Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta...

85
Corso di Laboratorio di Elettronica a.a 2005-2006 PROGETTAZIONE E REALIZZAZIONE DI UN AMPLIFICATORE AUDIO DA 100W Docente del corso: Ing. Carmine Abbate Studenti: Della Grotta Federico Serapide Emilio

Transcript of Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta...

Page 1: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Corso di

Laboratorio di Elettronica a.a 2005-2006

PROGETTAZIONE E REALIZZAZIONE DI UN

AMPLIFICATORE AUDIO DA 100W

Docente del corso:

Ing. Carmine Abbate

Studenti:

Della Grotta Federico

Serapide Emilio

Page 2: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Indice 2

Indice Introduzione pag. 4

Capitolo 1 Stadio di ingresso pag. 5 1.1 Caratteristiche stadio di ingresso pag. 5

1.2 Stadio differenziale pag. 6

1.3 Circuito di polarizzazione pag. 10

Capitolo 2 Stadio Intermedio pag. 12

Capitolo 3 Stadio di potenza pag. 13 3.1 Principali parametri dello stadio di potenza pag. 13 3.2 Classi di funzionamento pag. 15 3.3 Amplificatore in classe AB pag. 19

3.3.1 Distorsione d’incrocio pag. 20 3.3.2 Tecniche per ridurre la distorsione d’incrocio pag. 21

Capitolo 4 Dissipatori termici pag. 26

Capitolo 5 Circuiti Stampati pag. 29 5.1 Tipologia di circuiti stampati pag. 29 5.2 Il processo di fabbricazione di un PCB pag. 30

5.3 La progettazione di un PCB pag. 32

Capitolo 6 Progetto e collaudo pag. 35 6.1 Simulazione Spice pag. 35

6.2 Dimensionamento del dissipatore pag. 38

6.3 Dimensionamento dell’alimentatore ausiliario pag. 40

6.4 Dimensionamento del circuito di protezione pag. 42

6.4.1 Circuito di comando pag. 42 6.4.2 Protezione DC e Termica pag. 43

6.5 PCB pag. 45

6.6 Verifiche sperimentali sul progetto pag. 47

Page 3: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Indice 3

Allegati

Allegato 1 BC546 pag. 51

Allegato 2 BC556 pag. 55

Allegato 3 TIP 115/117 pag. 59

Allegato 4 MJE15034/MJE 15035 pag. 65

Allegato 5 MJL21193/MJL21194 pag. 71

Allegato 6 Dissipatore per TO220 pag. 76

Allegato 7 Dissipatore con ventola pag. 77

Allegato 8 Isolante elettrico pag. 79

Allegato 9 NTC pag. 80

Page 4: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Introduzione 4

Introduzione

L’amplificatore è quel dispositivo elettronico che varia l’ampiezza del segnale applicato al suo

ingresso, al fine di aumentare il valore del segnale medesimo. Si definisce amplificatore ideale quel

dispositivo che riproduce esattamente quello che ha ricevuto in entrata. Purtroppo non esiste un

amplificatore capace di aumentare un segnale senza modificarlo almeno in minima parte.

In generale i segnali disponibili alle sorgenti risultano essere inadeguati a comandare attuatori, per

cui si rende necessaria un’amplificazione del segnale. In particolari applicazioni, tra cui

applicazioni audio, l’amplificazione fornita da un singolo componente attivo (transistor) risulta

insufficiente. In questo caso è necessario ricorrere ad una configurazione amplificatrice a due o più

stadi disposti in cascata, ovvero connessi in modo che l’uscita di ciascuno stadio funga da sorgente

di segnale per lo stadio successivo.

Stadio di ingresso

Stadio di amplificazione

intermedia

Stadio finale o di potenza

Page 5: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 1: Stadio di Ingresso 5

Capitolo 1 Stadio di Ingresso

1.1 Caratteristiche dello stadio di ingresso

Le caratteristiche dello stadio di ingresso sono:

- Impedenza di ingresso: poiché i trasduttori forniscono segnali aventi livello di tensione

molto piccolo e potenza debolissima, particolare cura deve essere posta nell’adattamento di

impedenza tra il trasduttore o sorgente audio e l’amplificatore. I metodi di adattamento sono:

1. con Rs << Rin e in questo caso il trasferimento di segnale avviene in tensione;

2. con Rs = Rin in questo caso il trasferimento del segnale avviene in potenza

dove

Rs è la resistenza interna del trasduttore o della sorgente audio

Rin e la resistenza di ingresso dell’amplificatore.

- Basso rumore: l’amplificatore pilota, essendo il primo stadio di una catena amplificatrice, è

interessato da segnali di ingresso assai deboli e deve introdurre la minima quantità di

rumore, in effetti il rumore generato dai primi stadi viene amplificato dai successivi,

peggiorando il rapporto segnale/disturbo; inoltre, su segnali molto deboli, è facile dar luogo,

anche con rumori deboli, a rapporti segnale/disturbo inaccettabili.

- Bassa distorsione: se lo stadio pilota introduce distorsioni, queste vengono amplificate

dallo stadio di potenza, con l’effetto di ulteriore peggioramento. Peraltro, dato che le

potenze in gioco nello stadio pilota non sono rilevanti, non si richiedono rendimenti elevati,

non esistono quindi motivi per avere distorsioni.

- Risposta in frequenza: normalmente lo stadio pilota viene progettato per una banda

passante più elevata dello stadio di potenza ; in tal modo le frequenze di taglio dell’intero

sistema dipendono solo da quest’ultimo.

Page 6: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 1: Stadio di Ingresso 6

1.2 Stadio Differenziale

Lo stadio di ingresso del nostro amplificatore è costituito da una struttura differenziale, del tipo

riportato in figura 1.1 , e realizzato a livello discreto.

I motivi per cui abbiamo scelto questa configurazione come stadio di ingresso sono molteplici.

Un primo motivo è che è molto immune al

rumore: una corrente variabile in prossimità del

circuito induce nello stesso un certo rumore; se

l’uscita è proporzionale alla differenza tra le

tensioni di ingresso il rumore si elide.

Un altro vantaggio di questa struttura è che ci

consente di accoppiare il carico senza l’utilizzo

di capacità, cosa molto utile soprattutto a livello

integrato in cui una capacità occupa un’area estesa.

