News Release...2011/12/07  · News Release 2011年12月7日...

33
News Release 2011 12 7 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVoltaSRAM 動作を約 0.4V の超低電圧で実現 富士通セミコンダクター株式会社(本社:神奈川県横浜市、代表取締役社長:岡田 晴基、以下、 富士通セミコンダクター)SuVolta Inc.(本社:米国カリフォルニア州、CEO 兼社長:Bruce McWilliams、以下、SuVolta)は、SuVolta の“パワーシュリンク技術(1)”と富士通セミコンダクタ ーの“低消費電力プロセステクノロジー”により、電源電圧が 0.425V という極めて低い電圧で SRAM を動作させることに成功しました。この両社の技術により、IC の消費電力を低減することが でき、将来的には、超低消費電力製品(エコ製品)を提供することができます。詳細技術については、 12 5 日から 7 日まで米国ワシントン DC で開催される「IEDM(International Electron Devices Meeting)2011」学会にて報告されます。 携帯機器からサーバー、ネットワーク関連機器にいたる幅広い機器において、消費電力を抑える ことは重要課題の一つになっています。低消費電力化への最大の要因は電源電圧で、130nm テク ノロジーまでは定常的に電源電圧の低減がなされてきました。それ以降、28nm テクノロジーにいた るまで、1V 近傍のまま低減されていません。電源電圧の低減を阻む最大の要因の一つは、組込み SRAM の動作電圧です。 SuVolta の“パワーシュリンク技術の一つである DDC トランジスタ(2)と、富士通セミコンダクタ ーの高度なプロセス技術を組み合わせることにより、両社はトランジスタのしきい値電圧の“ばらつ き”を従来の約半分に低減し、576 キロビット(以下、Kb)の組込み SRAM で約 0.4V という極めて低 い電源電圧での動作確認に成功しました。本技術は、システム LSI に用いられている既存の設計 資産や既存装置などをそのまま活用することができます。 背景 微細化に沿って CMOS 回路の電源電圧は 1V 程度まで下げることができましたが、この電源電 圧の低減の流れは 130nm テクノロジーまでで、それ以降の 28nm テクノロジーにいたるまでを 1V 以下に下げることができませんでした。動作時の消費電力は電源電圧の 2 乗に比例するため、消

Transcript of News Release...2011/12/07  · News Release 2011年12月7日...

Page 1: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

News Release

2011年 12月 7日

富士通セミコンダクター株式会社

SuVolta, Inc.

富士通セミコンダクターと SuVolta、SRAM 動作を約 0.4V の超低電圧で実現

富士通セミコンダクター株式会社(本社:神奈川県横浜市、代表取締役社長:岡田 晴基、以下、

富士通セミコンダクター)と SuVolta Inc.(本社:米国カリフォルニア州、CEO 兼社長:Bruce McWilliams、以下、SuVolta)は、SuVolta の“パワーシュリンク技術(注 1)”と富士通セミコンダクタ

ーの“低消費電力プロセステクノロジー”により、電源電圧が 0.425V という極めて低い電圧で

SRAM を動作させることに成功しました。この両社の技術により、IC の消費電力を低減することが

でき、将来的には、超低消費電力製品(エコ製品)を提供することができます。詳細技術については、

12 月 5 日から 7 日まで米国ワシントン DC で開催される「IEDM(International Electron Devices Meeting)2011」学会にて報告されます。

