detector 04 1 - Università degli Studi di Perugia

49
Olav Ullaland / PH department / CERN

Transcript of detector 04 1 - Università degli Studi di Perugia

Page 1: detector 04 1 - Università degli Studi di Perugia

Olav Ullaland / PH department / CERN

Page 2: detector 04 1 - Università degli Studi di Perugia

!"#

$ %$ &

$ ' &( ) * #+,-.-/

0 &

!1 %2 3) * #4,5554

6! "7 "8 " !

++9.

$

: ,..; -

< &"" "#==">!>> ="= "#==>!>=

7 % %""">

? "!&>

DisclaimerThe data presented is believed to be correct, but is not guaranteed to be so.

! " "# "$% $% & ' ( #&!

Page 3: detector 04 1 - Università degli Studi di Perugia

( ) ) ) & *

+=

+ &,+ &, -.+ &, -/

( ) <≤= ββ

( )∞<≤−

= γβ

γ

=== βγβγ

0, *0, 10*2 30.405 10 16 *730.

8/ ,-/

10-→ 10.48 12 */630.06 ,

"9 10:3 0.0/ ,

9 ) "9 & 0.0: × 0:3 0.0/ , ≅ 0.7

$; 0.. $0..$-

C. Joram, SSL 2003

Page 4: detector 04 1 - Università degli Studi di Perugia

*

σ &&σ-&Ω<*

Φ11% 0- Φ21% /-

/

0

' +

Lσ=⋅

σ &*010.4/: /

4/40L

+&

=&

=

( ) ΩΦΘΩ

=

Ω∝ΦΘ

σ

C. Joram, SSL 2003

Page 5: detector 04 1 - Università degli Studi di Perugia

? @":#

< &@

&

<

!9

& @"

&

!"A

Page 6: detector 04 1 - Università degli Studi di Perugia

; !

Page 7: detector 04 1 - Università degli Studi di Perugia

!"

#$#

$$ $

%$

$ $

&

$

'$ & $ &

()*()

$

*##

& &#

+,- $#&

$ #. /

# .0

#1 .0& 2

3 &$

' & #

#$# &

$

) )$$

Turn of a century. 1900

Turn of another century. 2000

&

/ 4$$

5678$

#$& $

#. / #

. &9':

2#> 1000 tracks

Page 8: detector 04 1 - Università degli Studi di Perugia

The experi-mental set-ups are not what they used to be!

4

;<%$

:&=

Page 9: detector 04 1 - Università degli Studi di Perugia

0 2&%3

&&) ) * = && *

http://cmsdoc.cern.ch/ftp/TDR/TRACKER/tracker_tdr.html

Page 10: detector 04 1 - Università degli Studi di Perugia

& '>4'?'$) :

@ & $ ( )

# & &

2 A

2# $ #

#& $ #

#$

,'+ # %$#

%$# & # #

#$#

) & +

Page 11: detector 04 1 - Università degli Studi di Perugia

"%@">

&&+

&

&4 &

'% 052:

Page 12: detector 04 1 - Università degli Studi di Perugia

< >&?&&*&$) ) * $) ) && <>?&) ) $* &< <*=<&&& @& <& $) &*

"%,.;+6!%# *( **AB ' *! CA/9 ( % (

? & 6# *$&"( ; ( ; 9 ; ( % (

Page 13: detector 04 1 - Università degli Studi di Perugia

<) D) '% *CERN photo 1955

DANGERCOSMIC

Page 14: detector 04 1 - Università degli Studi di Perugia

Anode

CathodeQ

=E &&*

( E

Page 15: detector 04 1 - Università degli Studi di Perugia
Page 16: detector 04 1 - Università degli Studi di Perugia

( >?*

"&*=α ) 0&&& @ α

=) *

αααα 6 *

) ( )

−= η

B && B && &&&&&

) &) &* $&$* &+

( )