Ad

I

V+

V- Vo

Figura 1.1 - Schema elettrico dello stadio differenziale

Figura 1.2. – Schematizzazione del Differenziale

Page 7: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 1: Stadio di Ingresso 7

Facendo uno studio a piccolo segnale dello stadio differenziale si può facilmente capire come si

comporta questo circuito per segnali differenziali. Si può ricavarne il guadagno differenziale

ottenendo:

gmRcAddiff ⋅−=

dove

T

C

VI

gm =

e rappresenta il guadagno di transconduttanza del transistor.

Se consideriamo la tensione di uscita Single-ended il guadagno sarà esattamente la metà:

2gmRcAdse⋅

−=

Possiamo anche calcolare quanto vale la resistenza di ingresso:

IcV

gmrRi T

diffββ

π 222 ==⋅=

Notiamo subito che il guadagno è limitato dal tipo di transistore attraverso la massima corrente

di collettore (gm) e dalla resistenza Rc. Al fine di aumentare questo l’aumento di gm comporta

una diminuzione della resistenza di ingresso mentre l’aumento della Rc è limitato dalla potenza

da dissipare e dall’escursione massima.

Per quanto riguarda l’analisi di segnali di modo comune quali ad esempio il rumore, si

determina il guadagno di modo comune, considerando l’uscita single-ended, come:

RRc

RreRc

VcmVoAcmse 22

−≅+

−==

dove R è la resistenza interna del generatore di corrente, cioè la resistenza di uscita dello

specchio. Si nota che si ha un Acm basso se la R è alta, cioè dipende dalla resistenza di uscita

dello specchio. Ecco quindi il vantaggio di utilizzare come polarizzazione uno specchio di

corrente ad elevate prestazioni.

Se si ha perfetta simmetria dello stadio differenziale (Rc uguali e β uguali), per un segnale di

modo comune, che è lo stesso in entrambi gli ingressi, l’uscita differenziale sarà nulla.

Si definisce a questo punto il CMRR (Common Mode Rejection Ratio) come:

AcmAdCMRR =

Page 8: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 1: Stadio di Ingresso 8

Quindi più è alto questo fattore e meglio risponde l’amplificatore per segnali differenziali

(vengono amplificati molto) e di modo comune (vengono amplificati poco).

- Nel caso di uscita s.e. questo vale:

RgmAcmAdCMRR ⋅==

- Nel caso di uscita differenziale questo può essere notevolmente aumentato per i

motivi descritti in precedenza.

Nelle applicazioni in cui l’uscita deve essere riferita a massa solitamente si preferisce avere due

stadi di amplificazione: un primo stadio di pre-amplificazione con uscita differenziale e il

secondo stadio finale con uscita single-ended. In questo modo rendendo quanto più simmetrico

possibile il primo stadio si riescono a diminuire i segnali di modo comune e quindi ad evitare

che vengano amplificati dagli stadi successivi.

Il nostro amplificatore, essendo un finale audio, è composto da uno stadio di ingresso

differenziale ad uscita single-ended come riportato in figura 1.2.

Figura 1.3 - Stadio di ingresso differenziale

Page 9: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 1: Stadio di Ingresso 9

Dalla figura si notano alcuni particolari non descritti prima:

• il filtro passa-basso R1C9 serve a limitare la banda del segnale di ingresso e quindi eliminare

rumori ad alta frequenza;

con ⎩⎨⎧

==

pCkR

22092.21

si ha una frequenza di taglio superiore di circa kHz330 .

• Si dimensiona la resistenza dello specchio R8 in modo da avere una corente di polarizzazione Io

di circa 2mA:

Ω⇒Ω=⋅⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−= 5606,585ln8

IoVT

IsIo

VTVledR α

• Si dimensionano le resistenze sul differenziale in modo da avere un guadagno single-ended di

10V/V:

2gmRcAdse⋅

−= e)commercial (valore 560515 102

Ω⇒Ω==⋅ Rc

VTIcRc

Inoltre si nota che l’ingresso è differenziale. Il secondo ingresso è stato utilizzato per riportare

un segnale di retroazione sia statica che dinamica; la retroazione DC è necessaria al fine di avere

una tensione continua nulla sul carico ed evitare il danneggiamento dell’altoparlante, mentre la

retroazione AC, data da C6, riduce la distorsione e linearizza la risposta dell’amplificatore nella

banda di interesse.

Dalla simulazione effettuata in Spice si nota il comportamento dello stadio di ingresso, per

segnali differenziali (fig1.2.2) e di modo comune (fig1.2.3), in funzione della frequenza.

Frequency

100mHz 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHzV(Q1:c)/ V(V2:+)

0

5

10

Figura 1.4 – Risposta in frequenza dello stadio di ingresso differenziale

Page 10: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 1: Stadio di Ingresso 10

In figura 1.4 si nota che il guadagno di centro banda non è proprio 10V/V in quanto c’è il filtro

in ingresso che comporta una attenuazione della tensione di base di Q1 rispetto alla tensione di

ingresso.

Frequency

100mHz 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz1/V(Q1:c)

0

50

100

Figura 1.5 - Guadagno di modo comune al variare della frequenza

In figura 1.5 si nota che per le alte frequenze l’amplificatore ha problemi per quanto riguarda i

segnali di modo comune: si ha un ripido aumento del guadagno. Passando ad uno studio nel

dominio di Laplace si deduce che questo è dato dalla resistenza dello specchio e dalla sua

capacità parassita le quali pongono un’azione passa alto. Essendo la banda del nostro

amplificatore limitata, questo fatto non comporta problemi.

1.3 Circuito di Polarizzazione

Il circuito di polarizzazione ( Io ) può essere costituito da uno

Specchio di Corrente come riportato in figura. Questo

riproduce in uscita una corrente che rispecchia quella di

riferimento Iref e quindi si può regolare questa dimensionando

opportunamente la Rref come:

IrefVbeVccRref −

=

Figura 1.6 - Circuito di polarizzazione, Specchio di corrente

Page 11: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 1: Stadio di Ingresso 11

Il vantaggio di usare come polarizzazione un circuito del genere al posto di una semplice

resistenza sta nel fatto che lo specchio può avere una resistenza di uscita elevata.

