2- Measurement of the bridge dynamic response under human excitation for assessment of comfort criteria and/or correlationwith the simulated response.

Page 26: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

26

Control of vibration response

The non-compliance with those limits implies the need of measures that improve the dynamic behaviour of the footbridge. These measures include:

• modification of the mass • modification of frequency• modification of structural damping• addition of damping

Modification of mass

For very light footbridges, the use of heavy concrete deck slabs can improve dynamic response to pedestrian loads, asa consequence of the increased modal mass. This approachis particularly relevant for stress-ribbon structures.

Page 27: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

27

Modification of frequency

Traditionally structural stiffness is modified to raise the frequency out of the critical range for both vertical and lateralvibration. Frequency is proportional to the square root of the ratio between stiffness and mass, and so significant structuralchanges are generally required to sufficiently raise the frequency. In modern bridge design, where the aim is to buildlight and graceful structures, these changes are usuallyimpractical once construction has been completed, but can beconsidered at the design stage.

Modification of structural dampingThe increase of structural damping is another possible measure to reduce

the dynamic effects of pedestrians on a footbridge. For an existingbridge, the simplest approach is based on the increase of the structuraldamping, which can be achieved either by actuation on particularelements within the structure, or by implementation of externaldamping devices.

The use of external damping devices for absorbing excessive structuralvibrations can be an effective solution in terms of reliability and cost. These devices can be based on active, semi-active or passive control techniques. Considering aspects like cost, maintenance requirementsand practical experience, the usual option is for passive devices, whichinclude:

a) viscous dampers;b) tuned mass dampers (TMD);c) pendulum dampers;d) tuned liquid column dampers (TLCD); e) tuned liquid dampers (TLD).

The most popular of these are viscous dampers and TMDs.

Page 28: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

28

Viscous dampers

Tuned mass dampersTuned Mass Dampers (TMDs) consist of concentrated masses that are connected to a structure via some stiffness and damping elements. Thesedevices are designed to split the critical frequency into two new frequencies (one below and another above the initial one), and the relative movement between structure and TMD allows for energy dissipation. Since the structural mass is much higher than the TMDs’, the movementof the TMD usually comprises large displacements when compared to the structure motion.

Page 29: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

29

Pendulum dampers

Pendulum dampers are a specific type of tuned mass dampers, which are used for suppressing horizontal vibrations. The main difference with a TMD is that no springs are used, except in cases when the frequencies tosuppress are higher than 1 Hz. The mass is hung by truss elements, whichreduces friction forces when compared to a normal horizontal support.

Tuned liquid column dampersA Tuned Liquid Column Damper (TLCD) consists of U-shaped tube filledwith a fluid (usually water), which properties are tuned in such a way that the forces at the base of the device, resultant from the movement of the liquid, counteract the horizontal movement of its support. This principle is thereforeidentical to that of a TMD. However, there are several advantages over othertypes of damping devices, such as easy tuning of frequency and damping, simple accommodation, simple construction and almost zero maintenancecost.

Page 30: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

30

Tuned liquid dampers

Tuned Liquid Dampers (TLDs) are passive control devices that consistof rigid tanks filled with liquid to suppress horizontal vibration of structures. Advantages like low cost, almost zero trigger level, easy adjustment of natural frequency and easy installation on existingstructures have promoted an increasing interest in these devices. However, motion of the fluid can be highly nonlinear, since breaking of waves can occur for high vibration amplitudes.

Smorzatori accordati di tipo passivo (TMD)

Sistema a due gradi di libertà

Page 31: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

31

⎩⎨⎧

=−−++=−−+++

00

11222222

2221111211

xcxkxcxkxmxcxkxkxcxkxm

&&&&

&&&&

⎩⎨⎧

=−−−−=+−+−+

0)()(0)()(

2121222

112121211

xxcxxkxmxkxxcxxkxm

&&&&

&&&&

02

1

2

1

22

221

2

1

2

1 =⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

⎡−

−+

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

⎡−

−++

⎭⎬⎫

⎩⎨⎧⎥⎦

⎤⎢⎣

⎡xx

cccc

xx

kkkkk

xx

mm

&

&

&&

&&>

Smorzatori accordati di tipo passivo (TMD)

2222222222

2222

)])(1([)1()2()()2(

ββμμζβζ

−−−++−−+

=rrrrrr

rrXX

st

b

t

mm

b

t

ωω

β =

br

ωω

=

bt

t

mcω

ζ2

=

rapporto fra le masse dello smorzatore e del ponte

rapporto fra le frequenze fondamentali dello smorzatore e del ponte

rapporto fra le frequenze della forzante esterna e del ponte

rapporto di smorzamento

Smorzatori accordati di tipo passivo (TMD)