−−=

α

α

γγγγγ ) && ******

Page 17: detector 04 1 - Università degli Studi di Perugia

E0

E1> E0

E2< E0

E3> E0+

-

&) &) &) *

S.C. Brown, Introduction to Electrical Discharges in Gases, 1966

Page 18: detector 04 1 - Università degli Studi di Perugia

& *

FFA

hd

r

&)

=&&

Page 19: detector 04 1 - Università degli Studi di Perugia

α 4 &$4&) &&&) ) * $& &

α

1 ) &*

→ &A1&

→ &) ) &&*

→ &&) &&

&&&&&) &) $&) $*C *( $1" → &∼0.G -

Page 20: detector 04 1 - Università degli Studi di Perugia

A) & &*

) &$) ) &*

Page 21: detector 04 1 - Università degli Studi di Perugia

Rutherford Scattering (non relativistic)

b

m1, Z1e, v0

m2, Z2e

∆Θ∆Θ∆Θ∆Θ

r2

r1

r12

?

:

πε+=′′=′′−′′

:πε=

+

=

Angular deflection is then

where

and b is the impact parameter

Integrating over b

[ ] ( )

:

:

5

Θ=

Ω επ

N0 number of beam particles n target material in atoms/volumet target thickness

Page 22: detector 04 1 - Università degli Studi di Perugia

Θcm > Θminsince there is a screening of the electric field of the atom.

#

α≈Θ where a0 is the first Bohr radius

-4 #&

. 8#BC?

D)

D)5

D):

D)?

@ #$#@78

Θ$

Θ

#

#2

#

ΘΘΘ≈Θ

for a single scattering

[ ]

≈Θ∗=Θ

β

απρ

Alpha particles in silver

1

10

100

1000

10000

100000

1000000

0 30 60 90 120 150 180

Mean angle of scattering

Relative number of

scattered

: Θ∝

Page 23: detector 04 1 - Università degli Studi di Perugia

!$& $$ & # &

$#$>

EF $ $&&&)

&$ $

3 $E

D!$& ;6$&

$@

$>@$$#

Page 24: detector 04 1 - Università degli Studi di Perugia

=

=

0

#2

:

πε

Multiple Coulomb Scattering (after Rutherford)Energy Transfer = Classic RutherfordIf Energy > Ionization Energy → electron escape atom

< → No energy transfer

where the sum is taken over all electrons in the atom for which the maximum energy transfer is greater than the ionization energy.

Substituting in the maximum (non relativistic) energy transfer:

Excitation energies (divided by Z) as adopted by the ICRU [Stopping Powers for Electrons and Positrons," ICRU Report No. 37

(1984)].Those based on measurement are shown by points with error flags; the interpolated values are simply joined. The solid point is for liquid H2 ; the open point at 19.2 is for H2 gas. Also shown are the I/Z = 10 ±1 eV band and an early approximation.

=

=

0

:

πε

0 10 20 30 40 50 60 70 80 90 100 8

10

12

14

16

18

20

22

I/Z

(eV

)

Z

Barkas & Berger 1964

ICRU 37 (1984)

Page 25: detector 04 1 - Università degli Studi di Perugia

0.5

1.0

1.5

2.0

2.5

⟨ – dE

/dx ⟩

min

(MeV

g –1

cm 2

)

1 2 5 10 20 50 100 Z

H He Li Be B C NO Ne Sn Fe

Solids Gases

H 2 gas: 4.10 H 2 liquid: 3.97

2.35 – 0.64 log 10 ( Z ) ##$# 1

& ##

&& BG

'#&$

2D82

#

$#

F 1 4 )8ρ ∗ D82& @#8

*D@7

F 1 4

<

'

$

.

'

;

@ #$#@78

Page 26: detector 04 1 - Università degli Studi di Perugia

?HH5 −=

8: π=

−−=

#2

δβγββ

!