Nel nostro progetto si è scelto un particolare specchio, lo specchio di Widlar, il quale ha una

resistenza di uscita molto grossa e, essendo che il punto di funzionamento a riposo è fisso,si è

scelto di polarizzare lo specchio con un Led il quale ha

una tensione di polarizzazione fissata a 1,8V.

Si può calcolare il valore della R8 in funzione della

VDIODO e della Io come:

IoV

IsIo

VVdiodoR T

T

α⋅⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−= ln8

Figura 1.7 - Circuito di polarizzazione, Specchio di Widlar

Page 12: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 2: Stadio Intermedio 12

Capitolo 2 Stadio Intermedio

Lo stadio intermedio è costituito dal Bjt Q5 in configurazione ad emettitore comune come

riportato in figura 2.1.

Questo stadio consente l'adattamento, allo stadio

finale, del segnale proveniente dal differenziale. Ha

un guadagno pari alla gm del transistore moltiplicata

per la relativa resistenza vista sul collettore di Q5.

Inoltre Q5 fornisce la corrente necessaria al

moltiplicatore di Vbe. Tale circuito è necessario per

polarizzare i transistori di potenza in modo da

eliminare la distorsione di cross-over.

La capacità C17 ha il compito di stabilizzare in

frequenza il circuito. Facendo un’analisi del sistema,

sicuramente vi saranno poli a parte reale positiva che

possono portare in oscillazione il sistema. Inserendo

una capacità di valore adeguato si va ad inserire un

polo dominante che rende stabile il sistema.

Sfruttando il teorema di Miller, cioè mettendo la capacità tra ingresso ed uscita di questo stadio,

si riesce ad utilizzare una capacità di modesto valore risparmiando quindi sull’ingombro.

Daltrocanto la capacità C17 determina la frequenza di taglio superiore dell’amplificatore.

La capacità C10 è utilizzata per riportare una parte della retroazione AC sullo stadio intermedio

stabilizzando quindi la dinamica di questo.

Figura 2.1 - Stadio di amplificazione intermedia

Page 13: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 13

Capitolo 3 Stadio di potenza

Lo stadio di potenza, o stadio finale inteso come ultimo elemento della catena di amplificazione

ha lo scopo di fornire potenza al carico. Questo riceve in ingresso un segnale già amplificato in

tensione, trasferendolo al carico con la stessa ampiezza ma amplificato in corrente.

3.1 Principali parametri dello stadio di potenza

I parametri principali che definiscono i limiti di funzionamento e progetto di uno stadio di

potenza sono:

- Rendimento: per rendimento di un sistema, si intende il rapporto tra la potenza che esso

cede al carico e quella che gli viene introdotta attraverso l’alimentazione ed il segnale di

comando.

PccPout

Nel caso ideale, la potenza uscente è uguale alla somma di quelle entranti ed il rendimento è

unitario. In pratica questo non è possibile, ovvero Pout risulta sempre inferiore a Pcc ed è

1<η . La differenza tra la potenza entrante e quella uscente rappresenta la potenza PD, che si

dissipa all’interno dell’amplificatore di potenza. Esistono due ragioni fondamentali per cui

questa potenza risulta minima, ovvero il rendimento massimo:

1. quando le potenze in gioco sono elevate, è bene che tutta la potenza spesa dia luogo ad

effetti utili e non venga dispersa, per ovvie esigenze di risparmio energetico.

2. la potenza non utilizzata si dissipa sotto forma di calore, interessando principalmente i

componenti attivi. L’aumento della temperatura modifica le caratteristiche di

comportamento dei componenti attivi, peggiorando la qualità di lavoro e giungendo a

danneggiarli in modo irreparabile, se si supera la massima temperatura di giunzione

(≈ 150°C). Inoltre, le elevate temperature di funzionamento, specie se in regime

variabile, accorciano notevolmente la vita media dei componenti. In pratica si cerca di

salvaguardare i componenti di potenza dato il costo assai elevato in alcuni casi.

Page 14: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 14

Tutto ciò produce l’esigenza di dissipare il calore prodotto dalla potenza non utilizzata, con

mezzi aggiuntivi (dissipatori o sistemi di raffreddamento a circolazione di fluido) che

aumentano la complessità ed il costo degli apparati di potenza.

- Condizioni di massimo trasferimento di potenza: il parametro degli amplificatori di

potenza è, come ovvio, la potenza trasferita al carico. La condizione ottimale per il

trasferimento di potenza tra un amplificatore con resistenza di uscita Ro, ed un attuatore con

resistenza generica RL, può essere ottenuto in due modi:

1. con Ro = RL: condizione generalmente impiegata negli accoppiamenti a trasformatori;

oppure altri casi:

2. con Ro << RL: quest’ultima condizione è adottata nella maggior parte dei casi e porta

all’impiego di amplificatori aventi resistenza di uscita molto bassa.

- Risposta in frequenza: la risposta in frequenza è legata al tipo di attuatore pilotato

dall’amplificatore di potenza, ad esempio:

1. i motori richiedono all’amplificatore una risposta in frequenza dalla continua sino a

frequenze superiori non molto elevate;

2. gli altoparlanti ed in genere i sistemi audio, richiedono una banda di frequenza

quantomeno eguale (o più ampia, specie verso le frequenze alte) a quella del segnale

acustico, che varia nell’intervallo 16 Hz ÷ 20kHz.

- Linearità: l’obbiettivo di portare al massimo il rendimento, comporta l’elongazione del

segnale in tutta la zona di lavoro consentita per i componenti attivi che presentano, agli

estremi ti tale zona, comportamenti non lineare. Da ciò segue che gli amplificatori di

potenza sono sede di distorsione di non linearità, la quale introduce la presenza di armoniche

di frequenza multipla rispetto a quella del segnale. La distorsione di non linearità ha effetti

diversi a seconda dell’attuatore che l’amplificatore di potenza pilota.

- Ad esempio:

1. le armoniche di ordine superiore dovute alla distorsione di non linearità, sono causa di

surriscaldamento del nucleo ferromagnetico nel caso di motori;

2. nel campo audio, la non linearità pone il problema della qualità del suono, a causa della

notevole sensibilità che l’orecchio umano ha nei confronti della distorsione di non

linearità.