携帯機器からサーバー、ネットワーク関連機器にいたる幅広い機器において、消費電力を抑える

ことは重要課題の一つになっています。低消費電力化への最大の要因は電源電圧で、130nm テク

ノロジーまでは定常的に電源電圧の低減がなされてきました。それ以降、28nm テクノロジーにいた

るまで、1V 近傍のまま低減されていません。電源電圧の低減を阻む最大の要因の一つは、組込み

型 SRAM の動作電圧です。

SuVoltaの“パワーシュリンク技術”の一つであるDDCトランジスタ(注2)と、富士通セミコンダクタ

ーの高度なプロセス技術を組み合わせることにより、両社はトランジスタのしきい値電圧の“ばらつ

き”を従来の約半分に低減し、576 キロビット(以下、Kb)の組込み SRAM で約 0.4V という極めて低

い電源電圧での動作確認に成功しました。本技術は、システム LSI に用いられている既存の設計

資産や既存装置などをそのまま活用することができます。

背景

微細化に沿って CMOS 回路の電源電圧は 1V 程度まで下げることができましたが、この電源電

圧の低減の流れは 130nm テクノロジーまでで、それ以降の 28nm テクノロジーにいたるまでを 1V以下に下げることができませんでした。動作時の消費電力は電源電圧の 2 乗に比例するため、消

Page 2: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

費電力削減は CMOS 回路における重要な課題となっています。電源電圧の低減が 130nm テクノ

ロジーで停滞したのは、RDF(Random Dopant Fluctuation)を含むいくつかのばらつき要因が存在

するためです。RDF とは、不純物原子の位置と密度のランダムな揺らぎのことで、これによりトラン

ジスタのしきい値電圧に“ばらつき”が大きく生じます。 極薄膜 SOI(Silicon on Insulator)トランジスタとフィン型トランジスタ構造により、RDF を劇的に改

善できると報告されていますが、構造的に複雑であり、既存の設計資産や製造資産を利用すること

が困難と考えられました。 SuVolta の DDC トランジスタ構造 図 1.に、富士通セミコンダクターの低電力

CMOS 回路用プロセス技術を用いて製造した、

SuVolta の DDC トランジスタ構造の断面

TEM(Transmission Electron Microscope)写真を

示します。DDC トランジスタは、既存のトランジスタ

と同様にシリコン基板上に形成されます。

組込み SRAM による電源電圧の低下と歩留まり 富士通セミコンダクターと SuVolta は、DDC トラン

ジスタにより、組込みSRAMが0.425Vでも動作する

ことを実証しました。図 2.に、その結果を示します。

大半の製品における電源電圧の下限は、組込み

SRAM の安定動作により決まるため、さまざまな

CMOS 回路を搭載した製品でも 0.4V 近傍で動作す

ることを実証したことになります。 図 2.は、576Kb の組込み SRAM の歩留まりを電

源電圧の関数として示したものです。歩留まりは、

576Kb すべてが動作した組込み SRAM 数から歩留

まりを計算しています。

図 1.DDCトランジスタの断面 TEM写真

図 2.576Kb組込み SRAM の歩留まりの電源電圧依存推移

Page 3: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

注釈 注 1 パワーシュリンク技術:SuVolta の開発した消費電力低減技術全般の総称であり、後述する

DDC トランジスタとこれを効果的に使用する回路などを含みます。

注 2 DDC トランジスタ(Deeply Depleted Channel transistor): シリコン基板上に複数の不純物層を含み構成することを特徴とします。

商標について 記載されている製品名などの固有名詞は、各社の商標または登録商標です。

【本件に関する技術お問い合わせ先】

富士通セミコンダクター株式会社

プロセス技術統括部

お問い合わせ:http://edevice.fujitsu.com/jp-qform.html

SuVolta, Inc.

DDC トランジスタについて

www.suvolta.com/cmos-power/

SuVolta Inc.詳細: http://www.suvolta.com/sales-inquiry/

ツイッター:http://twitter.com/SuVoltaInc

【報道機関お問い合わせ先】

富士通セミコンダクター株式会社

パブリックリレーションズ部

電話:045-755-7009(直通)

お問い合わせ:https://www-s.fujitsu.com/jp/group/fsl/release/inquiry.html

SuVolta, Inc.

