III. La matematica delle civiltà...

22
1 III. La matematica delle civiltà mesopotamiche La terra fra i due fiumi Linea di costa nel III millennio Area di influenza degli Accadi all’epoca di Sargon I (2350 a. C.) Confini del regno di Hammurabi (1792-1750 a. C.) Area di influenza delle prime città stato sumere (IV-III millennio a. C.)

Transcript of III. La matematica delle civiltà...

Page 1: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

1

III.La matematica

delle civiltà mesopotamiche

La terra fra i due

fiumiLinea di costa nel III millennio

Area di influenza degli Accadiall’epoca di Sargon I (2350 a. C.)

Confini del regno di Hammurabi(1792-1750 a. C.)

Area di influenza delle primecittà stato sumere (IV-III millennio a. C.)

Page 2: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

2

Tavola cronologica

L’arte sumericanon ha come fine la ricerca estetica

del bello, ma nasce come

manifestazione dello spirito religioso chepermea ogni

realtà.

StaticitàRipetizione

“Stendardo di Ur” (metà III millennio a.C., BM)mosaico di conchiglie, lapislazzuli e calcare rosso che rappresenta scene di guerra

Page 3: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

3

L’elemento architettonico più caratteristico dell’architettura mesopotamica è la Ziggurat, torre a terrazze.

Ziggurat di Ur sulla cui sommità era costruito il tempio dedicato al dio della luna Nanna (L. Woolley)

[1850] [1924]

Torre di BabeleTavoletta (229 a. C) con la pianta e le

misure, Ricostruzione di Wiseman

La Ziggurat di Babilonia, la Torre di Babele, constava di 7 terrazze. Era alta 90 metri e all’ultimo piano c’era la cella del Dio Marduk.

P. Bruegelil Vecchio (1563)

Page 4: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

4

Gilgamesh, V re della I dinastia di Uruk“Ercole sumerico”

L’epopea di Gilgamesh affronta i grandi temi dell’umanità:

angoscia davanti alla morte, desiderio dell’immortalità e la

vana ricerca della felicità.

“I giorni dell’uomo sono contati:

qualunque cosa egli faccianon è altro che vento”

Gilgamesh contro il toro celeste(sigillo cilindrico accadico)

Gilgamesh, VIII sec a. C.Parigi, Louvre

circa 300 tavolette di argilla scritte in caratteri cuneiformi risalenti a tre periodi:

3000-2100 a.C.Epoca paleobabilonese 1800-1595 a. C.Epoca Seleucide (304-141 a. C.)

Tavole di moltiplicazione, tavole di inversi, elenchi di misure con passaggi da un’unità di ordine

Tavole di calcolo inferiore a una di ordine superiore e viceversa, tavole di potenze, tavole di radici quadrate,ecc.con o senza soluzione

Tavole di problemi ricette di calcoloniente simbolismonessuna dimostrazione

Fonti per la matematica mesopotamica

Page 5: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

5

I contributi decisivi allo studio delle tavolette matematiche risalgono però solo agli anni

1930-1960.Neugebauer, Thureau-Dangin,

Bruins

Lettera di Pietro della Valle (1621), uno dei primi esempi di caratteri cuneiformi pervenuti in Europa.

G.F. GrotefendH.C. Rawlinson

J. Oppert, F. Thureau-Dangin

contribuirono alladecifrazione della

la scrittura cuneiforme (1802-1905)

Roccia di Behistuncon iscrizione trilingue

H.C. Rawlinson

La matematica non è intesa come un’attività speculativa astratta, ma un prodotto sociale generato dai bisogni di una società in continua espansione. Nasce e si sviluppa nei templi come strumento per l’amministrazione della città (costruzione di edifici e canali, computo dei giorni necessari per condurre a termine un lavoro, divisione di eredità, calcolo di interessi, riscossione di imposte, …)

