Fisica Nucleare e Subnucleare II · PDF filePer ÒVelaÓ, la sorgente gamma pi...

download Fisica Nucleare e Subnucleare II · PDF filePer ÒVelaÓ, la sorgente gamma pi forte, !(E>100MeV) ... Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 17 GeV TeV

If you can't read please download the document

Transcript of Fisica Nucleare e Subnucleare II · PDF filePer ÒVelaÓ, la sorgente gamma pi...

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 1

    Fisica Nucleare e Subnucleare II

    apparati rivelatori di particelle elementari

    rivelazione di gamma nello spazio

    rivelazione di raggi cosmici primari con

    energia < 100 GeV

    misura della composizione dei raggi cosmici

    primari

  • Considerazioni preliminari

    Latmosfera terrestre circa 28 r.l. e 11 lunghezze di

    interazione. assorbe i gamma HE

    Il flusso dei raggi gamma dalle sorgenti astrofisiche basso e

    diminuisce sensibilmente con lenergia

    Es. Per Vela, la sorgente gamma pi forte, !(E>100MeV)=1.3x10-5

    fotoni cm-2 s-1 e lindice spettrale -1.89. Area riv. " 1000 cm2

    N(E>100MeV) " 1 #/minuto; N(E>2GeV)" 1 # in 2 ore

    Il flusso dei raggi cosmici carichi molto maggiore di quello

    gamma :

    11-1-276.26TeVsrscm109

    !!!"#

    TeVE

    dE

    dN

  • Energy range Name Technique

    10-30 MeV Medium Satellite

    30Mev-30Gev High Energy (HE) Satellite

    30 GeV - 30 TeV Very High Energy (VHE) Cerenkov Array (g.b.)

    30 Tev - 30 PeV Ultra High Energy (UHE) Ground Based Array

    30 Pev -> Extremely High Energy (EHE) Ground Based

    Nomenclatura usata in astrofisica dei raggi gammaNomenclatura usata in astrofisica dei raggi gamma

  • CGRO (1991- 2000)CGRO (1991- 2000)

    Compton Gamma Ray Observatory

  • Compton Gamma Ray Observatory

    Since the number of gamma-ray photons from celestial

    sources is very small compared to the number of optical

    photons, large instruments are needed to detect a significant

    number of gamma rays in a reasonable amount of time. The

    combination of these instruments can detect photon energies

    from 20 thousand electron volts (20 keV) to more than 30

    billion electron volts (30 GeV).

    Oriented

    Scintillation

    Spectrometer

    Experiment50 KeV-10 MeV

    Burst

    And

    Transient

    Source

    Experiment

    These four instruments are

    much larger and more sensitive

    than any gamma-ray telescopes

    previously flown in space. The

    large size is necessary because

    the number of gamma-ray

    interactions that can be

    recorded is directly related to

    the mass of the detector.

    1-30 MeV

    20 MeV - 30 GeV

    20 KeV - 1 MeV

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 7

    CGRO - BATSE

    At the heart of the BATSE detectors are NaI

    crystals which produce a flash of visible light

    when struck by gamma rays. The flashes are

    recorded by light-sensitive detectors whose

    output signal is digitized and analyzed to

    determine the arrival time and energy of the

    gamma ray which caused the flash. Each

    BATSE detector unit consists of a large area

    detector sensitive to faint transient events

    along with a smaller detector optimized for

    spectroscopic studies of bright events.

    The Burst And Transient Source Experiment (BATSE) serves as the all-sky monitor for

    the Compton Observatory, detecting and locating strong transient sources called gamma-

    ray bursts as well as outbursts from other sources over the entire sky. There are eight

    BATSE detectors, one facing outward from each corner of the satellite, which are

    sensitive to gamma-ray energies from 20 keV to 1 MeV.

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 8

    CGRO - OSSE

    The Oriented Scintillation Spectrometer

    Experiment (OSSE) consists of four NaI

    scintillation detectors, sensitive to energies

    from 50 keV to 10 MeV. Each of these

    detectors can be individually pointed. This

    allows observations of a gamma-ray source

    to be alternated with observations of nearby

    background regions. An accurate subtraction

    of background contamination can then be

    made.

    The OSSE instrument has produced observations of the energy spectrum of

    nuclear lines in solar flares, the radioactive decay of nuclei in supernova remnants,

    and the signature of matter-antimatter (electron-positron) annihilation in the

    Galactic center region.

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 9

    COMPTEL's upper layer of detectors are filled with a liquid scintillator which scatters an

    incoming gamma-ray photon according to the Compton Effect. This photon is then

    absorbed by NaI crystals in the lower detectors. The instrument records the time, location,

    and energy of the events in each layer of detectors which makes it possible to determine

    the direction and energy of the original gamma-ray photon and reconstruct an image and

    energy spectrum of the source.