Page 15: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 15

3.2 Classi di funzionamento

La divisione degli amplificatori di potenza in base alla classe di funzionamento, è legata alla

condizione di polarizzazione e lavoro dei componenti attivi che costituiscono gli amplificatori

medesimi ed alla tecnica con cui viene ottenuta l’amplificazione di potenza. In tal senso, occorre

compire una distinzione fondamentale tra due tipi di amplificazione:

- Funzionamento analogico: questo tipo di amplificatore fruisce in pratica di amplificazioni

ottenibili mediante i componenti attivi a tecnologia unipolare o bipolare, che realizzano

l’amplificazione attraverso lo spostamento del punto di lavoro lungo la retta di carico

all’interno della zona attiva, per effetto di comando del segnale di ingresso. Un componente

attivo da luogo a circolazione di corrente di segnale nella maglia d’uscita dell’amplificatore

di cui fa parte, in funzione della posizione del punto di lavoro sulla retta di carico. Nel caso

di amplificatori a funzionamento analogico, si definisce quindi classe di funzionamento, la

condizione di polarizzazione del componente attivo e la conseguente circolazione di

corrente nel carico. Le classi di funzionamento analogico sono: A, B, AB, C.

- Funzionamento Switching: in questo tipo di funzionamento non si fa uso delle

caratteristiche di amplificazione di componenti attivi, ma di un particolare procedimento

(PWM: Pulse Width Modulation), che consente di modificare il valor medio di un’onda

quadra, in base alla modifica del rapporto tra la durata di permanenza allo stato alto e quella

dell’intero periodo dell’onda (duty cycle). I componenti attivi in questo caso funzionano

come interruttori (switch) che, per effetto del comando (di bassa potenza) del segnale da

amplificare, passano dalla saturazione all’interdizione (e viceversa), controllando potenze di

notevole entità. La classe di funzionamento degli amplificatori switching è detta classe D.

Dopo aver fatto differenza sulla tecnica di amplificazione dei segnali si analizzano brevemente le

classi di funzionamenti di cui sopra.

Classe A: in un amplificatore polarizzato per funzionare in classe A, il punto di lavoro viene tenuto,

a riposo, al centro del tratto lineare della retta di carico e, per effetto del segnale di ingresso, si

sposta sulla medesima dalla saturazione alla interdizione e viceversa. Nella polarizzazione in classe

A, si ha circolazione di corrente di segnale nella maglia d’uscita in ogni punto della forma d’onda

del segnale d’ingresso. Si suole dire che l’angolo di circolazione della corrente di segnale nella

Page 16: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 16

maglia di uscita è 360°, intendendo che per tutto il periodo del segnale d’ingresso, vi è corrente di

segnale al carico. La classe A, da luogo alla minima distorsione ma ha come svantaggio quello di

avere un rendimento molto basso.

Figura 3.1 - BJT polarizzato in classe A con specchio di corrente

Con riferimento alla figura 3.1 in cui si evidenzia il transistore Q1 polarizzato in classe A e il

transistore Q2, detto anche specchio di corrente, il quale ha il compito di polarizzare

Q1,supponendo un ingresso sinusoidale si ha che:

( )tsenVoutvoutVvinVbevinvout ω*7,0 =⇒−=−=

( )0**221 2

IcVccRL

vout

PccPL ⎟⎟

⎞⎜⎜⎝

==η

dove:

PL è la potenza fornita al carico

PCC è la potenza fornita dall’alimentazione

IC0 è la corrente che circola nel collettore in assenza di segnale di ingresso

RLVccIcIcVccPdissIcIcVoutVin =⇒=⇒=⇒=⇒= 00*2000

sostituendo quanto trovato nella relazione del rendimento si ha:

2

2

41

VccRL

RLvout

ma dal momento che la tensione di uscita non può superare la tensione di alimentazione risulta che:

%2541⇒=η

Classe B: in un amplificatore polarizzato per funzionare in classe B, il punto di lavoro viene tenuto,

a riposo, in corrispondenza dell’interdizione sulla retta di carico. È evidente che, se il segnale

d’ingresso impone elongazioni simmetriche nell’intorno della condizione di riposo, si ottiene

Page 17: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 17

circolazione di corrente nella maglia di uscita per tutti i segnali che spostano il componente verso la

saturazione; per i valori che lo spostano verso l’interdizione, non si ha corrente nella maglia di

uscita. Si suole dire che l’angolo di circolazione della corrente di segnale nella maglia d’uscita è

180°, intendendo che vi è corrente di segnale al carico soltanto per un semiperiodo del segnale

d’ingresso, la circolazione della corrente per gli altri 180° è affidata al transistore complementare.

La classe B, produce distorsioni inaccettabili, in quanto priva il segnale di una parte

d’informazione, che si trova al di sotto dell’asse delle ascisse. La classe B offre notevoli vantaggi

rispetto alla classe A, in termini di rendimento.

Figura 3.2 - BJT polarizzati in classe B

Con riferimento alla figura 3.2, dove si evidenzia la coppia a simmetria complementare di

transistori, supponendo un ingresso sinusoidale si ha che:

( )tsenVoutvoutVvinVbevinvout ω*7,0 =⇒−=−=

PccPL=η

dove:

PL è la potenza fornita al carico

PCC è la potenza fornita dall’alimentazione

Per determinare la potenza fornita dall’alimentazione bisogna determinare il valor medio della

potenza dell’alimentazione. Con riferimento a quella positiva si ha:

RLVccVccIcdttPcVccPccπππ

π 22

0

max1)(21

=== ∫+

quindi la potenza totale è:

RLVccPccPccπ

22*2 == +

Page 18: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 18

sostituendo quanto trovato nella relazione del rendimento si ha:

2

2

4 VccRL

RLvoutπη =

ma dal momento che la tensione di uscita non può superare la tensione di alimentazione risulta che

il rendimento medio è:

%5,784⇒=

πη

Volendo calcolare la potenza dissipata si ha:

RLVo

RLVoVccPLPccPdiss

2

21*2

−=−=π

da cui possiamo ricavare il massimo cha vale:

VccVRLVo

RLVcc

VPcc

ππ2002

0=⇒=−=

sostituendo quanto trovato nella relazione del rendimento si ha che in corrispondenza della massima

potenza dissipata quest’ultimo scenda al 50%.