“Ricopiare testi modello costituiva una parte essenziale del programma di studi delle scuole paleobabilonesi (1900-1500 a.C.). Molti testi contenevano elenchi e tabelle ... Eseguendo questi compiti di ricopiatura, lo studente si esercitava nella scrittura cuneiforme e al tempo stesso accumulava una piccola biblioteca personale di tavolette” [Friberg 1984]

♦ la veste concreta dei problemi è dovuta alla funzione didatticadei testi♦ la classificazione dei problemi a seconda del tipo di soluzione è

sintomo di consapevolezza della generalità

Caratteri delle matematiche mesopotamiche

Page 6: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

6

L’origine dei segni numerici e le “bullae” di argilla con gettoni

Bulla con gettoni, Susa, ca 3300 a.C., Louvre

Bassa Mesopotamia, 3100 a. C.

Le bullae molto probabilmente servivano nelle transazioni commerciali. I gettoni contenuti descrivevano la merce inviata. Rompendo la bulla l’acquirente poteva verificare se la merce corrispondeva. Successivamente si iniziò ad imprimere sulla superficie della bulla i vari gettoni

Passaggio dai gettoni ai simboli numerici

70 montoni

4 mucche

1 10 60 600 3600 36000

Sistema di numerazione sumerico (3000 a. C.)

Esisteva anche il termine šar-gal(= grande šar) per indicare 216000 (603), ma non il simbolo

Sistema di numerazione additivo, sessagesimale misto,basato sull’uso congiunto

della base 60 e 10

uomo

Page 7: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

7

Tavoletta sumera del 2850 a. C.In un primo tempo le tavolette erano scritte secondo linee verticali da destra a sinistra

Verso il 2600 a. C. i segni subirono una rotazione di 90° in sensoantiorario e vennero disposti in linee orizzontali da sinistra a destra

15sacchi

di orzo

145sacchi

vari

30s. di gra-no

15volatili

60s. di ?

40s. di ?

15volatili

Firma?

Colonna 1

60+10+10 montoni maschi

Tavoletta sumerica2300 a. C.

60+60+10+ +10+10+10+6 capretti

Page 8: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

8

La più antica

divisione,2650 a. C.

1 granaio d’orzo = = 1152000 silà = 32×36000 silà

32×36000 : 7

1 granaiod’orzo

Come ha trovato la soluzione lo scriba?Probabilmente con una serie di divisioni successive con opportune conversioni da un’unità a quella immediatamente inferiore. [Guitel 1963]

7 silà

Ogni uomo riceve

I suoi uomini? 3 silà d’orzo

rimasti

36000 36000

36000 36000

3600 3600 3600

3600 3600

600 600 60

600 600 60

10 10 10 10 10 1

3 110 101

1036 606 6002 6002

60003 36005 360040 360004

7 3600032

restoaparirestoapariresto

aparirestoapariresto

apariresto

××××××××××

×

1 105 602

6004 36005

360004

×××××

La risposta è164571

32×36000 : 7

Page 9: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

9

Fa la sua comparsa nell’ambiente colto all’inizio del II millennio a.C. come strumento per la matematica e più tardi per l’astronomia

I numeri da 1 a 59 sono scritti in modo additivo con la base ausiliaria 10, per i numeri superiori a 60 è utilizzato il principio

di posizione

Sistema di numerazione sessagesimale posizionale

Manca lo zero sia in posizione mediale che finale

Ci troviamo davanti a due tipi di ambiguità:- una derivante dalla mancanza dello zero- l’altra derivante dalla difficoltà di sapere come devono essere raggruppati i segni

“Lo zero è la cifra più importante. È un colpo di genio fare di un nulla qualcosa attribuendogli un nome e creando un simbolo per esso” [Van der Waerden]

Testo V di Susa

Page 10: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

10

50 × 25 = 1250 == 20 × 60+ 50

Tavola di moltiplicazione per 25 (ca 1600 a.C.) [TMS, 35]

Fronte Retro

10 × 25 = 250 == 40 × 60+ 10

Ci sono pervenute numerose tavole di moltiplicazione, di quadrati (n a-rá n), di radici quadrate (n2-e n íb-si8), di radici cubiche (n3-e n ba-si8), di somme di quadrati e di cubi, di an al variare di n, di inversi (igi n gál-bi 1/n), ...

