Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi...

21
Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di “Sistemi Planetari I + II”

Transcript of Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi...

Page 1: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Evoluzione superficiale delle comete

e nuclei cometari inattivi

Marco Micheli

Seminario di “Sistemi Planetari I + II”

Page 2: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

I nuclei cometariI nuclei cometari sono oggetti prevalentemente solidi con dimensioni generalmente comprese tra 1 km e 10 km.

Le caratteristiche principali di un oggetto cometario sono:

Emissione di materiali volatili

Fasi di inattività e attivazione in vicinanza del Sole

Queste caratteristiche sono ben spiegate, in prima approssimazione, da un modello di nuclei con una grande percentuale di ghiacci.

La sublimazione di questi ghiacci è responsabile del rilascio di materiale che forma le strutture estese tipiche delle comete (chioma e code).

L’attivazione a breve distanza dal Sole è collegata all’aumento di temperatura che innesca la sublimazione stessa.

1

Nucleo della cometa 1P/Halley[Giotto/ESA/HMC/MPAe]

Page 3: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Fenomeni di estinzioneUn nucleo cometario è un oggetto transiente, destinato a perdere le sue caratteristiche in tempi scala di qualche migliaio di anni.

I possibili processi responsabili dell’eliminazione di una cometa sono:

Disintegrazione del nucleo

Perdita di tutti i componenti volatili

Formazione di una crosta non volatile in superficie

Per verificare queste ipotesi di evoluzione si devono cercare prove dell’esistenza degli stati finali di questi processi, cioe:

Sciami meteorici

Asteroidi con caratteristiche cometarie

Nel seguito verranno introdotte le prime due ipotesi, ed approfondita la terza.2

orbitali

fisiche

Page 4: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

La frammentazione di un nucleo cometario in prossimità del perielio è un evento non particolarmente raro. Tra le cause di frammentazione troviamo [11]:

Effetto mareale del Sole (del tipo “limite di Roche”)

Cedimento da pressione causata dall’evaporazione di sacche di gas

Il risultato può essere qualitativamente molto vario. Ad esempio:

Formazione di frammenti macroscopici

Totale disintegrazione del nucleo

Sono ormai noti molti esempi di entrambi i fenomeni.

Es) C/2005 A1 (LINEAR) C/1999 S4 (LINEAR)

Disintegrazione del nucleo

3

Comete “multiple”

Scomparsa dell’oggetto

[Osservatorio Astronomico “Serafino Zani”]

[HST/STScI]

Page 5: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

La disintegrazione di un nucleo cometario potrebbe portare alla formazione di uno sciame di frammenti coorbitali con l’oggetto progenitore. Se la sua orbita interseca quella terrestre ciò potrebbe originare un outburst meteorico.

Es) La cometa 3D/Biela venne osservata frammentarsi nel 1846 e nel 1852. Da allora non venne più ritrovata, ma al suo posto si presentò un intenso sciame meteorico, associato alla stessa orbita.

Uno sciame meteorico si può generare anche da un oggetto non disintegrato, grazie all’espulsione di polveri durante l’usuale attività emissiva di una cometa. Tale progenitore potrebbe poi evolvere verso uno stato inattivo: quindi un eventuale oggetto asteroidale con uno sciame meteorico associato potrebbe indicare la sua natura di cometa estinta.

Es) L’asteroide (3200) Phaeton è responsabile dello sciame meteorico delle Geminidi.

Es) Lo sciame meteorico delle Quadrantidi, uno dei più intensi dell’anno, è stato probabilmente originato da un piccolo oggetto oggi inattivo, noto come 2003 EH1. L’integrazione numerica delle due orbite [6] porta ad ipotizzare che l’emissione di materiale dall’oggetto sia avvenuta circa 500 anni fa.

Sciami meteorici associati

4

Page 6: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

L’analisi delle orbite degli asteroidi noti rivela l’esistenza di alcuni oggetti con orbite tipicamente cometarie. Potrebbero essere nuclei cometari inattivi.

La distinzione è effettuata per mezzo dell’invariante di Tisserand [3].

Un asteroide tipico ha T>3, mentre una tipica cometa di medio o lungo periodo ha T<2. Esistono oggetti all’apparenza asteroidali con T<2.

Es) L’asteroide (5335) Damocles ha T=1.145

Esistono anche moltissimi corpi asteroidali con orbite tipiche delle comete della famiglia di Giove (2<T<3).

Alcuni NEOs (circa il 10%) si sono probabilmente originati come comete di questo tipo.

Es) L’asteroide NEO (3552) Don Quixote ha T=2.314. Da simulazioni al calcolatore [12] risulta che con altissima probabilità questo corpo ha avuto origine come cometa della famiglia di Giove.