Classe AB: la classe AB è una diretta conseguenza della classe B, il componente attivo, anziché

essere polarizzato alla interdizione è polarizzato in leggera conduzione, in una condizione

intermedia tra quelle relative alle classi A e B rispettivamente. La polarizzazione in classe AB

consente di ridurre notevolmente un particolare tipo di distorsione, detta d’incrocio o cross-over,

che insorge nel funzionamento in classe B «pura» negli attraversamenti per lo “0”. Si osserva che

per questa particolare polarizzazione l’angolo di circolazione della corrente è compresa tra 180° e

360° e il rendimento risulta essere intermedio tra quello della classe A e quello della classe B.

Classe C: in un amplificatore polarizzato per funzionare in classe C, il componente viene tenuto, a

riposo, in corrispondenza di una forte interdizione. Se il segnale di ingresso impone elongazioni

simmetriche nell’intorno della condizione di riposo, si ottiene circolazione di corrente nella maglia

di uscita soltanto per i più elevati tra i valori di segnale che spostano il componente verso la

saturazione. Per tutti gli altri livelli di segnale d’ingresso, non si ha corrente nella maglia di uscita.

L’angolo di circolazione della corrente di segnale nella maglia di uscita è inferiore a 180°, in pratica

nel carico è presente corrente soltanto per una parte di semiperiodo del segnale d’ingresso. La

distorsione introdotta da questa polarizzazione è elevatissima, ma malgrado tutto ha un alto

rendimento e si presta benissimo a particolari applicazioni nel settore delle alte frequenze. In questo

caso il segnale viene recuperato attraverso filtri accordati.

Page 19: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 19

Classe D: in un amplificatore progettato per funzionare in classe D, i componenti attivi operano

soltanto nelle due condizioni limite di saturazione e di interdizione, ovvero non presentano

condizioni di permanenza in zona attiva. Questa particolare configurazione viene usata quando la

potenza da fornire al carico è molto elevata, evitando ai componenti di dissipare potenze al di sopra

dei loro limiti tecnologici

3.3 Amplificatore in classe AB

A valle delle considerazioni sulle classi di funzionamento e quindi alla condizione di polarizzazione

del componente attivo si è pensato di realizzare l’amplificatore di potenza in classe AB.

La classe B è una condizione di funzionamento che vede il componete condurre per una semionda

del segnale d’ingresso. Questo significa che, per un’amplificazione dell’intero segnale con

dispositivi polarizzati in classe B, è necessario impiegare almeno due dispositivi di potenza,

affidando a ciascuno di essi una delle due semionde del segnale da amplificare. L’impiego di questa

soluzione pone però due problemi: la scomposizione in due semionde del segnale di ingresso e la

ricomposizione del segnale di uscita, per avere un’onda completa.

La disposizione che risolve i due problemi di cui sopra è la simmetria complementare, in questo

modo non è necessario dividere il segnale d’ingresso e ricomporre il segnale di uscita. Il segnale

d’ingresso viene applicato alle due basi collegate tra di loro , la polarizzazione in classe B di Q1

(NPN) fa sì che sia posto in conduzione dalla semionda positiva del segnale d’ingresso, rimanendo

interdetto da quelle negativa e Q2 (PNP) sia posto in conduzione dalla semionda negativa, rimando

interdetto da quella positiva. Per ciò che riguarda il carico, ciascuno dei due transistor e collegato ad

inseguitore e la resistenza RL è comune ai due emettitori, dunque il carico è percorso dalla corrente

di segnale di Q1 durante le semionde positive e da quelle di Q2 durante le negative per cui in un

periodo nel suddetto insiste un’onda completa di segnale.

Figura 3.3 - BJT polarizzati in classe B

Page 20: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 20

3.3.1 Distorsione d’incrocio

Poiché nella realizzazione di amplificatori a simmetria complementare in classe B, si deve tener

conto delle caratteristiche reali dei transistor, in particolare la caratteristica di ingresso dei BJT

presenta una soglia maggiore di 0,6 V; questo significa che se il componente è polarizzato in classe

B pura, cioè VBE = 0,6 V, non si ha circolazione di corrente d’uscita fino a quando la tensione di

ingresso non supera la soglia; questo vale per entrambi i BJT e fa si che, in corrispondenza del

passaggio per lo zero del segnale di ingresso, la corrente iB e, di conseguenza, la iC dei BJT,

presenta un gradino che dà luogo ad una distorsione detta d’incrocio (cross-over).

V(In)

-10V -8V -6V -4V -2V 0V 2V 4V 6V 8V 10VV(RL:2)

-10V

-5V

0V

5V

10V

Figura 3.4 - Caratteristica ingresso - uscita della classe B

Ovviamente la distorsione di iC da luogo ad una corrispondente distorsione della tensione di uscita,

vedi figura 3.5

Time

0s 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms 1.0msV(RL:2)

-10V

-5V

0V

5V

10V

Figura 3.5 - Tensione di uscita del classe B

Page 21: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 21

3.3.2 Tecniche per ridurre la distorsione d’incrocio

Per porre rimedio a questo tipo di distorsione, occorre polarizzare i transistor oltre la soglia, facendo

circolare una debole corrente anche in assenza di segnale: in tal modo il segnale non deve superare

la soglia, questa soluzione porta la classe di funzionamento dalla B pura alla AB; il rendimento si

riduce, andando a valori compresi tra il 50% e il 78%.

- Riduzione di cross-over mediante amplificatore operazionale

La distorsione d’incrocio di uno stadio di amplificazione in classe B può essere

notevolmente ridotta utilizzando un amplificatore operazionale ad alto guadagno ed una

retroazione negativa, vedi figura 3.3.2.1 Come noto in un amplificatore in classe B vi è una

soglia di 0,6 V che deve essere superata affinché i transistori iniziano a condurre, ma con

questa tecnica tale soglia viene ridotta a:

0AVbe±

dove A0 è il guadagno in bassa frequenza ad anello aperto dell’amplificatore operazionale.