Cilindro A 7897 [MCT, 24-25]tavole di moltiplicazioni “combinate”

Page 11: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

11

La divisione

L’inverso di ogni numero regolare, cioè contenente cioè solo i fattori 2, 3, 5 ( i fattori primi di 60) è esprimibile con una frazione sessagesimale finita

La divisione viene effettuata moltiplicando il dividendo per l’inverso del divisore.

50;0 615

65

40;0 312

32

1;0 601

×=

×=

10;0 6010

61

20;0 6020

31

30;0 6030

21

=

=

=

Le frazioni sessagesimali sono poste sullo stesso piano degli interi, fatto notevole se si pensa che il sistema di numerazione indiano (che diviene il nostro) concerneva solo l’espressione

degli interi e si passò assai tardi alla nozione di frazioni decimali che cominciarono a diffondersi in Europa solo alla

fine del ‘500 [S. Stevin, De Thiende, 1585]

45,3;0

6045

603

60604360

603

6043

412

604

15

6016160

161

2

+=×

×+=

+==

×=

Page 12: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

12

Gli inversi dei numeri irregolari come 7, 11, 13, … danno luogo a frazioni sessagesimali infinite periodiche

Nella più antica tavola di inversi (1800 a.C. circa) ci sono gli inversi dei numeri da 2 a 60.

2 Igi 30 la metà [di 60] è 303 Igi 20 la terza parte [di 60] è 20

…….59 Igi nu la cinquantanovesima parte [di 60] non c’è

1 Igi 1 la sessantesima parte [di 60] è 1Quando si tratta di calcolare gli inversi di 7, 11, 13, …59 lo scriba scrive che tali numeri non hanno inverso.

In YBC 10529 (Yale) c’è il calcolo approssimato degli inversi di numeri irregolari, per es. 1/59 0;1,1,1 [MCT, 16]

Tabella di inversi di numeri compresi fra 1 e 3[MKT, I, 14-22]

Louvre AO 6456 Igi 3 gál-bi 20

Page 13: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

13

Approssimazione di , circa 1800 a.C.

Sul lato del quadrato è scritto 30 e sulla diagonale sono segnati i numeri 1; 24, 51, 10 e 42; 25, 35.La diagonale è ottenuta così: 42; 25, 35 = 30 × 1; 24, 51, 10

2

YBC 7289MCT,42-43

42; 25, 35 = 30 × 1; 24, 51, 10

AC = 30

1; 24, 51, 10 = 1, 414213

approssimazione molto buona diA C

B

2×302

302

2

2

Questa tavoletta da sola non dimostra che i Babilonesi conoscessero il “teorema di Pitagora” nella sua generalità, ma esistono altre tavolette in cui questo teorema viene usato in modo palese [p. e. MCT,142]

Page 14: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

14

Plimpton 322 (1800 a.C., MCT, 38-39)

La tavoletta mostra un elenco ordinato di numeri relativi a 15 terne pitagoriche, cioè terne di numeri interi che soddisfano la relazione

La I colonna della tavoletta presenta i valori corrispondenti al rapporto mentre la II e la III i valori di b e di c, rispettivamente. L’ultima colonna indica invece semplicemente i numeri d’ordine, da 1 a 15, delle terne.

2 2b a

222 cba =+

Le terne sono tutte primitive (con a e b primi fra loro) tranne la 11a e la 15a

222 cba =+

È possibile che i Babilonesi

conoscessero il meccanismo

di formazione della terne pitagoriche :

22

22

2

vuc

vub

uva

+=

−=

=

Euclide, Elementi, X,28.1

Numerid’ordine c ab

vuvu

>interi e

722+652=5184+4225= 9409=972

Page 15: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

15

Tavoletta AO 6484 (epoca seleucide)Somma dei quadrati dei naturali

da 1 a 10

Lurje 1948

“Quadrati da 1 volte 1 fino a 10 volte 10: 100Qual è il numero? Tu moltiplicherai 1 per 1/3: 1/3Tu moltiplicherai 10 per 2/3: 20/3. 1/3 + 20/3: 7. Tu moltiplicherai 7 per 55: 385.Il numero è 385”.