    The Imaging Compton Telescope

    (COMPTEL) utilizes the Compton

    Effect and two layers of gamma-ray

    detectors to reconstruct an image of

    a gamma-ray source in the energy

    range 1 to 30 million electron volts

    (MeV). Gamma rays from active

    galaxies, radioactive supernova

    remnants, and diffuse gamma rays

    from giant molecular clouds can be

    studied with this instrument.

    Il "telescopio" Compton: COMPTEL

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 10

    Fotoelettrico in Piombo

    Compton

  • Rivelatori su satellite

    - Rivelano il fotone primario

    - Anticoincidenza

    - Tracking detector

    - Calorimetro

    Area Efficace

    convoluzione dellarea

    geometrica con la efficienza di

    rivelazioneCARATTERISTICHE DI EGRET

    E! " E/E "# (FWHM) Aeff (cm2)(MeV) FWHM gradi

    100 26% 5.5 930

    500 20% 2 1570

    1,000 19% 1.2 1300

    10,000 26% 0.4 690

    TE

    NEA

    )()(eff

    !=

    CGRO - EGRET

  • EGRET lo strumento di maggiore sensibilit e vola a

    bordo del Compton Gamma Ray Observatory (CGRO)

    dal 5 aprile 1991.

    EGRET formato da una spark chamber multistrato con

    convertitori al tantalio.

    Lenergia viene misurata da un calorimetro a Ioduro di

    Sodio di 8 lunghezze di radiazione

    Un sistema di tempo di volo seleziona il verso di

    propagazione delle particelle entranti nell'apparato

    Il flusso minimo di fotoni di energia maggiore di 100 MeV,

    rivelabile da EGRET circa 5x10-8 fotoni/cm2/s in una

    presa dati di due settimane.

    CGRO - EGRET

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 13

    The Energetic Gamma Ray Experiment

    Telescope (EGRET) provides the highest

    energy gamma-ray window for the Compton

    Observatory. Its energy range is from 20

    million electron volts (20 MeV) to 30 billion

    electron volts (30 GeV). EGRET is 10 to 20

    times larger and more sensitive than previous

    detectors operating at these high energies and

    has made detailed observations of high-energy

    processes associated with diffuse gamma-ray

    emission, gamma-ray bursts, cosmic rays,

    pulsars, and active galaxies known as blazars.

    The EGRET instrument produces images at these energies (20 MeV- 30 GeV) using high-

    voltage gas-filled spark chambers. High-energy gamma rays enter the chambers and produce

    an electron-positron pair of particles which cause sparks. The path of the particles is

    recorded allowing the determination of the direction of the original gamma ray. The particle

    energies are recorded by a NaI crystal beneath the spark chambers providing a measure of

    the original gamma-ray energy.

    CGRO - EGRET

  • EGRET sky map E# >100 MeV

    The EGRET all-sky map shows an image of the sky at gamma-ray energies above 100

    MeV in Galactic coordinates. The diffuse emission, which appears brightest along the

    Galactic plane, is primarily due to cosmic-ray interactions with the interstellar medium.

    The Vela, Geminga and Crab pulsars are clearly visible as bright knots of emission in the

    Galactic plane in the right portion of the image. The blazar 3C279 is seen as the brightest

    knot of emission above the plane. This map was produced by combining EGRET

    observations from the first year of Compton Observatory operations.

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 15

    CRAB and GEMINGA

    This EGRET image shows Geminga

    (above and left of center) and the

    Crab nebula (below and right of

    center), two bright sources of

    gamma rays in the direction of the

    Galactic anticenter. Both Geminga

    and the Crab contain pulsars which

    pulse at gamma-ray energies.

    Strikingly, Geminga mainly pulses in the X-ray and gamma-ray regimes with very

    little pulsation at other wavelengths, while the Crab pulsar is observed to generate

    optical and radio pulses as well. The faint source visible just below center is the

    active galaxy designated PKS 0528+134.

  • Fisica Nucleare e Subnucleare II, 2007-2008, A. Capone Lezioni 8-9 16

    Distribuzione spettrale dei Raggi Cosmici

    Distribuzione in energia dei

    raggi cosmici osservati da

    diversi esperimenti - Simon

    Swordy - Universit di

    Chicago

    Misure dirette della rad. cosmica primaria

    nello spazio (satelliti)

    nellalta atmosfera (palloni)

    Misure indirette

    sciami estesi

    Cherenkov in aria

    rivelatori a Terra

    laboratori sotterranei

    ~ 1000 particelle/(sm2)

    nuclei ionizzati:

    90% protoni

    9% particelle !

    nuclei pi pesanti

    quale e lorigine dei raggi cosmici ?

    nel sistema solare ? una piccola quantit

    associata a