Il suddetto amplificatore viene collegato allo stadio in classe B per mezzo di una resistenza

R per limitare la corrente sulle basi dei transistori. Questa tecnica non viene utilizzata spesso

a causa dello slew rate dell’operazionale che si accentua alle alte frequenze.

Figura 3.6 - Circuito in classe B con amp. op. collegato in retroazione negativa per ridurre la distorsione di incrocio

Page 22: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 22

V(Vin:+)

-10V -8V -6V -4V -2V 0V 2V 4V 6V 8V 10VV(RL:2)

-10V

-5V

0V

5V

10V

Figura 3.7 - Caratteristica ingresso - uscita della classe B con Amp. Op.

Time

0s 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms 1.0msV(RL:2)

-10V

-5V

0V

5V

10V

Figura 3.8 - Tensione di uscita del classe B con Amp. Op.

- Riduzione di cross-over mediante partitore resistivo

Inserendo un partitore resistivo inserito tra le basi dei transistori in modo da regolarne

opportunamente il potenziale e riducendo o eliminando la distorsione d’incrocio, ma occorre

osservare che, durante il funzionamento, l’aumento della temperatura prodotto nei

dispositivi dalla potenza dissipata, genera una variazione della VBE dei BJT stessi, in ragione

di 25 mV di diminuzione della soglia ogni 10 gradi di aumenti della temperatura. Questo

sistema di polarizzazione non modifica la caduta di tensione ai capi di RBB e questo, causa

un aumento indesiderato di iB e, con esso, di iC. L’aumento di iB provoca un eccesso di

compensazione ed uno spostamento del punto di lavoro, dando luogo a nuovi tipi di

Page 23: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 23

distorsioni. Inoltre, un aumento di iC, dovuto ad un aumento della temperatura produce un

ulteriore aumento di temperatura, che accresce di nuovo la iC e così via; questa soluzione

produce una instabilità termica che può danneggiare definitivamente i transitori.

Figura 3.9 – Polarizzazione mediante partitore resistivo della classe B

- Riduzione di cross-over mediante diodi

Il problema della instabilità termica può essere risolto sostituendo ad RBB un componente

che segue le medesime vicende termiche della VBE dei BJT. Tale componente può essere

una resistenza termica, che diminuisce il proprio valore all’aumentare della temperatura, ma

difficilmente tale componente segue in modo rigoroso la legge di variazione termica delle

giunzioni. Il componente che meglio si adatta alle variazione termiche della VBE dei BJT

sono i diodi, essendo giunzioni dello stesso tipo dei BJT e seguono la medesima legge di

variazione termica, a condizione che vengono disposti in prossimità dei BJT stessi.

Figura 3.10 – Polarizzazione mediante diodi della classe B

Page 24: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 24

In figura 3.10 si evidenza la coppia di transistori Q1 e Q2 che hanno il solo compito di far fluire

nei diodi D1 e D2 una corrente costante in modo da avere sempre la stessa caduta di tensione.

Le resistenza RE1 e RE2 hanno il compito di stabilizzare ulteriormente il circuito nei confronti

della fuga termica.

V(Vin:+)

-5.0V -4.0V -3.0V -2.0V -1.0V 0.0V 1.0V 2.0V 3.0V 4.0V 5.0VV(RL:2)

-5V

0V

5V

10V

Figura 3.11 - Caratteristica ingresso - uscita della classe B con polarizzazione a diodi

Time

0s 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms 1.0msV(RL:2)

-10V

-5V

0V

5V

10V

Figura 3.12 – Tensione di uscita del classe B con polarizzazione a diodi

- Moltiplicatore di VBE

Una soluzione diversa da quella della coppia di diodi e quella che dispone, tra le basi dei

BJT di potenza, un transistore nella configurazione circuitale detta a moltiplicatore di VBE,

vedi figura 3.13.

Page 25: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 3: Stadio di Potenza 25

Figura 3.13 – Polarizzazione mediante moltiplicatore di Vbe della classe B

Il circuito di figura da luogo ad una caduta VBB ai capi delle basi dei BJT di potenza che

dipende dalla VBE dei suddetti e dalle due resistenze R1 e R2. Infatti, trascurando la corrente di

base di Q3 la corrente che attraversa le resistenze in serie è la stessa e vale:

2121

RRVBBIRIRIR+

===

ma allo stesso tempo vale che:

2RVBEIR =

per cui sostituendo la seconda equazione nella prima equazione si ricava quanto segue:

⎟⎠⎞

⎜⎝⎛ +=

211

RRVBEVBB

Variando opportunamente il rapporto 21 RR , è possibile far sì che VBB divenga almeno uguale

a 2VBE e segua le variazione termiche di VBE medesime. Negli schemi pratici, come nel nostro

caso, bisogna inserire delle resistenze di basso valore (inferiore all’ohm) sugli emettitori dei

BJT di potenza. In tal caso la caduta di tensione tra le basi dei BJT non è esattamente 2VBE, ma

deve essere superiore di un valore pari a 2REIE.

Page 26: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 4: Dissipatori Termici 26

Capitolo 4 Dissipatori Termici

Come noto, ogni componente elettronico o elettrico che sia percorso da corrente elettrica dissipa

potenza. Il fenomeno di trasformazione della potenza elettrica in calore è definito attraverso la

legge di Joule, che si enuncia:

la potenza dissipata in un conduttore di resistenza R, percorso da una corrente I, è espressa dal

prodotto della resistenza per il quadrato della corrente 2* IRPd =

Tale potenza provoca un innalzamento della temperatura delle giunzione che come è noto non

deve superare il limite superiore Tjmax, che per il silicio è compreso tra 120°C e 200°C, per non

danneggiare il componente.

Un sistema di dissipazione del calore è costituito dal chip di silicio, dal suo contenitore (case) e

dal dissipatore (heatsink). La potenza PD dissipata nel chip può essere schematizzata come un

generatore di corrente, le temperature di giunzioni TJ, della base di montaggio del contenitore

Tc, del dissipatore Td e dell’ambiente Ta, vengono a loro volta considerate come delle tensioni.