& 'C8#

Muon momentum

1

10

100

Stop

ping

pow

er [M

eV c

m 2 /

g]

Lin

dhar

d-

Sc

harf

f

Bethe-Bloch

Radiative effects

reach 1%

µ + on Cu

Without δ

Radiative losses

βγ 0.001 0.01 0.1 1 10 100 1000 10 4 10 5 10 6

[MeV/ c ] [GeV/ c ] 100 10 1 0.1 100 10 1 100 10 1

[TeV/ c ]

Anderson- Ziegler

Minimum ionization

E µ c

Nuclear losses

µ −

Current wisdom on Bethe-Bloch

#2

++=

γγβ

D):

D)?

D)

D)

D(

D(

D(

D(?

D(:

D(5

@ #$# @78

#2@7

Page 27: detector 04 1 - Università degli Studi di Perugia

0.05 0.1 0.02 0.5 0.2 1.0 5.0 2.0 10.0 Pion momentum (GeV/ c )

0.1 0.5 0.2 1.0 5.0 2.0 10.0 50.0 20.0 Proton momentum (GeV/ c )

0.05 0.02 0.1 0.5 0.2 1.0 5.0 2.0 10.0 Muon momentum (GeV/ c )

βγ = p / Mc 1

2

5

10

20

50

100

200

500

1000

2000

5000

10000

20000

50000

R / M

(g c

m − 2

GeV

− 1 )

0.1 2 5 1.0 2 5 10.0 2 5 100.0

H 2 liquid He gas

Pb Fe

C

1

10

100

1000

10000

100000

10 100 1000 10000 100000

Kinetic Energy Proton (MeV)

Range in Iron (g cm-2)

as energy square

as energy

Range of particles in matter.Poor man’s approach:Integrating dE/dX from Rutherford scattering and ignoring the slowly changing ln(term),

" ≈=

Range is approximately proportional to the kinetic energy square at low energy and approximately proportional to the kinetic energy at high energy where the dE/dX is about constant.

Page 28: detector 04 1 - Università degli Studi di Perugia

Bremsstrahlung and Photon Pair Production.

Radiative Process

e Ze

Zee

Impact parameter : b(non-relativistic!)Peak electric field prop. to e/b2

Characteristic frequency ωc∝1/∆t∝v/2b

IJ:

==⋅

==βα

ωω

ωπω

ω

#

#

$#

IJ

ωβπα

ωωγ ≈

Insert Nγ : photon density Insert the Thomson cross section

# ?

απσ = "

IJ

α

ωασ

ωωσ γ

≈≈

orσB ∼ 0.58mb ∗ Z 2

Page 29: detector 04 1 - Università degli Studi di Perugia

ωω

σρω

% ρ

%

IJ?

∝=−αα

Radiative Energy Loss.

Define X0 as the Radiative Mean Path.X0 : Radiation Length

B

! 4K8#

? &CCD

&/ & "

Page 30: detector 04 1 - Università degli Studi di Perugia

[ ]

≈Θ∗=Θ

β

απρ

%

IJ?

∝=−αα

The multiple scattering angle can now be expressed in units of X0

and

Introduce the characteristic energy 5: =⋅≡απ

%

ββ

==Θ

. LK

. # #$#@78

@@$

'

Page 31: detector 04 1 - Università degli Studi di Perugia

Energy deposit by 1 MeV electrons in 0.53 mm of silicon

The most probable energy loss of an electron of energy 1 MeV in the Si layer is around 200 keV. However, due to the multiple scattering and delta ray production theprimary electron can deposit more energy or even it can be completly absorbed in the detector (in about 4 % of the cases).

http://wwwinfo.cern.ch/asd/geant4/reports/gallery/electromagnetic/edep/summary.html

Electrons of energy 100 MeV have been tracked in aluminium and the longitudinal (z) and tranverse (r)distances travelled by the electrons have been plotted.