Asteroidi con orbite cometarie

5

Page 7: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Per molti anni si è creduto che le comete estinte fossero i progenitori di gran parte dei Near Earth Objects. Oggi si è convinti che questo canale di rifornimento giustifichi non più del 10% di questa popolazione.

Le evidenze di questo fatto vanno ricercate comparando le distribuzioni di comete e NEOs secondo caratteristiche fisiche:

Classe spettrale

Albedo

E’ noto che i nuclei cometari hanno albedo molto bassi e classi spettrali “scure” (simili alle classi C e D degli asteroidi).

Un’analisi delle classi spettrali di un campione significativo di NEOs [4] rivela che solo una quantità modesta di essi appartiene alle classi spettrali cometarie.

Un’analisi degli albedo [12] rivela indicazioni simili. Se però essa viene eseguita solo sui NEOs con T<3 si ottiene che circa il 90% di questi ha albedo bassi, compatibili con le caratteristiche cometarie.

Comete come progenitori di NEOs

6

Page 8: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

La metodologia più ovvia per identificare nuclei cometari inattivi è ovviamente osservarne una loro occasionale riattivazione.

Il fenomeno è stato osservato in alcuni oggetti, che hanno ora ricevuto una classificazione mista. Può essere dovuto a:

Spostamento dell’oggetto su un’orbita più interna

Esposizione di materiale fresco per impatti o fratture nella crosta

Non tutti i casi di attività sporadica sono però prove convincenti di un oggetto cometario: esistono anche oggetti ora classificati come comete, ma con caratteristiche orbitali tipicamente asteroidali. E’ possibile che si tratti di normali asteroidi, la cui attività emissiva è dovuta ad eventi collisionali.

Riattivazione di nuclei cometari

7

Es) L’oggetto 133P/Elst-Pizarro è su un’orbita tipica di un asteroide di fascia principale, compatibile con la famiglia di Themis. Nel 1996 ha mostrato brevemente una lunga coda, probabilmente attribuibile ad una collisione.

[Spacewatch/J.V. Scotti]

Page 9: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Negli ultimi anni sono state raccolte grandi quantità di informazioni sui nuclei cometari, grazie soprattutto ad alcune missioni spaziali che hanno transitato all’interno della chioma di alcune comete.

Si può dedurre da queste osservazioni che un eventuale nucleo cometario estinto dovrebbe essere un oggetto di dimensioni non piccole, con albedo basso e spettro compatibile con le classi spettrali più scure (C, D, …).

Osservazione in situ dei nuclei

8

Si sono osservate alcune caratteristiche comuni ai vari nuclei cometari:

Come ipotizzato in precedenza i nuclei hanno dimensioni piuttosto piccole (d = 1 ÷ 10 km).

La superficie è prevalentemente coperta da materiale poco riflettente (A = 0.02 ÷ 0.06).

Le zone emissive coprono una frazione esigua della superficie (a volte anche meno dell’1%). Nucleo della cometa 81P/Wild

[Stardust/JPL/Nasa]

Page 10: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Lo spettro di un nucleo cometario può essere ottenuto solo quando questo è a notevole distanza dal Sole. Le dimensioni estremamente piccole di questi oggetti li rendono difficilmente osservabili a queste distanze.

Es) Un oggetto di qualche chilometro con albedo di circa 0.04, posto a circa 5 ua, raggiungerebbe una magnitudine visuale inferiore alla 23.

Le modalità per ottenere tali spettri sono sostanzialmente le seguenti:

Osservazione in situ del nucleo cometario: le missioni spaziali hanno permesso di ottenere direttamente una piccola quantità di spettri (restringendosi alle regioni non attive).

Osservazione del nucleo prima della sua attivazione (attorno all’afelio): i grandi telescopi attualmente disponibili consentono la realizzazione di spettri dei nuclei più grandi.

Osservazione di nuclei di oggetti con attività occasionale, nei periodi senza attività emissiva.

Spettri di nuclei cometari

9

Page 11: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

La determinazione del tipo spettrale dei candidati a cometa estinta è quasi sempre coerente con questo schema.

Es) Gli asteroidi (2060) Chiron e (3200) Phaeton hanno spettri assimilabili ad un tipo D. (2060) Chiron è un centauro che ha mostrato attività cometaria [9], mentre (3200) Phaeton è il NEO progenitore delle Geminidi.

Spettri di nuclei cometari

10

Dalle osservazioni disponibili si ricavano spettri senza particolari strutture, che spaziano dal “grigio” (spettri quasi piatti, tipo C) al “rosso” (spettri tipo D) [12].