Per tenere conto delle differenze di temperatura fra i vari punti si introducono le resistenze

termiche, indicate con il simbolo θ. Tra la potenza dissipata nella giunzione, la sua temperatura

fino ad arrivare alla temperatura ambiente: sussiste la seguente relazione fondamentale:

)( dacdjcPdTaTj θθθ ++=− (4.1)

ove:

Tj è la temperatura di giunzione in °C;

Ta è la temperatura ambiente in °C;

Pd è la potenza dissipata sulla giunzione in W;

θjc è la resistenza termica tra giunzione e case in °C/W

θcd è la resistenza termica tra case e dissipatore in °C/W

θda e la resistenza termica tra dissipatore e ambiente in °C/W

Si può individuare una analoga con la legge di Ohm per i circuiti elettrici.

Page 27: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 4: Dissipatori Termici 27

Figura 4.1 - Equivalente termo elettrico

Normalmente in fase di progetto il problema si pone in questi termini: nota la potenza da

dissipare Pd, note Tjmax e Ta, nota la resistenza termica, dai fogli tecnici, tra giunzione e case θjc

relativa ad un certo dispositivo, si deve scegliere il dissipatore adatto affinché la giunzione non

superi Tjmax. Dalla equazione (4.1) di cui sopra si ricava il valore massimo che deve presentare

θjc+θcd. La resistenza termica θcd dipende dal tipo di contenitore a dalle modalità di montaggio

del componente sul dissipatore. Essa varia infatti se fra contenitore e dissipatore si inserisce o

meno un foglietto isolante di mica o kapton se si usa grasso termoconduttore al silicone ed altri

materiali. È comunque in dato noto. A sua volta per ogni tipo di dissipatore viene fornita dal

costruttore la θda corrispondente. Occorre allora scegliere il dissipatore e il tipo di montaggio più

opportuno affinché la somma θjc+θcd non risulta superiore al valore massimo ricavato con

l’equazione (4.1). Normalmente sui fogli tecnici del componente attivo viene fornito un

diagramma della riduzione della potenza dissipabile. Esso rappresenta l’andamento della

potenza massima dissipabile nel dispositivo, ovvero senza che venga superata Tjmax, in funzione

della temperatura del contenitore.

Page 28: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 4: Dissipatori Termici 28

Figura 4.2 - Assemblaggio del componente sul dissipatore

Ovviamente più elevata Tc e minore è la potenza dissipabile vedi figura 4.3.

Figura 4.3 - Andamento della potenza dissipabile in funzione della temperatura

Page 29: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 5:Circuiti Stampati 29

Capitolo 5 Circuiti Stampati

Il PCB, Printed Circuit Board o Circuito Stampato, è un sistema di assemblaggio elettronico, basato

sul principio del collegamento di componenti tramite delle piste conduttive, collocate su di una

basetta isolante. Un'opportuna foratura della basetta consente di inserire i reofori dei componenti,

fissandoli tramite saldatura alle piste ed assicurando così un buon aggancio meccanico ed elettrico. I

componenti fondamentali di un circuito stampato sono quindi:

- La base, una lastra isolante opportunamente forata.

- Un sistema di lamine sottili di conduttore, nella maggior parte dei casi il rame, incollate alla

base.

La base costituisce il supporto per le piste conduttive, per i componenti elettronici saldati e per

eventuali altri componenti, fissati meccanicamente alla base stessa.

5.1 Tipologie di circuiti stampati

I circuiti stampati possono essere classificati in base alle loro caratteristiche costruttive: una prima

differenziazione si hanno le seguenti tipologie:

1. PCB a singola faccia

2. PCB a doppi faccia

3. PCB multistrato

Page 30: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 5:Circuiti Stampati 30

Il singola faccia ha piste solo su un lato, il laminato impiegato dal costruttore degli stampati è infatti

materiale isolante con un solo lato di rame; il doppia faccia presenta piste conduttive su entrambi i

lati. Entrambi possono essere a fori non metallizzati, ma generalmente sono a fori metallizzati con

solo rame, o con rame rivestito di un altro metallo, ad esempio stagno, lega stagno-nichel, o altri

ancora. Queste due prime tipologie sono proprie dei circuiti realizzabili anche con poche risorse

tecnologiche a disposizione.

Per il multistrato il discorso cambia radicalmente: sono infatti dei circuiti stampati che presentano

diversi strati di piste conduttive, presenti sia su entrambe le facce del PCB sia all'interno del

laminato base. I multistrati si suddividono a loro volta in leggeri e pesanti, a seconda se superano o

meno i quattro strati; quando non è diversamente specificato, il multistrato è realizzato a fori

metallizzati. Esistono ovviamente altre classificazioni, ad esempio di tipo qualitativo, prendendo in

considerazione i rivestimenti, le tolleranze, le dimensioni dei fori e delle piste, ed altri parametri

ancora. In questo lavoro, l'attenzione sarà comunque rivolta al doppia faccia, visto che nel caso del

progetto dell’amplificatore audio si andrà a realizzare una scheda di tale tipologia.

5.2 Il processo di fabbricazione di un PCB

La fabbricazione di un circuito stampato ha origine dai laminati, materiali costituiti da una base

isolante su cui aderiscono dei fogli di rame elettrolitico puro, su una faccia o su entrambe. Il

materiale base è composto generalmente da resine sintetiche ottenute per polimerizzazione: se una

resina non possiede da sola tutte le proprietà elettriche, meccaniche e fisiche richieste, spesso viene

addizionata con sostanze opportune, dette cariche, in maniera tale da conferirle le proprietà

desiderate.