∑=

++=

+×⎟⎠⎞

⎜⎝⎛ +

=×⎟⎠⎞

⎜⎝⎛ ×+×

n

innni

nnn

1

2 )12)(1(61

2)1(

32

31

385553210

311

1

4

3

2

5

1

n =10

1 cubetto unitario4 cubetti unitari9 cubetti unitari16 cubetti unitari25 cubetti unitari

1

4

3

2

5

1n = 5

Assemblando tre di questi solidi ottengo un parallelepipedo di dimensioni 5× (5+1) × 5 più una scala formata da (1+2+3+4+5) cubetti unitari.

n+1n

n

)12(2

)1(

2)1()1(3

++

=

=+

++=

nnn

nnnnnS

La somma dei cubetti unitari del solido a scalini rappresenta la somma dei quadratidei numeri da 1 a 5.

Page 16: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

16

Il simbolismo algebrico è assente.Le incognite del problema sono espresse con termini tratti dallageometria, ma sono usati in modo del tutto astratto:lunghezza ušlarghezza sagarea a-saVengono affrontate equazioni di 2° grado, particolari equazioni di grado superiore al 2°, particolari sistemi

- metodo del completamento del quadrato- metodo della semisomma e della semidifferenza- uso sistematico di identità notevoli- riduzione di problemi quadratici alla forma

Il calcolo algebrico in Mesopotamia

⎩⎨⎧

=+=

SyxPxy

Identità notevoli usate dai babilonesi e loro visualizzazione geometrica

(a + b)2 = a2+2ab+b2 (a + b)(a - b) = a2 - b2

(a - b)2 = a2-2ab+b2 (a + b)2 - (a - b)2 = 4ab

(a + b)2+ (a - b)2 = 2 (a2+b2) Formidabili calcolatori

Page 17: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

17

Problema 1, BM 13901

metodo del completamento del quadrato

Traduzione InterpretazioneHo addizionato la superficie eil lato del mio quadrato: 0;45

x2+x = 3/4 (0;45 = 45/60)

Tu porrai 1 l’unità 1 = 60/60Tu dividerai in due l’unità:0;30

1/2 = 30/60

Tu moltiplicherai 0;30 e 0;30: 0;15

(1/2)2 = 1/4

Tu aggiungerai 0;15 a 0;45 3/4 + 1/4 = x2+x + 1/41 è il quadrato di 1 (x+1/2)2 = 3/4 + 1/4 =10;30 che tu hai moltiplicato, losottrai da 10;30 è il lato del quadrato

x = 21

43

21 2

−+⎟⎠⎞

⎜⎝⎛

= 1/2 (=0;30)

141

43

21

43

22

2

=+=⎟⎠⎞

⎜⎝⎛++

=+

xx

xx

Si calcolava solo laradice positiva

Problema 9, BM 13901

metodo della semisomma e

semidifferenza

Traduzione InterpretazioneHo sommato la superficie deimiei due quadrati: 21,40, l’unosupera l’altro di 10

x2 + y2 = 1300 (= 21,40) x – y = 10

Tu dividerai in due 21,40, tuscriverai 10,50

(x2 + y2)/2 = 650 (=10,50)

Tu dividerai in due 10 : 5 (x – y )/2= 5Tu moltiplicherai 5 per 5 : 25 ((x – y )/2)2= 25Tu sottrarrai 25 da 10,50:10,25

(x2 + y2)/2 - ((x – y )/2)2 = 625(=10,25)