Es) Spettro [1] dell’oggetto 2001 OG108 nello stato di nucleo inattivo. Questo oggetto si è attivato alcuni mesi dopo, ed è stato riclassificato come cometa.

[1]

Page 12: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Il meccanismo di formazione della crosta non volatile in superficie è tuttora poco chiaro. Sono stati proposti [12] due meccanismi:

Durante la sua permanenza nelle regioni esterne il nucleo cometario verrebbe irradiato con raggi cosmici galattici o protoni solari, che potrebbero liberare i composti volatili più superficiali, e trasformare molecole organiche in forme meno riflettenti

Durante la fase attiva potrebbero venire espulsi grani non volatili, con velocità inferiori alla velocità di fuga, che ricadrebbero sulla superficie formando strati isolanti

Si è osservato [12] che alcune comete dinamicamente antiche hanno regioni attive inferiori allo 0.1% del totale. Ciò è coerente con un progressivo aumento della regione coperta dalla crosta, destinato a rendere l’oggetto totalmente inattivo.

Es) La cometa 49P/Arend-Rigaux orbita in una configurazione risonante, che ne prolunga la vita dinamica nella regione di attività. Ha una frazione di superficie attiva stimata [12] nello 0.08%.

Formazione della crosta non volatile

11

Page 13: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Per verificare la possibilità che la crosta dei nuclei cometari sia originata nel Sistema Solare esterno è possibile confrontare la superficie dei nuclei con quella degli oggetti della Fascia di Kuiper, che ne sono i probabili progenitori.

Per fare ciò è possibile confrontare la riflettività dei diversi oggetti. Un parametro utile è il gradiente di riflettività normalizzato S’, definito [7] come

dove S è la riflettività e S’ è la sua media sul range spettrale considerato (in genere nel visibile). E’ espresso usualmente in percentuale su 100 nm.

Spesso tale valore viene stimato per via fotometrica misurando la magnitudine dell’oggetto in due bande (generalmente V ed R) e utilizzando la relazione

Nel fare ciò si presuppone che lo spettro sia lineare nel range considerato. Ciò è generalmente vero per tutto il visibile.

Confronto con i KBOs

S

ddSS

/'

S

12

'2

'2log5.2

S

Smmmm SRVRV

Page 14: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Uno studio [8] su 28 KBOs, 12 nuclei cometari e 23 presunte comete estinte presenta i seguenti valori:

KBOs: 23±2Nuclei: 8±3Comete estinte: 7±2

Le due distribuzioni ricavate dal campione suddetto sono rappresentate a lato: un test di Kolmogorov-Smirnov rivela che esse possono derivare da distribuzioni identiche con una probabilità di 2×10-4.

Confronto con i KBOs

13

E’ evidente che i KBOs sono superficialmente diversi dalle comete, mentre le comete estinte sono compatibili con caratteristiche cometarie.

[8]

Page 15: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Calcoliamo ora l’andamento in funzione del raggio di alcuni dei tempi scala tipici di un oggetto cometario:

Periodo orbitale: indipendente dal raggio (circa 10 yr)

Vita dinamica: indipendente dal raggio (circa 105 yr)

Periodo di rotazione del nucleo: approssimativamente indipendente dal raggio (circa 1 h)

Tempo di devolatilizzazione: scala con il raggio, infatti

Tempo di eccitazione di rotazioni su assi non principali: scala con R2, perché

Tempo di damping delle rotazioni anomale: non è facilmente stimabile, in quanto dipende dalla struttura interna dell’oggetto. Dalla letteratura [3] si ricava che varia con R-2

Tempi scala delle comete

RS

R

M

Mdv

3

14

22

23

2

2 )()(R

RvR

RR

RvR

RM

RvM

I

L

L

outoutoutex

Page 16: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

La caratteristica più interessante delle comete è la loro evoluzione rapida rispetto alle scale tipiche del Sistema Solare.

Le scale temporali che determinano la vita di una cometa sono diverse, e dipendono fortemente dalle dimensioni dell’oggetto considerato.

Ciò è coerente con l’esistenza di numerosi nuclei cometari inattivi.

Tempi di devolatilizzazione

15

La prima scala temporale interessante è fornita dal tempo medio di devolatilizzazione, cioè dal tempo in cui un oggetto cometario perderebbe tutti i suoi componenti volatili.

Si vede dal grafico a lato [3] che tale tempo è quasi sempre inferiore alla vita orbitale di una media cometa della Famiglia di Giove. [3]

Page 17: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

La misura del periodo di rotazione dei nuclei cometari ci può fornire interessanti indicazioni sullo strength tensile dei materiali che li compongono.

Il periodo di rotazione è conosciuto solo per pochi nuclei, ma si nota l’assenza di rotatori veloci, anche tra gli oggetti di piccole dimensioni.

