Induzione elettromagnetica - INFN Bolognabruni/didattica/Esercizi_2011/11.InduzioneEM.pdfInduzione...

63
Induzione elettromagnetica Legge di Faraday Mutua induzione e auto-induzione Densita` di energia del campo magnetico

Transcript of Induzione elettromagnetica - INFN Bolognabruni/didattica/Esercizi_2011/11.InduzioneEM.pdfInduzione...

  • Induzione elettromagnetica

    n  Legge di Faraday n  Mutua induzione e auto-induzione n  Densita` di energia del campo magnetico

  • Induzione elettromagnetica Nel 1831 Michael Faraday scopre un nuovo fenomeno

    Muovendo un magnete rispetto ad una spira (e viceversa) si genera una corrente nel circuito

    Il verso della corrente dipende dal verso del moto e dall’orientamento del magnete

    Se facciamo passare della corrente in una spira, vi e` passaggio di corrente in una spira vicina solo al momento della accensione e spegnimento. Va a zero quando la corrente e` stazionaria.

  • Induzione elettromagnetica Nel 1831 Michael Faraday scopre un nuovo fenomeno

    Muovendo un magnete rispetto ad una spira (e viceversa) si genera una corrente nel circuito

    Il verso della corrente dipende dal verso del moto e dall’orientamento del magnete

    Se facciamo passare della corrente in una spira, vi e` passaggio di corrente in una spira vicina solo al momento della accensione e spegnimento. Va a zero quando la corrente e` stazionaria.

  • Induzione elettromagnetica Nel 1831 Michael Faraday scopre un nuovo fenomeno

    Muovendo un magnete rispetto ad una spira (e viceversa) si genera una corrente nel circuito

    Il verso della corrente dipende dal verso del moto e dall’orientamento del magnete

    Se facciamo passare della corrente in una spira, vi e` passaggio di corrente in una spira vicina solo al momento della accensione e spegnimento. Va a zero quando la corrente e` stazionaria. (dimostrazione)

  • Legge di Faraday

    ! i = !d"(!B)

    dt

    La variazione temporale del flusso del campo magnetico concatenato ad un circuito genera nel circuito una f.e.m. pari all’opposto della derivata del flusso rispetto al tempo.

    La f.e.m. corrisponde alla circuitazione di un campo elettrico (indotto e non conservativo)

  • Legge di Faraday

    ! i = !d"(!B)

    dt

    !E !d!r = " d

    dtC!#

    "B !!ndA

    $(C )#La fem dipende dal circuito (E non

    e` conservativo)

    Legge di Lenz “ – “

  • Legge di Lenz n  Per una spira chiusa la f.e.m. indotta genera una corrente elettrica

    i =! iR= !

    1Rd"(B)dt

    n  La corrente genera un campo magnetico indotto

    n  Il segno della corrente e` tale che il campo magnetico indotto genera una forza che si oppone alla variazione

  • Esempio Una spira piana di sezione S e resistenza R e` immersa in un campo magnetico unfiorme che forma un angolo α con la normale alla spira. Il modulo del campo magnetico varia nel tempo secondo una legge periodica: B(t)=B0cos(ωt). Si vuole determinare la corrente i(t) che circola nel circuito.

    ! = !d"dt

    = !ddt

    !B #!ndA$ = ! ddt BS cos! = !S cos!

    dBdt

    = !S cos!(!"B0 sin"t) = SB0 cos! sin"t

    i(t) = !R=SB0 cos"R

    sin#t = i0 sin!t

  • Esempio Una spira quadrata di lato L e` immersa in un campo magnetico che varia nel tempo secondo la legge

    ! = !d"dt

    = !ddt

    !B #!ndA$ = ! ddt

    !B "!ex dA#x

    y

    z

    L

    !B(t) = Az sin(!t)

    !ex + Bycos(!t)

    !ez

    = !ddt

    Bx dydz0

    L

    "0

    L

    " = !A ddt z dydz0

    L

    "0

    L

    "#

    $%

    &

    '(sin(!t)