Questo è il quadrato di 25 25

22

222=⎟

⎠⎞

⎜⎝⎛ −

−+ yxyx

Scriverai 25 due volte Utilizzo due volte (x + y )/2= 25Aggiungerai il 5, che haimoltiplicato, al primo 25: 30, èil primo quadrato

)( 3022

xyxyx==

−+

+

Sottrarrai 5 dal secondo 25: 20è il secondo quadrato )( 20

22yyxyx

==−

−+

2222

222⎟⎠⎞

⎜⎝⎛ −

+⎟⎠⎞

⎜⎝⎛ +

=+ yxyxyx

Page 18: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

18

Testo IX delle tavolette di Susacambiamento di variabile

Traduzione InterpretazioneIo sommo la superficie, la lunghezza e lalarghezza: fa 1Prendo 3 volte la lunghezza e 4 volte lalarghezza, aggiungo la sua 17a parte allalunghezza: ottengo 0;30

xy + x + y = 1

y + 1/17(3x + 4y) = 0 ;30 (1/2)

Tu: Prendi 0;30 17 volte, tu troverai 8;30. 17y +3x +4y = 0;30 × 17 = 8;30(8+1/2)

A 17 volte la larghezza aggiungi 4 voltela larghezza, tu troverai 21: poni 21 comecoefficiente della larghezza ; 3, il triplodella lunghezza, come coefficiente dellalunghezza: qual è il significato di 8;30?È la somma di 3 volte la lunghezza e di21 volte la larghezza.

(17 +4) y + 3x = 21y + 3x = 8;30

Aggiungi 1 alla lunghezza e 1 allalarghezza e fai la moltiplicazione.

Si introducono le incognite ausiliarieX = x+1Y = y+1

Tu hai aggiunto 1 alla somma dellasuperficie, lunghezza e larghezza, e tutrovi la superficie 2

XY = (x+1)(y+1) =xy + y + x + 1 =1+1

XY= 2

Riduzione a forma normale

Come ho moltiplicato la lunghezza e lalarghezza della superficie 2 e 1;20 lalarghezza … 1 la costante additiva dellalunghezza e 1 quella della larghezza, … lasomma: 2, tu trovi 32;30.

21y+21 +3x+3 = 8 ;30 +2421Y +3X = 32;30

Ecco ciò che stai cercando: 3 volte lalunghezza addizionata a 21 volte lalarghezza, moltiplica 3 volte la lunghezzaper 21 volte la larghezza e moltiplicaancora per 2, la superficie, tu trovi 2,6

Riduzione a forma normale

3X·21Y = 3·21·2 = 2,6 ( = 126)3X + 21Y = 32 ;30

Fraziona in due 32;30 della somma, tutrovi 16;15, fai il quadrato di questa metà,tu trovi 4.24;3.45; sottrai 2;6 da4.24;3.45, tu trovi 2.18;3.45.

Z2 – 32 ;30Z + 2,6 = 0

Z = 1/2·32;30 ± 6,2230;32 2

−⎟⎠⎞

⎜⎝⎛

La radice quadrata è 11;45. Somma 11;45a 16;15, tu troverai 28.

Z1=16;15 + 11;45 =28=21Y

In secondo luogo sottrai (16;15-11;45); tutroverai 4;30

Z2=16;15 - 11;45 = 4 ;30 =3X

Fai l’inverso del triplo della lunghezza,trovi 20. 20 a 4;30 … Porta 20 a 4;30 eottieni 1;30

3X = 4 ;30(1/3) ·4;30 =1;30 = x+1

1;30 è la lunghezza di 2 volte la superficie... 21 volte la larghezza che dà 28 perprodotto. 1;20 è la larghezza di due voltela superficie.