Margo Westfall

+1 (408) 429-6058

Email:

スボルタ広報代理

[email protected]

ホフマン ジャパン株式会社

担当:鷲野

Tel: 03-5159-2145

Fax: 03-5159-2166

Email: [email protected]

Owner
長方形
Owner
長方形
Page 4: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

Advanced Channel Engineering Achieving Aggressive Reduction of VT Variation for Ultra-Low-Power Applications

K.Fujita, Y.Torii, M.Hori, J.Oh, L.Shifren2, P.Ranade2, M.Nakagawa1, K.Okabe, T.Miyake, K.Ohkoshi, M.Kuramae, T.Mori, T.Tsuruta1, S.Thompson2, T.Ema

Fujitsu Semiconductor Ltd., 1500 Mizono, Tado, Kuwana Mie, Japan 150 Fuchigami, Akiruno Tokyo, Japan 2Suvolta Inc., 130 Knowles Drive, Los Gatos, California 95032

Phone:+81-594-24-9168, Fax:+81-594-24-1988, E-mail:[email protected]

Abstract We have achieved aggressive reduction of VT variation and

VDD-min by a sophisticated planar bulk MOSFET named ‘Deeply Depleted Channel TM (DDC)’. The DDC transistor has been successfully integrated into an existing 65nm CMOS platform by combining layered channel formation and low temperature processing. The 2x reduction of VT variation in 65nm-node has been demonstrated by matching SRAM pair transistors, 2x improvement in SRAM static noise margin (SNM) and 300 mV VDD-min reduction of 576Kb SRAM macros to 0.425 V using conventional 6T cell layout.

Introduction Power consumption of scaled CMOS is a big issue.

Ultra-low-voltage operation is very effective to reduce both static and dynamic power. However, ultra-low-voltage operation is limited by VT variation as widely discussed for SRAM [1]. VT variation has two components, inter-die and intra-die

variation. The former is caused by manufacturing fluctuation such as CD variation and can be compensated by design techniques such as adaptive Vbb control. On the other hand, the latter is caused by physical mechanisms such as random dopant fluctuation (RDF) [2], line edge roughness (LER) [3] and poly grain granularity (PGG) [4]. RDF is the dominant mechanism of intra die VT variation.

New structures such as ETSOI [5], Tri-gate FET [6] and delta-doped channel bulk MOSFET [7] were proposed to solve RDF. Among the structures, delta-doped channel bulk MOSFET is the most desirable solution because it very easily matches with adaptive Vbb control independently applicable to both NMOS and PMOS, simple planar manufacturing infrastructure and existing IP design layouts including multiple VT and legacy transistors. Epitaxial channel selectively grown after STI was proposed to

realize the delta-doped channel bulk MOSFET [8, 9]. However the prior articles focused on capability to achieve higher performance and shorter channel rather than reduction of VT variation. Moreover, selectively grown epitaxial Si has facet at the edge of active area which may generate parasitic leakage. In this paper, we report 1) DDC structure achieving 2x

reduction of VT variation, 2) combination of layered channel formation and low temperature process flow realizing DDC transistor, 3) 65nm SRAM results demonstrating the aggressive reduction of VT variation by DDC and its capability of ultra-low-voltage operation.

DDC Transistor Structure Cross sectional TEM of fabricated DDC transistor is shown

in Fig. 1(a) and sketch of it is shown in Fig. 1(b). Several layers are stacked in usual P or Nwell formed in bulk silicon substrate. Layer 4 serves to prevent sub-channel punch-through. Layer 3 is the screening layer, which terminates the depletion layer in the channel and also serves to smooth the depletion layer across the device, affording excellent VT and short channel effects. Layer 2 is VT setting layer that allows multiple threshold voltage devices, which are highly desired for many SoC applications. Together, these three deep layers also produce a strong body coefficient that matches adaptive Vbb control and enables many circuit level power reduction techniques. Layer 1 is a very low doped channel that reduces RDF. A key benefit of the DDC architecture is that it is fully compatible with all known transistor performance enablers including PMOS embedded SiGe S/D. The devices reported here also utilized a tensile capping layer to enhance NMOS performance as seen in Fig. 1(a).

Features of Process Flow and Verification of Them Process flow to fabricate DDC transistor is shown in Fig. 2.