    = !A L3

    2ddtsin(!t) = !A L

    3

    2! cos(!t) i =

    !R

  • Esempio n  Bobina di N spire, sezione S, resistenza R !B(t) =

    !B0tt0

    (0 ! t ! t0 ) !B (t) = NSB = NSB0tt0

    ! I = !d"Bdt

    = !NSB0t0

    i = ! IR= !NSB0Rt0

    opposizione alla variazione di B

    q = i dt0

    t0

    ! = it0 =NSB0R

    carica totale potenza dissipata P = ! I ilavoro W = Pt0

  • Esempio: spira rotante in un campo magnetico

    !(B) = BL2 cos! = BL2 cos"tspira quadrata di lato L

    ! i = !d"dt

    = BL2" sin"t!max = BL

    2"

    i =! iR

    P = ! ii = Ri2 =

    ! i2

    R=!max2

    Rsin2"t

  • Esempio: spira rotante in un campo magnetico

    P =!max2

    Rsin2"t

    !max = BL2"

    media su un periodo P =!max2

    2Rdal punto di vista della potenza il generatore di corrente alternata equivale a un generatore in cc con f.e.m. efficace

    Veff =!max2

  • Esempio: spira rotante in un campo magnetico

    aaaa

    t

    E0 I

    p

    P =!max2

    Rsin2"t

    aa

    t

    i

    I

    i =! iR=BL2"R

    sin"t

    i

    Riε

  • Esempio: principio del motore elettrico Trasformazione di energia

    elettrica in energia meccanica

    sbarretta mobile percorsa dalla corrente i lunga “l”

    !B = B

    !ez id

    !l = idy

    !ey!

    F1 = il!ey !!ez = iBl

    !ex

    ! ! I = "d#Bdt

    = "vBl

    !B (t) = v t " l "B

    ! i = V0 +! IR

    =V0 " vBlR

    F1 V0

    B

    F0 i

    generatore di f.e.m.

    v forza resistente

    x

    y

    z

  • Esempio: principio del motore elettrico

    V0

    B

    F1 F0 i

    v Il generatore tiene costante la f.e.m. V0 e varia solo la corrente

    md vdt

    = F1 !F0

    md vdt

    = iBl !F0

    d vdt

    =V0 ! vBlmR

    Bl ! F0m

  • Esempio: principio del motore elettrico d vdt

    =V0 ! vBlmR

    Bl ! F0m

    =V0BlmR

    !F0m! v (Bl)

    2

    mR

    !! " " v

    α β

    se v(0)=0 !d v

    ! " " v= dt d v

    ! ! " v0

    v

    " = t

    !1!log" ! ! v

    "= t

  • Esempio: principio del motore elettrico v(t) = v

    !1" e! t /!( ) ! !1 = B

    2l 2

    mRv!=V0Bl

    "RF0B2l 2

    n  A regime (t >> τ) la velocita` diventa costante.

    n  La forza totale applicata e` nulla, il moto uniforme.

    i!=V0 " v! Bl

    R=F0Bl

    ! I ,! = "v! Bl = "V0 +RF0Bl

    P!=V0i! = (Ri! "! I ,! )i! = Ri!

    2 +F0 v!

    potenza dissipata nella resistenza potenza meccanica per vincere F0

  • Origine fisica della legge di Faraday

    n  Come abbiamo visto, ci sono due casi primitivi da considerare q  un conduttore e` in moto relativo rispetto alle

    sorgenti di un campo magnetico q  un campo magnetico variabile nel tempo si

    concatena con un circuito a riposo

  • Ancora sul legame E vs B n  Magnete permanente in moto rispetto ad una

    spira q  osservatore solidale con il magnete

    n  la spira si muove nel campo magnetico del magnete e i suoi elettroni si mettono in moto sotto la forza di Lorentz

    n  il campo magnetico spiega tutto q  osservatore solidale con la spira

    n  il magnete si muove, il flusso concatenato cambia, nasce una f.e.m. indotta e gli elettroni si mettono in moto

    n  introduco il campo elettrico indotto che spiega tutto n  I campi elettrico e magnetico sono componenti

    del “tensore del campo elettromagnetico”