21Y = 28Y = 1 ;20 = y + 1

Sottrai 1 a 1;30, trovi 0;30. Sottrai dinuovo 1 da 1;20 e ottieni 0;20.

x =1 ;30 – 1 = 0 ;30y = 1 ;20 – 1 = 0 ;20

Calcolale 2 radici

positive

Page 19: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

19

Schema riassuntivo dei metodi risolutivi dei problemi di 1° e 2° grado delle tavolette babilonesi

1, AO 8862

III, IX Susa

9, BM 13901

1, BM 13901

Ha un forte carattere algebrico.Fra il 2000 e il 1600 a. C. erano note le regole generali per il calcolo delle aree dei rettangoli, dei triangoli e dei trapezi e i volumi dei solidi più semplici. Per esempio il volume del tronco di piramide era calcolato scorrettamente moltiplicando l’altezza per la metà della somma delle basi.

Per usi pratici usavano un’approssimazione del rapporto circonferenza diametro (π) =3,però nel 1936 sono state riportate alla lucedelle tavolette dove si trova l’approssimazione π = 3;7, 30 = 3, 125

La geometria in Mesopotamia

Page 20: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

20

Gli scavi della Missione Italiana di Roma, iniziati nel 1964, hanno portato alla luce i resti della splendida civiltà di Ebla (III millennio a. C.) e una biblioteca di 15000 tavolette (testi di tipo economico

amministrativo, testi storici e giuridici, testi lessicali e grammaticali e letterari, enciclopedie, …)

Pettinato 1979

Il problema delloscriba di Kĭš, Išma-Ia

(2500 a. C.)

La chiave interpretativa sta nel simbolo che letteralmente significa “ grande” [Viola 1981, 278].

Problema dello scriba di KišIšma-Ia

[Friberg, 1986,10]

svoltonon 6360000

360000 36000

3600 600

galgal

galgal

gal

×

Page 21: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

21

Presso i Sumeri esisteva il termine šar-gal (= grande šar) per indicare 216000 (603), anche se non esisteva il simbolo. In questo caso gal ha il valore di fattore moltiplicativo, 3600 × 60

Se si interpreta anche qui gal come fattore moltiplicativo × 60, allora il problema dello scriba di Kiš èQual è quel numero che moltiplicato per 60 dà 600, 3600,…?

36000606000606006060601060

×××××

=×====

6360000 360000

36000 3600 600

“Le serie di problemi strettamente connesse e le regole generali che si accompagnano alla soluzione numerica

costituiscono di fatto uno strumento che si avvicina molto a un’operazione puramente algebrica...

Non si devono tuttavia sopravvalutare queste conquiste. Nonostante l’abilità numerica e algebrica e, nonostante

l’interesse astratto, che è così cospicuo in un numero così elevato di esempi, il contenuto della matematica babilonese

resta profondamente elementare”[Neugebauer 1974]

Influenza sulla logistica greca, su Diofantoe sulla matematica araba

Page 22: III. La matematica delle civiltà mesopotamichedigilander.libero.it/fortina.marco/StoriaDellaMatematica/... · accumulava una piccola biblioteca personale di tavolette” [Friberg

22

Bibliografiaessenziale

Boyer C., 1980, Storia della matematica, Mondadori, Milano, Cap. 3.

Giacardi L., 1987, Sistema di numerazione e calcolo algebrico nella “Terra tra i due fiumi”, in AA.VV., L’alba dei numeri, Dedalo, Bari.

Giacardi L., Roero C.S., 1979, La matematica delle civiltà arcaiche. Egitto, Mesopotamia, Grecia,Stampatori, Torino, Cap. 3.

Kline M., 1991, Storia del pensiero matematico, Torino, Einaudi, I, Cap. 1

I testi cuneiformiBRUINS E.M., RUTTEN M., 1961, Mémoires de la Mission Archéologique en Iran,

Tome XXXIV, Textes matbématiques de Suse, Librairie orientaliste PaulGeuthner, Paris.

NEUGEBAUER O., 1973, Mathematische Keilschrift-Texte, I, II, III, Reprint,Springer Verlag, Berlin.

NEUGEBAUER O., SACHS A., 1945, Mathematical Cuneiform Texts, AmericanOriental Society, New Haven.

THUREAU-DANGIN, F., 1938, Textes mathématiques babyloniens, E.J. Brill,Leiden.