Si ipotizza che i nuclei cometari siano aggregati di particelle poco coerenti.

Periodi di rotazione dei nuclei

16

Nel grafico sono indicati i periodi di rotazione di alcune comete note.

Si può vedere che tutti gli oggetti riportati sono sopra alla soglia approssimata di fissione. Ciò è indicativo di uno strength tensile piuttosto basso.

Es) La cometa D/1993 F2 (Shoemaker-Levy 9) è stata distrutta con facilità dall’effetto mareale di Giove. [3]

Page 18: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

E’ interessante anche esaminare gli assi di rotazione dei nuclei cometari.

E’ possibile ricercare un’eventuale rotazione eccitata, lungo assi diversi dagli assi principali d’inerzia. Tale rotazione anomala può essere innescata dall’emissione di materiale, e smorzata da processi dissipativi.

Pertanto è ipotizzabile che i nuclei cometari siano in stati eccitati di rotazione [2].

Rotazioni anomale dei nuclei

17

La scala temporale dell’eccitazione di rotazioni anomale è molto breve per oggetti piccoli, spesso anche inferiore ad un periodo orbitale.

La scala di damping di tali rotazioni è nettamente superiore, ed inizia a competere con l’eccitazione solo per nuclei di circa 100 km, dimensioni superiori a quelle di ogni oggetto noto. [3]

Page 19: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

Alcuni dei fenomeni esposti per le comete avvengono anche per gli oggetti asteroidali, ma su scale temporali molto più lente.

Può essere interessante confrontare alcune di queste analogie:

Confronto con gli asteroidi

27

s

m10

dv

exex v

M

v

dt

dm

M

pa

18

Formazione di crosta

Dagli studi citati in precedenza [12] si ricava che la crosta non volatile si può formare in circa 103 yr.

Space Weathering

Da simulazioni eseguite a Terra e opportunamente riscalate [10] si pensa che il fenomeno dello Space Weathering di asteroidi avvenga in circa 106 yr.

Emissione di materiale

Una stima dell’ordine di grandezza dell’effetto può essere ottenuta partendo dalle grandezze introdotte in precedenza:

Effetto Yarkovsky

Per ottenere una stima (in eccesso) supponiamo che tutto l’irraggiamento dell’oggetto sia in una direzione:

214

3

24

s

m10

Rc

RT

Mc

W

M

Fa

Page 20: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

A partire dalla fine degli anni Novanta l’inaugurazione di grandi survey dedicate alla scoperta di asteroidi e comete ha permesso la catalogazione di una grande quantità di oggetti, e ne sono stati scoperti molti con caratteristiche dinamiche apparentemente cometarie.

Molti di questi oggetti sono intrinsecamente deboli o lontani, ed è pertanto difficile osservarne direttamente una attività emissiva. La conferma della loro natura cometaria potrebbe avvenire per varie strade:

Individuazione di un aspetto lievemente “diffuso” con osservazioni visuali a grande apertura

Ricerca di fenomeni di debole attività in occasione di particolari configurazioni reciproche Sole-Terra-oggetto [5]

Necessità di introdurre effetti non gravitazionali per ricavare un’orbita accurata per un oggetto [12]

Al momento solo la prima strategia ha prodotto risultati positivi. Le altre vie sono state tentate solo su pochissimi oggetti, e non hanno condotto a risultati univoci.

Nuovi ambiti di ricerca

19

Page 21: Evoluzione superficiale delle comete e nuclei cometari inattivi Marco Micheli Seminario di Sistemi Planetari I + II.

[1] Abell P.A. et al., Icarus, 179, 174-194 (2005)

[2] Belton M.J.S. et al., Icarus, 175, 181-193 (2005)

[3] Bertotti B., Farinella P., Vokrouhlický D., Physics of the Solar System, (2003)

[4] Dandy C.L. et al., Proceedings of the Conference ACM 2002, 915-118 (2002)

[5] Hsieh H.H, Jewitt D.C., Astrophysical Journal, 624, 1093-1096 (2005)

[6] Jenniskens P., The Astronomical Journal, 127, 3018-3022 (2004)

[7] Jewitt D.C., The Astronomical Journal, 123, 1039-1049 (2002)

[8] Jewitt D.C., Proceedings of the Conference ACM 2002, 11-19 (2002)

[9] Luu J.X., Jewitt D.C., The Astronomical Journal, 100, 913-996 (1990)

[10]Marchi S., l’Astronomia, 269, 16-25 (2005)

[11]Richardson D.C. et al., Icarus, 134, 47-76 (1998)

[12]Weissman P.R. et al., Asteroids III, 669-686 (2002)

Bibliografia

20