  • Osservatore solidale con il magnete

    n  Conduttore in moto relativo rispetto alle sorgenti di un campo magnetico

    velocita` v

    Forza di Lorentz sugli elettroni

    Campo elettromotore !E =!v!!B

    Moto degli elettroni lungo la spira

    f.e.m. ! i =!E !d!l =

    !v"!B( )!#!# !d

    "l

    = d!l !!v( ) "!B!# = d

    !l ! d!rdt

    "

    #$

    %

    &' (!B!)

    t

    vdt

    t+dt

  • Osservatore solidale con il magnete

    dr = v dt

    dl dA’n = dl x dr

    dA’

    dA t t+dt

    Φt+dt(B)

    Φt (B)

    dΦ’t (B)

    d!l ! d!r = dA'

    !n

    d!l ! d!r( ) "!B = dA'

    !B "!n

    = d!' flusso attraverso il parallelogramma d

    !l ! d!r

    Integrando sulla spira si ha il flusso sulla faccia laterale descritta dal movimento della spira

    d!t (!B) = d

    !l " d!r( ) #!B"$ =

    !B #!n

    d %$ dA'

  • Osservatore solidale con il magnete

    d!t (!B) = d

    !l " d!r( ) #!B"$ =

    !B #!n

    d %$ dA'

    Dato che il campo magnetico e` solenoidale

    !t+dt "!t + d!t = 0

    d! " !t+dt #!t = #d!t! i =

    !v!!B( )!" #d

    "l

    =d!tdt

    = "d!dt

    La f.e.m. indotta e` dovuta alla variazione nel tempo del flusso tagliato dal circuito nel suo moto

    dr = v dt

    dl dA’n = dl x dr

    dA’

    dA t t+dt

    Φt+dt(B)

    Φt (B)

    dΦ’t (B)

  • Osservatore solidale con il circuito

    n  Il circuito e` fisso. Il campo magnetico varia con il tempo.

    Non c’e` forza di Lorentz

    Dobbiamo introdurre un campo elettrico indotto

    Il campo indotto e` legato alla variazione del campo magnetico

  • Legge di Faraday: forma differenziale

    !E !d!r = " d

    dt!#"B !!ndA

    $

    # = ! "!B"t

    #!ndA

    $

    %

    =!!"!E( ) # !ndA

    $!%

    Stokes

    !!"!E = # $

    !B$t

    n  E` possibile definire la tensione tra 2 punti

    n  Non coincide con una differenza di potenziale (la tensione dipende dal percorso)

    varia solo il campo

  • Ancora sui conduttori in moto in un campo magnetico

    n  Su una generica carica di un conduttore in moto in un campo magnetico agisce la forza di Lorentz:

    n  In prima approssimazione la legge di Ohm si modifica come:

    !F = q(

    !E + !v!

    !B) = q

    !E*

    !J =!

    !E*

  • Ancora sui conduttori in moto in un campo magnetico

    n  Dimostriamo matematicamente che se: n  allora:

    !E !d!r = " d

    dtC"#

    !B ! #n dA

    $

    #

    !E* !d!r = " d

    dtC (t )"#

    !B ! #n dA

    $(t )#

  • Legge di Lenz: conseguenze

    n  La f.e.m. indotta genera una corrente che tende ad opporsi alla variazione di flusso

    n  In un solenoide percorso da una corrente variabile il flusso varia e l’induzione genera una forza contro-elettromotrice

    n  Se la derivata del flusso e` grande (apertura di colpo di un interruttore in un solenoide) si genera una grossa d.d.p. con conseguenze anche pericolose

  • Legge di Lenz: conseguenze

    n  Conduttore perfetto (R=0, superconduttore) q  con R=0 la legge di Ohm direbbe che data una

    fem ε piccola a piacere la corrente sarebbe “infinita”

    q  Lenz: qualunque variazione di un B produce un B opposto e nessun flusso magnetico penetra nel superconduttore

    q  avvicinando un magnete a un superconduttore le correnti di Foucault (“vorticose”) generano un campo che si oppone al movimento [effetto Meissner, levitazione magnetica]