Page 32: detector 04 1 - Università degli Studi di Perugia

B

D@7

Bremsstrahlung

Lead ( Z = 82)

Positrons

Electrons

Ionization Moøller ( e − )

Bhabha ( e + )

Positron annihilation

1.0

0.5

0.20

0.15

0.10

0.05

(cm

2 g − 1

)

E (MeV) 1 0 10 100 1000

1 E

− dE

dx

( X 0 − 1

)

Fractional energy loss per radiation length for electrons and positrons in lead. Critical Energy, Ec , when Bremsstrahlung = Ionization

)::∝

Page 33: detector 04 1 - Università degli Studi di Perugia

Photon Energy

1 Mb

1 kb

1 b

10 mb10 eV 1 keV 1 MeV 1 GeV 100 GeV

(b) Lead (Z = 82)

σcoherent

σincoh

− experimental σtotσp.e.

σnuc

κN

κe

Cro

ss s

ecti

on (

barn

s/at

om)

Cro

ss s

ecti

on (

barn

s/at

om)

10 mb

1 b

1 kb

1 Mb(a) Carbon (Z = 6)

σcoherent

σincohσnuc

κN

κe

σp.e.

− experimental σtot

Photon total cross sections as a function of energy in carbon andlead, showing the contributions of different processes

σpe= Atomic photo-effect (electron ejection, photon absorption)

σcoherent = Coherent scattering (Rayleigh scattering-atomneither ionised nor excited)

σ incoherent = Incoherent scattering (Compton scattering off an

electron)κn = Pair production, nuclear fieldκe = Pair production, electron fieldσnuc = Photonuclear absorption

(nuclear absorption, usuallyfollowed by emission of a neutron or other particle)

Page 34: detector 04 1 - Università degli Studi di Perugia

e Ze

Zee

Bremsstrahlung Pair production

5

H ×≈= σσ

Ze

Zee-

e+

Page 35: detector 04 1 - Università degli Studi di Perugia

! K#

D 98#

W

Pb Sn G10

Fe

Cu

Alglass

Page 36: detector 04 1 - Università degli Studi di Perugia

Charged Particles in Magnetic Fields.

Dipole Bending Magnet. Quadrupole lens.

Sextupole correction lens.Rare Earth Permanent Magnet. Low β-insertion.

Beam Transport System. Spectrometer Dipole.

Page 37: detector 04 1 - Università degli Studi di Perugia

α β

φ

φl1 l2

L

R

B

zz

x1 x2x2'

x1'

Dipole Bending Magnet. Rectangular bending magnet. The initial and final displacement and divergence (x1,x1’), (x2,x2’) is defined with respect to the central particle of the beam.(xi’=dxi/dz)It is usual to operate the magnet symmetrical:→ α0=β0=φ/2

( ) ( )&

8?

=

+=

φφβα

βα

αβ

kGm/GeV/c

-4

-3

-2

-1

0

1

2

3

4

-00004 -00003 -00002 -00001 00000 00001 00002 00003 00004

NS

N S

R

Quadropole Magnet.

xy=RBx=kyBy=kx

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1 1.5 2

Fiel

d G

radi

ent

z

0 d

k

Assume a simple rectangular model.

=

−=

'("$

)"$

ωωωω

ωω

ωωωωωω

Depending on the plane ( XZ or YZ), the field is either focusing or defocusing.

8

8?

*

+*+ ≅−ω

Page 38: detector 04 1 - Università degli Studi di Perugia

Thin Lens Approximation.+ no fringe field → d=effective length ≈ pole-length + g*R where g≈1→ drift length * instantaneous change in divergence * drift length

( )

+++

=

−−

(

(

(

(

(

(

(

ωωωωω

ωωω

ωω

+−=

−=

−=

−=

Focusing

Defocusing

(

→± →

→−

ω

ω ω

Page 39: detector 04 1 - Università degli Studi di Perugia

7 M;F. #

& )& &$ #&$

$ #$/ & ) )

# $& $&& #

& # & # )

Page 40: detector 04 1 - Università degli Studi di Perugia

Analog Simulation of the Particle Trajectory.Floating Wire.

Take a magnet.Install a (near) mass-less non-magnetic conductive wire.Let the wire pass over a (near) frictionless pulley.Add weight on one end of the wire and fix the other.Add current through the wire.

