Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla...

18
Momenti Momento di inerzia, momento di una forza, momento angolare

Transcript of Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla...

Page 1: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momenti •  Momento di inerzia,

•  momento di una forza, •  momento angolare

Page 2: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Conce&o  di  Momento  •  I momenti in fisica sono cose molto diverse fra loro. •  Certamente non hanno sempre la stessa unità di misura; ed avremo cura di definirli volta per volta •  Esistono momenti di inerzia, momenti di forze, momento della quantità di moto (anche detti momenti angolari), momenti torcenti, momento elettrici e momenti magnetici, etc.etc. •  Comunque, si introduce il concetto di momento quando una certa grandezza fisica già definita nei moti lineari viene ridefinita nei moti rotatori. Non possiamo essere più precisi nella definizione di «momento» perché di per se il significato non è univoco. •  In questa parte del corso noi ci interesseremo solo del

ü  Momento di una forza, ü  Momento di inerzia, ü  Momento della quantità di moto (o momento angolare)

Page 3: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  di  una  Forza  

Page 4: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  di  una  forza  •  Supponiamo di avere una porta vista dall’alto e supponiamo che sia incardinata su un lato, diciamo in A. •  Se applicassimo la stessa forza F in punti diversi, come nei punti 1, 2, 3, 4, 5 e 6; osserveremmo che il moto della porta sarebbe diverso a secondo della direzione della forza e del suo punto di applicazione. •  In qualche caso non si muoverebbe affatto, in altri si muoverebbe in senso orario e in qualche caso in senso antiorario •  In conclusione l’effetto di una forza che agisca (su un oggetto basculante o comunque incernierato) in un punto lontano dall’asse di rotazione dipende fortemente dal suo punto di applicazione e dalla direzione della forza

A  1

3

4

6

2

5

Page 5: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Prodo&o  ve&oriale  

1.  il modulo di tale prodotto vale, |τ| = |r||F|senθ, dove θ è l’angolo individuato dai vettori r ed F, quando sono traslati nello stesso punto d’origine

2.  la direzione di τ è perpendicolare al piano individuato dai vettori r ed F

3.  il verso segue la regola della mano destra

τ

F  r  

•  Per comprendere come agisce una azione applicata ad un punto qualsiasi (diverso dal centro di massa) di un corpo rigido è necessario introdurre una nuova operazione che si può fare con i vettori. •  L’algoritmo che descrivere l’effetto di un’azione applicata in un punto arbitrario di un corpo rigido è il prodotto vettoriale che si indica con τ =  r  x  F                    (-­‐  τ =  F  x  r  )  

Page 6: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

I  momen>  nelle  leve  •  Se la direzione delle forze (potenza P o resistenza R) e il vettore r , distanza dall’asse di rotazione sono perpendicolari, come nel caso delle leve, il calcolo dei momenti rispetto al fulcro è semplice; infatti in questi casi θ = 90° e senθ = 1. •  Il momento della forza τ è semplicemente il prodotto del braccio per il modulo della forza τ = r · F o τ = F · r

P   R  

P  

R  

F  

F  

R  

P  

F  

r   r  

b1  

b2  •  Per l’equilibrio di una leva τ = 0 e quindi deve valere la relazione: P · b1 = R · b2 ovvero b1/b2 = R/P Se ne conclude che per b1 > b2 allora R > P oppure se b2 > b1 allora P > R

b1  

b2  

Page 7: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Le  Leve  nel  corpo  umano    Le leve si dividono in tre categorie 1.  Leve di primo genere,

indifferenti (articolazione della testa)

2.  Leve di secondo genere, sempre

vantaggiose (sollevamento del calcagno)

3.  Leve di terzo genere, sempre

svantaggiose (sollevamento dell’avambraccio)

Page 8: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  di  Inerzia  

Page 9: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Energia cinetica rotazionale •  Abbiamo visto che Ek = ½ m v2 è l’energia cinetica riferita al moto di un punto materiale m che si muove con velocità v. •  Nel caso di un corpo in rotazione dovremo fare la somma delle Ek di tutti i punti del corpo in rotazione: Ek = Σi ½ mi vi

2

•  Se volessimo utilizzare la velocità angolare ω = v/ri, avremo per ciascun punto.

•  Quindi: Ek = Σi ½ mi ω2ri2 ovvero Ek = ½ ω2 Σi mi r2

i In questo modo la forma dell’energia cinetica in un moto rotatorio diviene omomorfa all’energia cinetica dei moti rettilinei e la grandezza Σi mi ri

2 = I , si chiama momento di inerzia ed è l’equivalente rotazionale della massa inerziale nei moti lineari.

Page 10: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  di  Inerzia  

dmrr

r∫=max

min

2I•   Se invece l’oggetto è una grandezza continua allora sarà più semplice calcolare:  

•  Come la massa si oppone alla variazione della velocità, così il Momento di inerzia si oppone alla variazione della velocità angolare, ma l’efficacia della sua opposizione dipende da come la massa è distribuita attorno all’asse di rotazione •  Se l’oggetto di cui vogliamo conoscere il momento di inerzia I è un sistema discreto di n punti basterà applicare per ogni punto la definizione di I = mr2 e poi sommare i vari contributi per ottenere in momento di inerzia totale.