  • Comportamento magnetico dei materiali - classificazione

    !B0 campo magnetico nel vuoto !B

    campo magnetico in un materiale corrispondente alle stesse sorgenti esterne

    BB0

    ! µrpermeabilita` magnetica relativa

    B ! B0 = (µr !1)B0 = !B0suscettivita` magnetica

  • Comportamento magnetico dei materiali - classificazione

    n  Sostanze diamagnetiche

    µr < 1, ! < 0 χ costante al variare di B il campo esterno genera una variazione del momento angolare orbitale degli elettroni (precessione di Larmor) che induce un campo in opposizione a quello esterno

    !0.42 "10!5 Si!0.90 "10!5 H2O

    !0.45 "10!8 H

  • Comportamento magnetico dei materiali - classificazione

    n  Sostanze paramagnetiche

    µr > 1, ! > 0 correnti amperiane equiverse a quelle di conduzione

    ! (T ) =C "T

    legge di Curie effetti piccoli

    ! ! 10!4 ÷10!5

    Allineamento dei momenti di dipolo magnetico di atomi con elettroni spaiati – principio di esclusione di Pauli

  • Comportamento magnetico dei materiali - classificazione n  Sostanze ferromagnetiche

    ! ! 103 ÷105funzione non univoca (isteresi)

    ! = ! (B)

    5 elementi (+composti): Fe, Co, Ni, Ga, Dy

    Interazioni tra spin inducono interazione tra momenti magnetici di atomi adiacenti. Per T>Tcurie (=1024 K per il Fe) i legami si spezzano à diamagnetici

    Domini di Weiss – fenomeno quantistico, non spiegabile classicamente

    Magnetizzazione persistente anche dopo la rimozione del campo esterno

  • Materiali diamagnetici

    n  diamagnetismo q  tutti i materiali sono diamagnetici q  normalmente il diamagnetismo e` mascherato dal

    paramagnetismo e ferromagnetismo q  gli elettroni in movimento intorno al nucleo sono dei piccoli

    dipoli magnetici (valore medio macroscopico nullo) q  in presenza di un campo magnetico esterno cambia la

    velocita` di rotazione degli elettroni e si genera un campo magnetico che si oppone a quello esterno

    q  il campo e` molto piccolo; la suscettivita` magnetica dell’acqua e` χ = -9.05 x 10-6

    q  un superconduttore ha diamagnetismo perfetto: χ = -1

  • Esempio: levitazione di una rana

    Radboud University Nijmegen, High Field Magnet Laboratory [HFML]

    Campo magnetico di 16 T

    Diamagnetismo: effetto debole – ma con alti campi magnetici puo` dare effetti spettacolari

  • Legge di Lenz - conseguenze n  Se si avvicina un magnete ad un conduttore reale, le correnti di Foucault,

    (si estinguono dissipate in effetto termico) “frenano” il moto del magnete (~ attrito viscoso)

    V = BLdxdt

    = BLv i = VR

    F1 = !iLB = !B2L2 vR

    n  Forza opposta a quella applicata, proporzionale alla velocità

    P = dWdt

    = F dxdt

    = F v = !B2L2 v2

    R

    x

    !F2 = !

    !F3

    =Vi

    n  il flusso concatenato cambia

  • Mutua induzione e autoinduzione

    n  Legge di Faraday q  relazione tra le variazioni di corrente in un circuito

    e gli effetti prodotti nel circuito stesso e in quelli vicini

    n  Fattorizzazione del flusso del campo magnetico in una parte dipendente dalla corrente e una dalla geometria q  non vale per i materiali ferromagnetici, non lineari

    – B non e` proporzionale a i

  • Mutua induzione e autoinduzione

    n  Approssimazioni q  formule valide per i campi stazionari applicate

    anche ai campi variabili nel tempo q  buona se la variazione e` lenta rispetto al tempo

    td=d/c (d=dimensioni lineari del circuito) q  condizioni quasi-stazionarie ( con ottima

    approssimazione) B i∝

  • Mutua induzione e autoinduzione

    N circuiti

    kj

    !k (!Bj ) = M jki j

    Flusso del campo magnetico generato dal circuito j percorso dalla corrente ij concatenato con il circuito k

    ! j (!Bk ) = Mkjikcoefficienti di mutua induzione

  • Mutua induzione e autoinduzione

    !k (!Bj ) = M jki j

    M jk!" #$=%!" #$i!" #$=WbA

    = H (Henry)

  • Mutua induzione e autoinduzione

    n  Una variazione della corrente in un circuito provoca una variazione anche del flusso del campo magnetico concatenato con il circuito stesso

    !k (!Bk ) = Mkkik ! Lkik (Li)

    coefficiente di auto-induzione o induttanza del circuito

  • Mutua induzione e autoinduzione

    M jk = Mkj!B =!!"!A (rigorosamente valida nel caso stazionario)

    !A(!r ) =

    !Ak (!r ) = µ0

    4!k! ikd

    !lk!

    r "!rkCk

    !#k!

