ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce...

16
ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso spessa 5 cm e avente una superficie di 10 m 2 , sapendo che la temperatura all’interno e all’esterno valgono rispettivamente 20 °C e 0 °C. Conducibilità termica del gesso gesso = 0,5 W/m K A = 10 m 2 L =0,05 m T 1 = 20 °C T 2 = 0 °C

Transcript of ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce...

Page 1: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 1

Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso spessa 5 cm e avente una superficie di 10 m2, sapendo che la temperatura all’interno e all’esterno valgono rispettivamente 20 °C e 0 °C.Conducibilità termica del gesso gesso = 0,5 W/m K

A = 10 m2

L =0,05 m

T1 = 20 °C

T2 = 0 °C

Page 2: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 1

W20002005,0

105,0TT

L

AQ 21cond

4241irr TTAQ

TThAQ supconv

Page 3: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 2

Si consideri una parete alta 3 m, larga 5 m e spessa 0,3 m, di conducibilità termica = 0,9 W/(m • °C). Le temperature delle superfici interna ed esterna dell parete risultano essere 16 °C e 2 °C, rispettivamente.

Si determini la potenza termica dissipata attraverso la parete:Si ipotizza che le temperature delle superfici della parete rimangano costanti sufficientemente a lungo in modo da considerare la trasmissione di calore stazionaria.

Si assume inoltre monodimensionale la trasmissione di calore attraverso la parete, dal momento che solo in direzione normale alla parete si avrà un gradiente termico significativo.

Area parete = 15 m2

= 0,9 W/(m • °C)

T = 14 °C

L = 0,3 m

Page 4: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 2

Tenendo presente che la trasmissione di calore attraverso la parete avviene per conduzione, la potenza termica stazionaria trasmessa attraverso la parete è:

W6303,0

216159,0

L

TTAQ 21

Lo stesso valore di potenza termica stazionaria si ottiene utilizzando la resistenza termica :

R

TTQ 21

dove W/C02222,0159,0

3,0

A

LR parete

sostituendo

W63002222,0

216Q

Page 5: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 3

Si consideri uno scambio termico stazionario tra due ampi piani paralleli a temperatura costante T1 = 300 K e T2 = 200 K posti ad una distanza uno dall’altro di L = 1 cm.

Assumendo che le superfici siano nere (emissività e = 1), si determini la potenza termica trasmessa tra i piani per una superficie di area unitaria, ipotizzando che lo spazio tra i piani sia:-a) riempito con aria atmosferica;-b) riempito con materiale isolante tipo uretano;-c) riempito con un superisolante di conducibilità termica apparente

lsuperisolante = 0,00002 W/(m × °C).Conducibilità termica aria (Tmedia = 250 K) laria = 0,0223 W/(m × °C)

Conducibilità termica isolante tipo uretano lisolante = 0,026 W/(m × °C)

Conducibilità termica superisolante lsuperisolante = 0,00002 W/(m × °C)

DT = 100 KL = 0,01 m

Page 6: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 3

a) Trascurando qualunque corrente convettiva naturale che può avere luogo nell’aria, le potenze termiche trasmesse per conduzione e radiazione tra i piani attraverso l’aria sono:

W22301,0

20030010223,0

L

TTAQ 21

cond

W36820030011067,51TTAQ 44842

41irr

WQQQ irrcondtotale 591368223

b) Un materiale solido opaco posizionato tra due piani ostacola lo scambio termico radiativo, la conducibilità termica del poliuretano tiene conto dello scambio termico radiativo che si può avere attraverso i vuoti del materiale. La potenza termica trasmessa sarà dunque:

W26001,0

2003001026,0

L

TTAQQ 21

condtotale

Page 7: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 3

c) Lo strato di superisolante impedisce qualunque scambio termico diretto di tipo radiativo tra i due piani. In ogni caso, si avrà scambio termico radiativo tra i vari strati del superisolante e di questo tiene conto la conducibilità termica apparente.

Si ha quindi:W2,0

01,0

200300100002,0

L

TTAQ 21

totale

Page 8: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 4

Una sfera di rame di 10 cm di diametro, immersa in aria a 25 °C, si raffredda da 150 °C ad una temperatura di 100 °C in trenta minuti.

Si determini:- la quantità totale di calore trasmesso dalla sfera di rame;

- la potenza termica media trasmessa dalla sfera;- il flusso termico medio;

- il coefficiente di scambio termico convettivo all’inizio del raffreddamentoTemperatura aria ambiente 25 °C

DT della sfera in 30 min = 50 °C

Diametro della sfera D = 0,1 m

Area della sfera pD2

Volume della sfera pD3/6

cp rame = 0.393 kJ/kg K

r rame = 8950 kg/m3

Page 9: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 4

Osservando che la trasmissione di calore costituisce l’unica forma di scambio di energia, il principio di conservazione dell’energia richiede che la quantità di calore trasmesso dalla sfera uguagli la variazione di energia interna:

12p TTmcQ

kg69,41,089506

D6

Vm 3

quindi:

J2,92150100393,069,4Q

Normalmente la potenza termica trasmessa durante un processo varia nel tempo; si può comunque determinare la potenza termica trasmessa media dividendo la quantità di calore trasmesso per l’intervallo di tempo, perciò:

W2,51s/kJ0512,01800

2,92

t

QQmed

Page 10: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 4

Si definisce flusso termico lo scambio termico riferito all’unità di tempo e alla superficie di area unitaria ovvero la potenza termica per una superficie di area unitaria. Il flusso termico medio risulta:

2med

med m

W1631

0314,0

2,51

A

Qq

La legge di Newton per lo scambio termico convettivo è:

TThAQ sup

Trascurando qualunque scambio termico per irraggiamento e quindi assumendo che l’intera perdita di calore della palla abbia luogo per convezione, il coefficiente di scambio termico convettivo all’inizio del raffreddamento è:

Cm

W13

251500314,0

2,51

TTA

Qh

2sup

Page 11: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

Si consideri una finestra vetrata delle dimensioni 0.8 m × 1,5 m e dello spessore di 8 mm, caratterizzata da una conducibilità termica = 0,78 W/(m· °C).

Si determinino la potenza termica stazionaria trasmessa attraverso la finestra e la temperatura della superficie interna della finestra in un giorno durante il quale l’ambiente interno è mantenuto a 20 °C mentre la temperatura esterna è di -10 °C.

Si assumano quali coefficienti di scambio termico sulle superfici interna ed esterna della finestra h1 = 10 W/(m2· °C) e h2 = 40 W/(m2· °C), includendo in essi gli effetti della radiazione.Conducibilità termica finestra = 0,78 W/(m · °C)

Coefficiente di scambio termico convettivo delle superficie interna h1= 10 W/(m· °C)

Coefficiente di scambio termico convettivo delle superficie esterna h2=

40 W/(m· °C)T = 30 °CSpessore finestra L = 0,008 mArea finestra A = 1,2 m2

ES. 5

Page 12: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 5

Questo problema, che comprende la conduzione termica attraverso il vetro della finestra e la convezione termica in corrispondenza delle sue superfici esterna ed interna, può essere convenientemente trattato facendo uso del concetto di resistenza termica.

Tenendo presente che le tre resistenze sono in serie, la resistenza termica totale risulta essere:

W/C08333,02,110

1

Ah

1RR

11,convi

W/C00855,02,178,0

008,0

A

LR vetro

W/C02083,02,140

1

Ah

1RR

22,conve

W/C1127,0RRRR 2,convvetro1,convtotale

La potenza termica stazionaria trasmessa attraverso la finestra è:

W2661127,0

)10(20

R

TTQ

totale

21

Page 13: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 5

Conoscendo la potenza termica, la temperatura superficiale interna del vetro della finestra è:

C2,208333,026620RQTTR

TTQ 1,conv11

1,conv

11

Page 14: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

Si consideri una finestra - alta 0,8 m e larga 1,5 m – costituita da due strati di vetro dello spessore di 4 mm [ = 0,78 W/(m· °C)] separati da un’intercapedine di aria ferma spessa 10 mm [ = 0,026 W/(m· °C)].

Si determinino la potenza termica stazionaria trasmessa attraverso questa finestra a doppio vetro e la temperatura della sua superficie interna per un giorno durante il quale la differenza di temperatura fra esterno ed interno sia di 30 °C.

Si assumano quali coefficienti di scambio termico sulle superfici interna ed esterna della finestra h1 = 10 W/(m2· °C) e h2 = 40 W/(m2· °C), includendo in essi gli effetti della radiazione.

Conducibilità termica vetro l1 = 0,78 W/(m · °C)

Conducibilità termica aria ferma l2 = 0,026 W/(m · °C)

Coefficiente di scambio termico convettivo delle superficie interna h1= 10 W/(m· °C)

Coefficiente di scambio termico convettivo delle superficie esterna h2=

40 W/(m· °C)DT = 30 °C

Spessore vetro L1= 0,004 m; spessore aria ferma L2= 0,01 m

Area finestra A = 1,2 m2

ES. 6

Page 15: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 6

La resistenza termica comprenderà in questo caso due resistenze conduttive addizionali corrispondenti a due strati addizionali.

W/C08333,02,110

1

Ah

1RR

11,convi

W/C00427,02,178,0

004,0

A

LRRR

1

131vetro

W/C02083,02,140

1

Ah

1RR

22,conve

W/C3205,02,1026,0

01,0

A

LRR

2

22aria

Tenendo presente che le tre resistenze sono in serie, la resistenza termica totale risulta essere: W/C4332,0RRRRRR 2,conv2,vetroaria1,vetro1,convtotale

La potenza termica stazionaria trasmessa attraverso la finestra è quindi:

W2,694332,0

)10(20

R

TTQ

totale

21

Page 16: ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che fuoriesce dall’interno di un edificio, attraverso una parete di gesso.

ES. 6

Confrontando il risultato con l’esercizio precedente si spiega il largo uso di finestre a doppio e triplo vetro nei climi freddi. La riduzione di potenza termica trasmessa è dovuta all’elevata resistenza termica dello strato d’aria tra i vetri. In realtà, la resistenza termica dello strato d’aria è minore di quella ipotizzata a causa delle correnti convettive naturali che si hanno nell’intercapedine d’aria.

La temperatura superficiale interna della finestra sarà in questo caso: C2,1408333,02,6920RQTT

R

TTQ 1,conv11

1,conv

11