21 in

irm∑=I

Page 11: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Casi  par>colari:  cilindro  cavo  

)(21

)()(21

42

22

2)2(

21

22

21

22

21

22

41

42

2

1

32

1

22

RRM

RRLRRRRL

drrLrdrLrdmr

rdrLdmLrdrdV

dVdm

R

R

R

R

+=

+−=−

=

=⋅==

=

=

=

∫∫ ∫

I

I

I

ρπρπ

ρπρπ

ρπ

π

ρ

LRRVM )( 21

22 −== ρπρ

Page 12: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  di  inerzia  di  una  sfera  

dz z

r

R

densitàsua la 34

Sia 3RMπ

ρ =

•  Si voglia calcolare il Momento di Inerzia di una sfera di massa M e raggio R •  •  Se poniamo l’origine degli assi al centro della sfera, avremo che il dischetto di spessore dz a distanza z dal centro avrà una massa pari a dm = ρ p r2 dz dove r2 = R2 - z2 ed R è il raggio del dischetto.

( )

( )

( )

2

55

0

5324

0

4

0

22

0

4

0

4224

222

22242

52

158

1516

532

22

21

21

21

21

MR

RRzzRzR

dzzdzzRdzRzzRRdz

zRdz

dzzRdzrdmrd

R

RRRR

R

R

=

==⎥⎦

⎤⎢⎣

⎡+−=

⎥⎦⎤+−⎢⎣

⎡=+−=

−=

−===

∫∫∫∫

∫−

I

I

I

I

I

ρπρπρπ

ρπρπ

ρπ

ρπρπ

334 RMπ

ρ =

Page 13: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momen>  di  Inerzia  Si  riportano  alcuni  corpi  rigidi  modello  di  cui  sono  no>  i  momen>  di  inerzia  

Page 14: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Teorema  degli  assi  paralleli  §  I  Momen>  di  Inerzia  dei  corpi  modello  

sono  molto  u>li,  ma  sono  tuH  calcola>  per  un  asse  di  rotazione  passante  per  il  centro  di  massa.    

§  Se  invece  volessimo  calcolare  il  momento  di  inerzia  di  un  corpo  rispe&o  ad  un  asse  parallelo  all’asse  di  rotazione  passante  per    il  baricentro  allora  dovremmo  fare  il  seguente  calcolo:

2

2222

222

22)()(

])()[(

MhII

ydmbxdmadmbadmyx

dmbyaxdmrI

cm +=

=−−+++=

=−+−==

∫ ∫ ∫∫∫ ∫

ques>  integrali  valgono  zero  

Page 15: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  Angolare  

Page 16: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  angolare  §  Come l’energia meccanica e la quantità di

moto, il momento della quantità di moto (o momento angolare) è una grandezza fisica che si conserva.

§  Il momento angolare è una grandezza vettoriale definita dal prodotto vettoriale fra la distanza r da un punto fisso e dal vettore quantità di moto p.

  L = r x p = m (r x v) §  Come calcolare il modulo, la direzione ed il verso è già stato detto nel calcolo del momento di una forza τ

Page 17: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Momento  della  quan>tà  di  moto  •  Supponiamo di avere un punto di massa m che si muove con velocità v, quindi la sua quantità di moto è p = mv. •  Il momento di questa quantità di moto rispetto ad un asse di rotazione passante per un punto qualunque q sarà L = r x p = r i x m v j = mvr k e in coordinate rotazionali sarà : L = m (v/r) r2 = m ω r2 •  Se invece di un solo punto ne dovessimo considerare un numero molto grande allora:

∫∫∫ ===

==2

1

2

1

2

1

22

2

r

r

r

r

r

rdmrdmrdLL

dmrrvdmdL

ωω

ωL = I ω p = mv

q

I  

Page 18: Momento di inerzia, momento di una forza, momento angolare · punto di applicazione e dalla direzione della forza A 1 3 4 6 2 5. Prodo&o’ve&oriale ... di un punto materiale m che

Conservazione  di  L  

( )

τ!!!

!

!!!!!!!

!!!

!!

!!!

=×=

×=×+×=

⎟⎠

⎞⎜⎝

⎛×+×=

×=

totFrdtld

amrvvarmdtld

vdtrd

dtvdrm

dtld

vrml )( La descrizione fin qui fatta ha riguardato il moto di un punto materiale attorno ad un punto fisso, ma anche per un corpo esteso si arriva alle stesse conclusioni.

τtot=  dL/dt        L=  l1+l2+…  ln  Se una derivata vale zero vuol dire che la sua funzione primitiva è costante.

Se il momento delle forze applicato ad un corpo è nullo τ = 0, allora il momento angolare L di quel corpo si conserva

Conosciamo la 2a legge della dinamica nella forma Fext = dp/dt e quindi possiamo dedurre che τext = dl/dt