Page 32: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

32

I valori di mt, kt e ct rispettivamente massa, rigidezza e smorzamento del TMD possono essere scelti in modo da minimizzare la risposta della struttura. In questo modo si possono ottenere i seguenti valori ottimali:

μβ

+=

11

opt

)1(83

μμζ+

=opt

μ21+=

optstXX

Smorzatori accordati di tipo passivo (TMD)

Lo spostamento del sistema primario è nullo se il dispositivo aggiunto ha frequenza naturale pari alla frequenza della forzante, in questo caso infatti si annulla il numeratore della formula precedente, mentre assume un valore infinito quando la frequenza della forzante, fissati gli altri parametri, è tale che si annulla il denominatore. Se si aggiunge al dissipatore lo smorzamento viene meno la sua capacità di portare a zero lo spostamento della massa primaria ma si aumenta il suo campo di utilizzo, cioè il campo di frequenze della forzante in cui l’utilizzo del TMD è utile.

Smorzatori accordati di tipo passivo (TMD)

Page 33: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

33

Influenza dello smorzamento sull’efficienza di un TMD

Smorzatori accordati di tipo passivo (TMD)

Andamento del rapporto X/Xs in funzione di r per diversi valori di μ

μ

.

μμ

Smorzatori accordati di tipo passivo (TMD)

Page 34: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

34

Lo smorzamento equivalente del sistema struttura con TMD èfunzione anche del rapporto μ fra le masse della struttura e del dissipatore, infatti all’aumentare di μ aumenta lo smorzamento equivalente. Il valore massimo del rapporto μ èovviamente limitato da considerazioni di tipo statico, non essendo opportuno aumentare in modo significativo la massa totale della struttura.

Smorzatori accordati di tipo passivo (TMD)

Dipendenza dello smorzamento equivalente della struttura da quello del TMD e da μ.

Smorzatori accordati di tipo passivo (TMD)

Page 35: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

35

Casi studio

Passerella Solferino

Page 36: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

36

Passerella Solferino

Tuned Mass Dampers (August 2000)

Page 37: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

37

Tuned Mass Dampers (August 2000)

Oscillations

MILLENIUM FOOTBRIDGE -LONDON

First lateral frequency : 0,481 Hz

Page 38: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

38

Norman Foster + Arup: London Millennium footbridge

After addition of dampeners during a € 6 700 000 repair program, the bridge re-opens tothe public.

22 February 2002

The bridge is temporarily closed to assess the deflection problems that occurred in the first days of opening.

12 June 2000

On the opening weekend, over 150 000 people use the bridge. On Saturday, larger thanexpected movements are experienced as larger crowds cross the bridge.

10 June 2000

Chronology

Page 39: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

39

Pacing and jumping frequencies in Hz

Psycological classification of acceleration levels

RESONANCE CASE

Footbridges characterized by a natural horizontal frequency of 1Hz and a natural vertical frequancy of 2Hz should be avoided

Page 40: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

40

LOCK-IN EFFECT

Page 41: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

41

Page 42: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

42

Page 43: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

43

Page 44: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

44

Forchheim Footbridge

Forchheim Footbridge

Installation of fixed TMD

Page 45: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

45

Forchheim Footbridge

Installation of portable semi-active TMD

Setting of TMD in side railings of existing footbridges

A.HATANAKA -Japan

Page 46: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

46

PASSERELLA PEDONALE SUL CANAL GRANDE A TRIESTE

La passerella pedonale in esame supera una luce di 25.5 m ed è costituita da una trave scatolare in acciaio corten di dimensioni esterne 1100x500 mm con anime di spessore 10 mm e piattabande inferiori e superiori variabili da 20 a 50 mm per conferire alla trave le necessarie caratteristiche di resistenza e rigidezza.

Page 47: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

47

A. Modello tridimensionale

Il modello tridimensionale è stato implementato con il software ABAQUS, ed ha permesso di effettuare un’analisi modale accurata volta a definire le caratteristiche dinamiche del ponte. Il ponte è stato discretizzato con elementi plate a 4 nodi (elemento S4R) per un totale di 26822 nodi

Valutazione delle frequenze del ponte

B. Modello semplificato

In base ai risultati dell’analisi effettuata con il modello accurato è stato implementato e successivamente tarato con il software Ansys un secondo modello semplificato (beam equivalente) con cui sono state calcolate le accelerazioni indotte dai pedoni. La scelta di cambiare software è stata determinata dalla possibilità di implementare all’interno di Ansys i modelli di carichi utilizzati (carichi mobili) attraverso delle subroutine scritte ad hoc.Il ponte è stato discretizzato con elementi beam bidimensionali (elemento BEAM3: 2-D Elastic Beam) per un totale di 500 nodi.