The process flow serves not only low voltage (LV) operating DDC transistors but also high voltage (HV) operating legacy transistors such as 3.3V I/O transistors. Layer 1 is formed by state of the art blanket undoped epitaxial deposition, giving excellent uniformity and allowing for near perfect thickness control across a wafer. This layer is grown after forming the layered channel stack by implantation and before STI. STI and gate oxidation (GOX) for both HV and LV transistors are done at very low temperature to prevent the impurity profiles in the channel stack from diffusing. No halo implant is done for DDC transistors. Steps for doping and activating gate, source/drain are set as same as baseline 65nm process not to cause gate depletion nor increased parasitic source drain resistance. Since all process conditions except reduced thermal budget

for STI & GOX were set as same as baseline 65nm technology, concerns of the process flow are focused on items related to low temperature STI & GOX. Cross-sectional TEM picture of STI is shown in Fig. 3.

Though increased STI recess and/or divot due to low temperature process were concerned, excellent STI shape has been achieved by optimizing other parameters for the STI process. W dependence of VT is shown in Fig. 4. No abnormality is

seen. Sub-threshold characteristics of both NMOS and PMOS

Page 5: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

DDC are shown in Fig. 5. No kink of sub-threshold characteristics is seen. These results demonstrate no parasitic leakage path along STI edge because of blanket epitaxial layer and optimized low temperature STI process. Distribution of breakdown voltage for low temperature gate

dielectric on DDC transistor is shown in Fig. 6. No concern is seen. HCI of NMOS and PMOS DDC results are shown in Fig. 7. Estimated lifetimes are long enough even for 1.2V applications. NBTI of PMOS DDC is shown in Fig. 8. Estimated lifetime is long enough even for 1.2V applications. These results demonstrate no concern about reliability due to the low temperature GOX process.

65nm SRAM Evaluation Results Because SRAM is the severest circuit for ultra-low voltage

operation, it is the best to demonstrate capability of DDC transistors to achieve aggressive reduction of VT variation and ultra-low voltage operation. Data on DDC transistors are compared with the ones on existing baseline 65nm control wafer using a same SRAM macro. The SRAM macro, which is in production for our 65nm ASIC offering, was used for the control and DDC wafers with no layout or design changes. Fig. 9(a-c) shows across-wafer VT distributions of 3 types of

6T SRAM cell transistors. These data represents inter-die VT variation. Much tighter VT distribution of DDC than control has been demonstrated although NMOS VT of DDC wafer in this experiment was deviated from control. Fig. 9(d) illustrates that inter-die VT variation is reduced to half by DDC transistor. The result demonstrates not only excellent capability of DDC transistor itself but also excellent uniformity of process parameters across a wafer such as epitaxial layer and low temperature GOX thickness. Fig. 10(a-c) shows distributions of VT matching for 3 types of

pair transistors forming 6T SRAM cell. These data represents intra-die VT variation. Fig. 10(d) illustrates that intra-die VT variation is reduced to half by DDC transistor. The result demonstrates not only excellent capability of DDC transistor itself but also the low temperature process flow successfully achieving ideal DDC channel profiles reducing RDF. Fig. 11(a-b) shows superposition of 6T SRAM butterfly curves on DDC and control wafers. Much clearer butterfly curve of DDC than control at low Vdd region is seen. Smaller SNM of DDC than control at high Vdd region is caused by lower NMOS VT of DDC in this experiment than control and is improved by adjusting NMOS VT. Fig. 12(a-b) shows distribution of SNM within each of DDC and control wafers. Both distributions are nice normal distributions and it is clear that the distribution of DDC is much tighter than control. Fig. 13(a-b) shows the measured mean & sigma SNM as a

function of Vdd, and demonstrates that SNM variation is aggressively reduced to half by DDC transistor. Fig. 13(c) shows mean/1of SNM as a function of Vdd. It is required to keep >5 margin for 1Mb SRAM function. DDC transistor has sufficient margin even if Vdd=0.4 V. Fig. 14 shows functional yield of 576Kb SRAM macros as a

function of Vdd. The yield means no fail bit in 576Kb SRAM array. The DDC showed good yield down to Vdd=0.425 V, 300

mV lower than the control, as predicted by the measured SNM results shown in Fig. 13(c). All these results consistently demonstrate both outstanding

capability of DDC transistor for ultra-low-voltage applications and manufacturability of it.