    Per distribuzione di correnti in circuiti filiformi

  • Mutua induzione e autoinduzione n  Flusso concatenato con il circuito j

    ! j =!"#!Ak( ) $

    !nj dA

    % j

    &k' =

    !Ak !d

    !l j

    C j!"

    k#

    =!Aj !d

    !l j

    C j!" +

    µ04!

    ikd!l j !d!lk

    !rj #!rkCk

    !"C j!"

    k$ j%

    ! Li j + M jkikk" j#

    Simmetrico rispetto allo scambio degli indici

    Mjk dipendono solo da forma e posizione dei circuiti

  • Mutua induzione e autoinduzione n  Due soli circuiti

    M12 = M21 ! Mn  Legge di Faraday

    ! I = !d"dt

    = !M didt

  • Esempio: solenoidi accoppiati

    N avvolgimenti, sezione A

    NE avvolgimenti, sezione S > A El

    BE =µ0iNElE

    I coefficienti di mutua induzione sono simmetrici. Conviene calcolare il coefficiente del grande rispetto al piccolo perche` il suo campo magnetico ha una espressione semplice.

    ! = NABE = µ0ANNElE

    i

    M

  • Esempio: due spire concentriche

    i(t) = i0 sin!t

    i(t)

    ε?

    R

    r

    r

  • Esempio: filo parallelo a una spira rettangolare

    d!(r) = Bfiloadr =µ0i2! r

    adr

    ! = d!d

    d+b

    " =µ0a2!ln(1+ b

    d)i

    r bd

    spira di dimensioni a, b

    Flusso del campo generato dal filo attraverso la spira (piu` semplice)

    b

    adr

    dr

    M

  • Induttanza n  Coefficiente di proporzionalita` tra la corrente

    che circola in un circuito e il flusso del campo magnetico da essa generato concatenato con il circuito stesso

    ! I = !Ldidt

    Esempio: solenoide lungo l, N spire, sezione A (approssimazione “infinito”)

    B = µ0Nil

    ! = NAB = µ0N2Al

    i Lsolenoide =µ0N

    2Al

  • Serie e parallelo di induttanze

    n  In un circuito un induttore e` un elemento che possiede una induttanza di valore dato e di solito molto piu` grande di quella degli altri elementi presenti

    n  La resistenza di un induttore e` idealmente

    nulla, in pratica spesso trascurabile n  Due o piu` induttori possono essere collegati

    in serie o parallelo, originando un induttore equivalente

  • Serie di induttanze

    L1 L2

    ε1

    ε2

    f.e.m. indotte

    Se disaccoppiate

    ! = !L1di1dt

    ! L2di2dt

    = !(L1 + L2 )didt

    N induttanze disaccoppiate in serie

    L = Lii=1

    N

    !

  • Serie di induttanze

    L1 L2

    ε1

    ε2

    f.e.m. indotte

    Se il coefficiente di mutua induzione M non e` trascurabile

    L = L1 + L2 ± 2M(segno positivo per correnti equiverse nelle due induttanze)

    M 2 ! kL1L2 (0 " k " 1)

  • Parallelo di induttanze

    L1 L2

    i2i1i

    i = i1 + i2! = !L di

    dt= !L di1

    dt! L di2

    dtdi1dt

    = !!L1

    di2dt

    = !!L2

    induttanze disaccoppiate

    1L=1L1+1L2

  • Parallelo di induttanze

    L1 L2

    i2i1i

    i = i1 + i2! = !L di

    dt= !L di1

    dt! L di2

    dtdi1dt

    = !!L1

    di2dt

    = !!L2

    N induttanze disaccoppiate

    L!1 = Li!1

    i=1

    N

    "