ANSYS 11.0 NOV 11 201012:02:53 DISPLACEMENTSTEP=1 SUB =1 FREQ=2.241 PowerGraphicsEFACET=1AVRES=MatDMX =.008953

1

X

Y

Z

DSCA=142.416 ZV =1 DIST=14.025 XF =12.75 YF =.6375 Z-BUFFER

Valutazione delle frequenze del ponte

Page 48: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

48

Dall’analisi modale effettuata si può notare come il modo dominate (f = 2,24 Hz) sia il primo avente forma flessionale in direzione verticale con massa partecipante intorno al 85% (massa partecipante = 21769 kg, massa totale del ponte = 25430 kg), denotando le caratteristiche di bassa rigidezza verticale della struttura.

Da letteratura è noto che i campi critici per le frequenze di una passerella soggetta a carichi impressi dai pedoni sono i seguenti:- direzione verticale e longitudinale:

1,25 Hz ≤ fi ≤ 2,3 Hz- direzione laterale:

0,5 Hz ≤ fi ≤ 1,2 Hz

Valutazione delle frequenze del ponte

A. Il Metodo del carico di risonanza

F= A×sin(2π fv t) dove:t rappresenta il tempo (sec)

A l’ampiezza della forzante, assunta pari a 180 N velocità con cui il carico transita sul ponte [m/s]

09.0 fvt =

Il metodo del carico di risonanza imposto dalla più conosciuta ed applicata normativa, la British Standard 5400, chiede di valutare la risposta dinamica del ponte ad un carico mobi-le con velocità costante posto in risonanza con la prima frequenza fondamentale verticale fv (in Hz):

Modelli di carico per i pedoni

Page 49: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

49

B. Il Metodo del carico di passo

])2cos(1[ 0∑ ++=i

ii tifPF φπα

Dove:P peso di una persona, ampiezza della forzante,

assunta pari a 700 Nf frequenza di passo (con valori generalmente

compresi tra 1.6 e 2.4 Hzai coefficiente dinamico relativo all’i-esima armonica

e fi l’angolo di fase.

Il criterio del carico di passo è stato specificatamente sviluppato per lo studio delle vibrazioni di strutture flessibili, quali solai di grande luce e passerelle. Il passo umano è assimilato ad una forzante definita da uno sviluppo in serie di seni con frequenzedifferenti per i diversi termini della serie (la frequenza fondamentale ed i suoi multipli interi):

Modelli di carico per i pedoni

Nella maggior parte dei casi le prime tre armoniche racchiudono le componenti dinamiche principali delle forze di passo; l’ampiezza delle forze dinamiche diminuisce al crescere della frequenza (a1=0.5, a2=0.2, a3=0.1). La velocità del pedone, nonostante sia funzione della frequenza del passo, può essere assunta in prima approssimazione, pari a 1.0 m/s (pari a 3.6 km/h), corrispondente ad una frequenza del passo di circa 2 Hz.

Page 50: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

50

Valutazione della massima accelerazione

A. Condizione di carico 1La condizione di carico 1 segue le indicazioni della British StandardsBS5400 part2

B. Condizione di carico 2 Nella condizione di carico 2 si è considerata una forza secondo il modello del “Carico di passo”La velocità dei pedoni è stata assunta pari a 1 m/s corrispondente alla frequenza di 2 Hz.

C. Condizione di carico 3Si utilizza la stessa formula della condizione di carico 2, ipotizzando però una velocità dei pedoni maggiore corrispondente a , come già indicato nella normative BS5400.

Valutazione della massima accelerazione

Page 51: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

51

0 1 2 3 4 50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Loading case 2

Loading case 1Acce

lera

tion(

m/s

2 )

frequency(Hz)

BS5400 ONT83 Acceleration value in bridge

Loading case 3

Confronto fra le massime accelerazioni ottenute e i criteri contenuti in BS5400 e ONT 83

Valutazione della massima accelerazione

Confronto fra le massime accelerazioni ottenute e i criteri contenuti in Walther R. Houriet B. Walmar I. Moia P. Cable stayed Bridges. Thomas Telford Publishing. London, 2002.