Conclusions A new planar transistor architecture (DDC) has been

successfully fabricated for the first time by combination of layered channel formation and low temperature processing. The new process was shown to not affect critical performance parameters such as parasitic leakage along STI edge and gate insulator related reliability. The DDC transistor is promising for ultra-low power applications as shown by 2x improvement in inter-die and intra-die VT variation and 2x improvement in 6T SRAM SNM. We have demonstrated 300mV VDD-min reduction and fully functional 576Kb SRAM down to 0.425V.

Acknowledgements

The authors acknowledge M. Chijiiwa, T. Deguchi, T. Futatsugi, S. Fukuyama of Fujitsu Semiconductor Ltd. for their supports and encouragements. The authors would like to thank L. Clark, M. Duane, P. Gregory, T. Hoffmann, N. Kepler, Y. Liu, R. Rogenmoser, L. Scudder, S. Sonkusale, U. C. Sridharan, C. Stager, W. Zhang, D. Zhao of SuVolta Inc. for their corporations and valuable discussions.

References [1] A. J. Bhavnagarwala et al., “A Sub-600-mV, Fluctuation Tolerant 65-nm

CMOS SRAM Array With Dynamic Cell Biasing,” IEEE J. Solid-State Circuits, vol. 43, pp. 946-955, 2008

[2] A. Asenov et al., “Simulation of Intrinsic Parameter Fluctuations in Decananometer and Nanometer-Scale MOSFETs,” IEEE Trans. Electron Devices, vol. 50, pp. 1837-1852, 2003

[3] A. Asenov et al., “Intrinsic Parameter Fluctuations in Decananometer MOSFETs Introduced by Gate Line Edge Roughness,” IEEE Trans. Electron Devices, vol. 50, pp. 1254-1260, 2003

[4] A. R. Brown, G. Roy and A. Asenov, “Poly-Si-Gate-Related Variability in Decananometer MOSFETs With Conventional Architecture,” IEEE Trans. Electron Devices, vol. 54, pp. 3056-3063, 2007

[5] Q.Liu, et al., ”Impact of Back Bias on Ultra-Thin Body and BOX (UTBB) Devices,” Symp. VLSI Tech., pp.160-161, 2011

[6] K. J. Kuhn, ”CMOS Scaling for 22nm Node and Beyond: Device Physics

and Technology,” 2011 International Symposium on VLSI Technology., Systems and Application (VLSI-TSA), Date:25-27 April 2011

[7] A. Asenov, and S. Saini, “Suppression of Random Dopant-Induced

Threshold Voltage Fluctuations in Sub-0.1-m MOSFET’s with Epitaxial and -Doped Channels,” IEEE Trans. Electron Devices, vol. 46, pp. 1718-1724, 1999

[8] K. Noda et al., “A 0.1-m Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy,” IEEE Trans. Electron Devices, vol. 45, pp. 809-814, 1998

[9] A. Hokazono et al., “25-nm Gate Length nMOSFET With Steep Channel Profiles Utilizing Carbon-Doped Silicon Layers,” IEEE Trans. Electron Devices, vol. 58, pp. 1302-1310, 2011

Page 6: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

Fig.1 (a) Cross-sectional TEM picture of DDC transistor, (b) Cross sectional sketch of DDC transistor. Fig.2 DDC process flow with low-temperature STI & GOX

Fig.3 Cross-sectional TEM picture of STI formed by low-temperature process.

Fig.4 VT dependence on gate width (L=0.045m). VT is defined as Vg at Id=3E-6*W/L [A] for NMOS and -1E-6 for PMOS.

Fig.5 Vg-Id curves of DDC (W/L=1/0.045 m).