  • Densita` di energia del campo magnetico

    n  Circuito in cui si varia l’intensita` della corrente che vi circola q  nel circuito si genera una f.e.m. autoindotta q  la f.e.m. si oppone alla variazione q  un generatore di f.e.m. esterno deve compiere del

    lavoro q  il lavoro compiuto equivale ad un trasferimento di

    energia q  questa energia viene immagazzinata nel campo

    magnetico

  • Densita` di energia L

    R V

    T

    n  Apertura e chiusura di T

    n  Variazioni di corrente nel circuito

    n  f.e.m. di autoinduzione

    V +VL = Ri

    ! V = Ri "VL = Ri + Ldidt

  • Densita` di energia L

    R V

    T

    V = Ri + L didt

    diV ! Ri

    =dtL

    !1Rln V ! RiV ! Ri0

    =t ! t0L

  • Densita` di energia L

    R V

    T

    !1Rln V ! RiV ! Ri0

    =t ! t0L

    V ! Ri = (V ! Ri0 )e!RLt (t0 = 0)

    Ri =V ! (V ! Ri0 )e!RLt =V (1! e

    !RLt)+ Ri0e

    !RLt

    i(t) = VR(1! e

    !RLt)+ i0e

    !RLt

  • Densita` di energia L

    R V

    T

    i(t) = VR(1! e

    !RLt)+ i0e

    !RLt

    n  Chiusura del circuito: i(0)=0

    i(t) = VR(1! e

    !RLt)

    Corrente di regime i(t)! i" =VR

    velocita` con cui si raggiunge il valore asintotico regolato dalla costante di tempo del circuito ! = L / R

    i!" i(t) extracorrente di chiusura

  • Densita` di energia L

    R V

    T

    i(t) = VR(1! e

    !RLt)+ i0e

    !RLt

    n  Apertura del circuito: i(0)=V/R

    i(t) = VRe!RLt

    ( )i t extracorrente di apertura

    diversa da zero per un breve tempo (qualche R/L)

    V = 0

    (d.d.p. ai capi dell’interruttore)

  • Potenza dissipata

    n  Dall’istante in cui viene chiuso il circuito

    Vi = Li didt+ Ri2 i(t) = V

    R(1! e

    !RLt)

    V = L didt+ Ri = L V

    RRLe!RLt"

    #$

    %

    &'+ RV

    R(1! e

    !RLt)

    =Ve!RLt+V (1! e

    !RLt)

    WLWGen

    = e!RLt

    WRWGen

    = 1! e!RLt

  • Densita` di energia n  Induttanza L percorsa da una corrente i(t) variabile nel

    tempo a partire da i(0)=0 n  f.e.m. autoindotta ε che si oppone alla variazione n  Lavoro compiuto nel tempo dt:

    dW = !dq = !idt = !L didtidt = !Lidi

    lavoro esterno per bilanciare quello del campo autoindotto

    dW ext = !dW = Lidi = d(12Li2 )

  • Densita` di energia n  Lavoro immagazzinato sotto forma di energia

    potenziale del campo magnetico

    n  Solenoide indefinito

    L = µ0AN2

    l=µ0AlN

    2

    l ! l= µ0Vn

    2

    UB =12Li2

  • Densita` di energia

    L = µ0Vn2 UB =

    12Li2

    UB =12µ0Vn

    2i2 = 12µ0

    µ02Vn2i2 = 1

    2µ0VB2

    uB =dUBdV

    =B2

    2µ0

    densita` di energia immagazzinata in un campo magnetico nel vuoto

  • Esercizio: cavo coassiale n  Due superficie cilindriche conduttrici coassiali

    1r

    2r

    Immersi in un materiale di permeabilita` magnetica relativa µr

    Corrente di uguale intensita` ma versi opposti

    01 2 2rir r r Br

    µµ

    π< < = ⋅

    ( )d r BldrΦ =per una lunghezza l 02

    r li drr

    µ µπ

    =

    0 2

    1

    ln2r li r

    rµ µπ

    ⇒Φ =0 2

    1

    ln2

    r rdLdl r

    µ µπ

    =