Valutazione della massima accelerazione

Page 52: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

52

Dalle analisi effettuate risulta che il ponte potrebbe essere sensibile alle vibrazioni indotte dai pedoni, si è quindi passato ad analizzare le possibili strategie per la riduzione di tale rischio.In particolare:

- Modifica della frequenza fondamentale del ponte;

- Modifica della massa;

- Modifica dello smorzamento.

Fra queste diverse tecniche si ritiene che la più appropriata nel caso in esame sia l’aumento dello smorzamento con l’aggiunta di uno o piùsmorzatori accordati o “tuned mass damper”.

Valutazione della massima accelerazione

Tuned Mass Damper

Page 53: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

53

Valutazione della massima accelerazione ponte + tmd

Confronto fra le storie temporali delle accelerazioni verticali e spostamenti ottenute al variare di μ.

Confronto fra le massime accelerazioni ottenute e i criteri contenuti in BS5400 e ONT 83

Valutazione della massima accelerazione ponte + tmd

0 1 2 3 4 50.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Acce

lera

tion(

m/s

2 )

frequency(Hz)

BS5400 ONT83 Acceleration value in bridge

Page 54: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

54

Confronto fra le massime accelerazioni ottenute e i criteri contenuti in Walther R. Houriet B. Walmar I. Moia P. Cable stayed Bridges. Thomas Telford Publishing. London, 2002.

Valutazione della massima accelerazione ponte + tmd

7.4e-36.8e-37.8e-44.1e-30.220.800.061373.44.23e4217.70.01

Relativo U(m)UT(m)Ub+T(m)Db(m)Ab+T(m/s2) Ab(m/s2) ct

(N/(m/s))kt

(N/m)mt

(kg)

Storia temporale delle acc. verticali e spostamenti senza e con TMD

0 2 4 6 8 10 12 14-1.0-0.8

-0.6-0.4

-0.20.0

0.20.4

0.60.8

1.0

Acce

lera

tion(

m/s

2 )

time(s)

without TMDwith TMD

0 2 4 6 8 10 12 14

-0.004

-0.002

0.000

0.002

0.004

Dis

plac

emet

(m)

time(s)

Without TMD With TMD

Parametri di progetto e massime acc. senza e con TMD (μ=0,01)

μ

= 0,01)

Valutazione della massima accelerazione

ponte + tmd

Page 55: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

55

Per valutare l’effetto folla si sono utilizzate le linee guida “Design of Footbridges” che definiscono classi di traffico dei ponti pedonali in funzione del traffico atteso e propongono limiti diversi di accettabilità in funzione del confort che si vuole ottenere. Nel caso in esame si sono considerate due classi di traffico, ipotizzando una classe di confort diversa, come di seguito riportato:

a) TC2: d = 0.2 P/m2: carico = 40.2 N/m, CL1: alimit < 0.5 m/s2

b) TC4: d = 1 P/m2: carico = 177.7 N/m, CL3: alimit = 1.0 ~ 2.5 m/s2

Valutazione della massima accelerazione

ponte + tmd / Effetto folla

Step 3a: Assessment of traffic classes

Page 56: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

56

Step 3a: Assessment of traffic classes

Step 3b: Assessment of comfort classes

Page 57: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

57

Harmonic load models

A uniformly distributed harmonic load p(t) [N/m²] represents the equivalentpedestrian stream for further calculations:

where- P x cos (2nfst) is the harmonic load due to a single pedestrian, - P is the component of the force due to a single pedestrian with a

walking step frequency fs, - fs is the step frequency, which is assumed equal to the footbridge

natural frequency under consideration, - n’ is the equivalent number of pedestrians on the loaded surface S, - S s the area of the loaded surface, - ψ s the reduction coefficient taking into account the probability that

the footfall frequency approaches the critical range of naturalfrequencies under consideration.

Harmonic load models

Page 58: PASSERELLE PEDONALI FORMA E STRUTTURA - … · • Experimental observation (Fujino-horizontal) 13 Crowd loads complex structures ... At the design stage it is not necessary to apply

58

.

Valutazione della massima accelerazione

ponte + tmd / Effetto folla

Valutazione della massima accelerazione

ponte + tmd / Effetto follaValori delle massime accelerazioni e massimi spostamenti relativi del TMD per μ = 0,01 e 0,02 e classi di traffico TC2 e TC3

Valori ottimali dei parametri del TMD in funzione della massa del dispositivo