Fig.6 VRDB results of LV gate dielectric. W/L=5/0.045 m. Sg=1E-7 cm2.

1

23

4

(b)

1

23

4

(b)(a)

43.1nm

(a)

43.1nm

Well ImplantVT / Screen Layer ImplantBlanket Si Epi-layer FormationSTI FormationGate Dielectric Formation for HVGate Dielectric Formation for LVPoly-Si Gate FormationExtension ImplantSW FormationS/D Formation

Well ImplantVT / Screen Layer ImplantBlanket Si Epi-layer FormationSTI FormationGate Dielectric Formation for HVGate Dielectric Formation for LVPoly-Si Gate FormationExtension ImplantSW FormationS/D Formation

S DS D

Fig.7 HCI results of NMOS and PMOS DDC at T=25C. W/L=10/0.045m.

Fig.8 NBTI result of PMOS DDC at T=125C. W/L=10/0.045m.

Fig.9 Across-wafer VT distributions of (a) pull-down, (b) pass-gate and (c) pull-up. (d) Inter-die VT variation as a function of VT at Vdd=1.2V. VT is defined as Vg at Ids=3E-6*W/L[A] for NMOS and 1E-6 for PMOS.

-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.1 1 10

Gate Width [m]

VT [

V]

NMOS

PMOS-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.1 1 10

Gate Width [m]

VT [

V]

NMOS

PMOS1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Vg [V]Id

[A

/ m

]

NMOSPMOS

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Vg [V]Id

[A

/ m

]

NMOSPMOS

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

2 3 4 5 6Breakdown Voltage [V]

LN

(-L

N(1

-F))

0.0 0.5 1.0

1/Vdd [1/V]

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

-1.0 -0.5 0.0

Lif

etim

e@Id

-10%

[se

c]

NMOSPMOS

AC 10 years@ Duty 2%

0.0 0.5 1.0

1/Vdd [1/V]

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

-1.0 -0.5 0.0

Lif

etim

e@Id

-10%

[se

c]

NMOSPMOS

AC 10 years@ Duty 2%

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1 10

Vstress [V]

Lif

etim

e@Id

-10%

[se

c]

52 3 4

10 years

-3

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8

Pull-down VT [V]

Cu

mu

lati

ve P

rob

abili

ty ]

Control (pull-down 1)Control (pull-down 2)DDC (pull-down 1)DDC (pull-down 2)

0 0.2 0.4 0.6 0.8

Pass-gate VT [V]

Control (pass-gate 1)Control (pass-gate 2)DDC (pass-gate 1)DDC (pass-gate 2)

-0.8-0.6-0.4-0.20

Pull-up VT [V]

Control (pull-up 1)Control (pull-up 2)DDC (pull-up 1)DDC (pull-up 2)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

VT [V]

V

T wit

hin

a w

afer

[V

]

Control (pull-down) DDC (pull-down)

Control (pass-gate) DDC (pass-gate)Control (pull-up) DDC (pull-up)

(a) (b) (c) (d)

Capping layer

|Vds|=0.9 V

Page 7: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

Fig.10 Distribution of VT matching for (a) pull-down pairs, (b) pass-gate pairs and (c) pull-up pairs within a wafer. (d) Intra die VT variation as a function of VT at Vdd=1.2V. VT is defined as Vg at Ids=3E-6*W/L [A] for NMOS and 1E-6 for PMOS.

Fig.12 Distribution of SNM for (a) DDC and (b) control.

Fig.14 VDD-min of 576K bit SRAM array. Single bit fail is counted as array fail.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Node 1 [V]

No

de

2 [V

]

(b) Control

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Node 1 [V]

No

de

2 [V

]

(a) DDC

Fig.11 Superposed butterfly curves of 65nm-node SRAM cell (0.54 m2) on (a) DDC and (b) control.

Fig.13 Measured (a) mean, (b) sigma, and (c) mean/1 of SNM.as a function of Vdd.