The central momentum is then given as

p(GeV/c) ≈ 3 10-3 M (g)/i(A)

*!N !'D>'F<#) . #O

@'MF' $ &@'20%$ $MF ' #

##

One can also use:

But floating wire is more fun.

B

Page 41: detector 04 1 - Università degli Studi di Perugia

' & #%$ $

#'3 *) # $3 * #

$ π(#

Page 42: detector 04 1 - Università degli Studi di Perugia

Z

Y

X

B

qe,p

αααα

RT

Momentum Measurement and Magnetic Fields.

Solenoidal magnetic field.ALEPH event.WW -> 4 jets

α?

, ≅

α?

, ≅

With B in tesla, momentum in GeV and R in m

or

Page 43: detector 04 1 - Università degli Studi di Perugia

?

:

5

H

? : 5 H

! 4K

@$ #

!"#$!"#

!"#

SC

+≅

αα

?

,

Momentum measurement can also be done by measuring the multiple scattering.

Y1

Y2

Y3

Y4

Y5

Y6

Dense MaterialX1

X2

X3

X4

X5

High Precision Detector

X6

Page 44: detector 04 1 - Università degli Studi di Perugia

Θvn

ββββR vt

R

PP'M

Oobserver

Q

b

γτ

τ

τβ

8

=

−=

=

Charged particles do things (particularly if they are moving).

unit vector along τ −

After some manipulation of the 4-vector potential caused by a charge in motion, it can be shown:

[ ]( )

( )

•−

×−×+

•−

−=

×=

βββ

βγβ

?

Velocity field acceleration field

P transverse to the radius vector

It is well known that accelerated charges emit electromagnetic radiation.J. D. JacksonClassical Electrodynamics

Page 45: detector 04 1 - Università degli Studi di Perugia

Let us assume that the charge is accelerated and the observer is in a frame where the velocity v<<c(we go classic!)

The Lorentz equivalent expression

[ ]

?

?

?

βββγττ

µµ ×−=

−=

-

( ) Θ=××==Ω

=×=

××=

?

:::

::

-

.

πβ

ππ

ππ

β

The energy flux

The radiated power / unit solid angle

The Larmor equation

ββ QQ

That is linear acceleration

→ P ≈ negligible

Page 46: detector 04 1 - Università degli Studi di Perugia

Circular acceleration

::

?

?

?

?

γβρ

ωγτ

γωτ

-

==→>>=

ρβω =

Energy loss/revolution

5

?

: :

:?

*

-

ργβ

ρπ

βπρ

β−

→ ⋅=∆ →==∆

Take one LEP

* =∆

πρ

H ?⋅= 2 GeV

3.2 10-10 J

0.3 10-5 W/particle

0.3 106 W/bunch

1 eV=1.6 10-19 J

90 µs

∼1011 particles/bunch

ρ

Page 47: detector 04 1 - Università degli Studi di Perugia

( ) [ ]( ) ( )5

?

885

::

0

Θ−Θ →

•−

×−×=

Ω βπβββ

π ββ

-

The angular distribution of the energy loss for a circular acceleration

Θ→ →

?

:

πγwhich is the Larmorequation (again).

0

100000

200000

0 100000 200000

γγγγ=1.000052∗ 10∗ 10∗ 10∗ 10 5555 ∗∗∗∗ dP(t)/dΩΩΩΩ

γγγγ=2250∗∗∗∗ dP(t)/dΩΩΩΩ

γγγγ=4v

( )( )5

?

0

Θ+Θ≅ →

Ω →Θ γγγ

π

-

γ

≅Θand independent of the

vectorial relationship between ββ P

Page 48: detector 04 1 - Università degli Studi di Perugia

# $

&#

'$$ #)

& &) #

#$$

# $ & #

$

%$ &#$

/".0$$."

Synchrotron Radiation

Center University

of Wisconsin Madison

Synchrotron radiation spectrum as function of frequency.Circular motion.

ωω

γω

ρω

?

?

=

The critical frequency beyond which there is negligible radiation at any angle:

Page 49: detector 04 1 - Università degli Studi di Perugia

We will now go on to detectors