-100 0 100 200 300

SNM [mV]

Vdd=0.8VVdd=0.6VVdd=0.4V

-5

-4

-3

-2

-1

0

1

2

3

-100 0 100 200 300

SNM [mV]

Cu

mu

lati

ve

Pro

ba

bili

ty [

]

Vdd=0.8VVdd=0.6VVdd=0.4V

(a) DDC (b) Control

0

50

100

150

200

250

0.0 0.2 0.4 0.6 0.8 1.0

Vdd [V]

SN

M M

ean

[m

V]

Control

DDC

(a)

0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

Vdd [V]

SN

M 1

[m

V]

Control

DDC

(b)

0

1

2

3

4

5

6

7

8

9

10

0.0 0.2 0.4 0.6 0.8 1.0

Vdd [V]

SN

M (

mea

n/1σ

) [σ

]

Control

DDC

(c)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.2 0.4 0.6 0.8 1.0

Vdd [V]

No

rmal

ized

Yie

ld o

f 57

6K S

RA

M M

acro

Control

DDC

-3

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2Pull-down VT [V]

Cu

mu

lati

ve P

rob

abili

ty [

]

Control

DDC

-0.2 -0.1 0 0.1 0.2Pass-gate VT [V]

Control

DDC

-0.2 -0.1 0 0.1 0.2

Pull-up VT [V]

Control

DDC

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

VT [V]

VT/s

qrt

(2)

[V]

Control (pull-down) DDC (pull-down)

Control (pass-gate) DDC (pass-gate)

Control (pull-up) DDC (pull-up)

(a) (b) (c) (d)

Page 8: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

1

Advanced Channel Engineering Achieving Aggressive Reduction of

VT Variation for Ultra-Low-Power Applications

K.Fujita, Y.Torii, M.Hori, J.Oh, L.Shifren*, P.Ranade*, M.Nakagawa, K.Okabe, T.Miyake, K.Ohkoshi, M.Kuramae,

T.Mori, T.Tsuruta, S.Thompson*, T.Ema

Fujitsu Semiconductor Ltd. *SuVolta Inc.

Page 9: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

2

Outline• Introduction

• Transistor Structure

• Features of Process Flow and Verification

• 65nm 6T-SRAM Evaluation Results

• Summary

Page 10: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

3

Introduction

complicated

Power crisis

VDD lowering

VT variation

RDF

ETSOI, Tri-gate

Alternative solution

Page 11: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

4

Transistor structureDeeply Depleted Channel TM (DDC) Transistor

1

2

3

4

Depleted layer

VT setting offset layer

Screening layer

Anti-punch-through layer

Page 12: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

5

Process flowWell Implant

VT / Screen Layer Implant

Blanket Si Epi-layer Formation

STI Formation

Gate Dielectric Formation for HV

Gate Dielectric Formation for LV

Poly-Si Gate Formation

Extension Implant (No Halo)

SW Formation

S/D Formation

1

2

3

Page 13: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

6

TEM of DDC transistor

43.1nm

Page 14: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

Uniformity of epitaxial silicon

7

Avg. = 27.2nm, 1sigma = 0.25%

Page 15: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

8

TEM of low-temperature STI

S

D

Page 16: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

9

-0.5-0.4-0.3-0.2-0.1

00.10.20.30.40.5

0.1 1 10Gate Width [m]

VT [

V]

W-dependence of VT

NMOS

PMOS

L=0.045m

Page 17: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

10

NMOSPMOS

I-V characteristics L=0.045m|Vdd|=0.9, 0.1V

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Vg [V]

I d [

A/

m]

Page 18: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

Summary of STI

11

• Excellent STI profile

• No anomalous W dependence

• Nice sub-threshold characteristics

No concern about low temp. STI

Page 19: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

12

Breakdown of low-temperature GOX

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

2 3 4 5 6Breakdown Voltage [V]

LN

(-L

N(1

-F))

L=0.045mSg=1E-7cm2

Page 20: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

13

NBTI of DDC PMOS

10 years

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1 10 Vstress [V]

Lif

eti

me

@Id

-10

% [

se

c]

2 3 4 5

T=125ºCL=0.045m

Page 21: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

14

HCI of DDC

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10L

ife

tim

e@

Id-1

0%

[s

ec

]

1/Vdd [1/V]-1 10-0.5 0.5

AC 10 years @ Duty 2%

NMOSPMOS

T=25ºCL=0.045m

Page 22: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

15

Summary of GOX• Excellent distribution of breakdown

• Long enough life time for NBTI

• Long enough life time for HCI

No concern about low temp. GOX

Page 23: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

16

VT distribution of NMOS

-3

-2

-1

0

1

2

3

0.2 0.4 0.6 0.8Pull-down VT [V]

Cu

mu

lati

ve

Pro

ba

bil

ity

[

]

-3

-2

-1

0

1

2

3

0.2 0.4 0.6 0.8Pass-gate VT [V]

Cu

mu

lati

ve

Pro

ba

bil

ity

[

]Baseline Baseline

DDC DDC

Page 24: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

17

VT distribution of PMOS

-3

-2

-1

0

1

2

3

-0.8-0.6-0.4-0.2

Pull-up VT [V]

Cu

mu

lati

ve

Pro

ba

bil

ity

[

] , Baseline, DDC

Page 25: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

18

0.00

0.02

0.04

0.06

0.08

-0.8 -0.4 0 0.4 0.8VT [V]

V

T a

cro

ss

wa

fer

[V]

Baseline (pull-down)Baseline (pass-gate)Baseline (pull-up)DDC (pull-down)DDC (pass-gate)DDC (pull-up)

Summary of across-wafer variation

Baseline

DDC

Page 26: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

19

-3

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2Pass-gate VT [V]

Cu

mu

lati

ve

Pro

ba

bil

ity

[

]

-3

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2Pull-down VT [V]

Cu

mu

lati

ve

Pro

ba

bil

ity

[

]VT matching of NMOS

BaselineDDC

BaselineDDC

Page 27: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

20

VT matching of PMOS

-3

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2Pull-up VT [V]

Cu

mu

lati

ve

Pro

bab

ilit

y [

]

BaselineDDC

Page 28: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

21

Summary of VT matching

Baseline

DDC

0.00

0.02

0.04

0.06

0.08

-0.8 -0.4 0 0.4 0.8VT [V]

VT /

SQ

RT

(2)

[V]

Baseline (pull-down)Baseline (pass-gate)Baseline (pull-up)DDC (pull-down)DDC (pass-gate)DDC (pull-up)

Page 29: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

22

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0Node 1 [V]

No

de

2 [V

]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0Node 1 [V]

No

de

2 [V

]

Butterfly curves of 6T-SRAM

Baseline DDC

Page 30: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

23

SNM distribution

-5

-4

-3

-2

-1

0

1

2

3

-100 0 100 200

SNM [mV]

Cu

mu

lati

ve

Pro

ba

bil

ity

[

]

Baseline

DDC

Vdd=0.4V

Page 31: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

24

Vdd dependence of SNM

0123456789

10

0.0 0.2 0.4 0.6 0.8 1.0Vdd [V]

SN

M (

mea

n/1σ

) [σ

]BaselineDDC

Page 32: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

25

Vddmin of 576K bit SRAM array

0.0 0.2 0.4 0.6 0.8 1.0

Vdd [V]

Baseline

DDC

100

80

60

40

20

0

Yie

ld o

f S

RA

M m

acro

[%

]

Page 33: News Release...2011/12/07  · News Release 2011年12月7日 富士通セミコンダクター株式会社 SuVolta, Inc. 富士通セミコンダクターと SuVolta 、 SRAM 動作を約

26

Summary• Deeply Depleted Channel (DDC) transistor

has been introduced to reduce RDF.

• Process flow of DDC has been established.

• VT matching of SRAM has been reduced to less than half by DDC.

• Near to 0.4V operation of SRAM has been achieved.