Il rame viene prodotto, generalmente, per via elettrolitica: un grosso tamburo ruotante polarizzato

negativamente pesca in una soluzione elettrolitica; i fogli di rame così ottenuti presentano la faccia

troppo liscia per aderire al laminato base. Si procede allora ad ossidarlo, oppure a rivestirlo con

ottone: entrambi i fenomeni determinano una formazione non uniforme sui cristalli di rame, con un

conseguente aumento della rugosità dei fogli. L'adesione del rame al materiale base si ottiene per

azione di una pressa di laminazione, tra le 10 e le 20 atmosfere, e riscaldamento, tra i 120 e i 170°C,

di un pacchetto di tali fogli, disposti opportunamente. Il processo di fabbricazione prende il nome di

Print and Etch (stampa e incisione): è un processo sottrattivo, in quanto si procede per incisione del

rame del laminato base, lasciandolo inalterato nelle zone in cui è necessario per i collegamenti

elettrici. Una delle fasi più importanti dopo il taglio del laminato in quadri e la tranciatura dei fori di

riferimento per gli attrezzi, è la stampa dell'etching resist, una protezione dall'attacco chimico del

Page 31: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 5:Circuiti Stampati 31

rame. Il telaio serigrafico è una maglia fitta di tela di acciaio, nylon o seta, che lascia penetrare la

vernice, pressata sul lato superiore, in quello inferiore in cui è posto il quadro; la maglia è riempita

di gelatina sulle zone che non devono ricevere vernice. L'etching resist depositato indurisce per

evaporazione di solvente o per polimerizzazione in aria libera, in forno oppure a raggi ultravioletti.

Una variante interessante della stampa serigrafica, molto comune nella costruzione di circuiti

stampati professionali, è l'utilizzo di foto-polimeri come etching resist (Dry film). Tali sostanze

depositate sul quadro di rame, dopo un'esposizione opportuna alla luce e sviluppo con soluzioni a

base di carbonato di sodio (Soda Solvay), restano a ricoprire solo i conduttori in rame che dovranno

rimanere; (tale parte è denominata anche Pattern). L'incisione avviene per mezzo di un liquido

corrosivo, per il rame, che attacca chimicamente solo le zone non ricoperte da etching-resist. Le

zone metalliche alle quali può aderire la lega di saldatura sono limitate da una vernice permanente,

solder resist, che viene applicata con metodo serigrafico e indurita a caldo o a raggi ultravioletti.

L'ultima fase di rilievo costituisce la deposizione di un sottile strato di vernice protettiva con lo

scopo di mantenere inalterate le caratteristiche di saldabilità del rame evitando la formazione di uno

strato di passivazione all'interfaccia rame-aria. Sovente si esegue la foratura su macchine a controllo

numerico: è molto utilizzato nei casi in cui le piastre hanno una dimensione tale per cui sarebbe

onerosa la costruzioni di stampi di tranciatura, per piccole serie e per piastre a base di vetro che

provocherebbero l'usura dei punzoni dello stampo.

La metallizzazione dei fori è una fase peculiare del processo di fabbricazione di un circuito

stampato, per questo necessita di alcune fasi preliminari: si procede ad una sensibilizzazione del

quadro, dopo la foratura, per immersione in una soluzione di ioni stagno, che si depositano

ovunque, ma soprattutto sulle pareti dei fori. La fase successiva, di catalisi, consiste nell'immergere

il quadro in una soluzione di cloruro di palladio, che reagendo con gli ioni stannosi, precipita sotto

forma di un film metallico sottile. È in presenza di questo catalizzatore che si innesca la successiva

reazione di riduzione dello ione rame in soluzione in rame metallico Cu (ramatura chimica). Tale

strato metallico è quello che permette la ramatura galvanica definitiva. I quadri sono collegati

elettricamente al polo positivo e immersi in una soluzione di ioni di rame che a contatto con il rame

chimico cedono due elettroni diventando atomi di rame, cioè rame metallico. Dopo una ramatura

galvanica completa dei fori e di tutta la superficie del rame, il processo più semplice, detto tenting,

prevede lo stampo in positivo, lo sviluppo e l'incisione ottenendo così circuiti stampati a doppi

faccia a fori metallizzati con finitura in solo rame. Un processo più complesso, il panel plating,

effettua invece un rivestimento con lega Sn-Pb e successiva incisione delle zone non necessarie: una

sua importante variante, detta patter plating, prevede la stampa fotografica del rame che non deve

restare sullo stampato, in una fase intermedia della metallizzazione dei fori, e precisamente dopo la

Page 32: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 5:Circuiti Stampati 32

ramatura chimica. Segue la ramatura galvanica, il rivestimento Sn-Pb e l'incisione. Siccome

quest'ultimo processo effettua le metallizzazioni solo sul pattern, lo spessore del rame da incidere è

minore, con conseguente aumento della velocità e della qualità dell'incisione, nonché un minore

esaurimento del liquido d'incisione. Per quanto riguarda il processo di fabbricazione specifico per le

schede multistrato, il primo passo consiste nel realizzare i pattern degli strati più interni mediante

stampo e incisione. I diversi strati, compresi i due più esterni, sono sovrapposti in maniera tale da

formare un unico laminato per azione di una pressa di laminazione.

Si procede infine alla foratura, alla metallizzazione dei fori e alla incisione delle due facce esterne.

La metallizzazione dei fori esegue dunque i collegamenti voluti tra i diversi strati, con l'evidente

aumento della densità dei componenti. Si vanno diffondendo altre tecniche di fabbricazione dei

circuiti stampati che si basano sui processi additivi: a partire da un laminato base completamente

privo di rame si ottiene una deposizione chimica di questo metallo solo nelle zone in cui è richiesto.

Ciò si ottiene o con stampa fotografica o con presenza selettiva del catalizzatore che innescherà il

processo di ramatura.

5.3 La progettazione di un PCB

Nel processo realizzativo di un PCB la fase più importante, nonchè la prima anche in ordine

cronologico, è quella della progettazione del circuito che verrà riportato sullo stampato: sia che si

parta da uno schematico disegnato a mano e poi prototipato su di una breadboard, sia che lo si

disegni sin dall'inizio con un CAD elettronico, per poi poter effettuare i test attraverso il computer.

La fase di disegno e verifica circuitale riveste la massima importanza, in quanto eventuali correzioni

al circuito devono essere svolte in questo ambito. Una volta che il progettista ha portato a termine

con successo questa fase, può avere inizio il cosiddetto postprocessing per poter creare il layout

fisico del PCB, anche se già nel software di progetto è possibile iniziare a preparare lo schematico

per la creazione del circuito stampato, associando ad ogni componente utilizzato il relativo

footprint. Il footprint è il blocco base utilizzato per definire il layout, in quanto contiene tutte le

informazioni fisiche relative ad un componente, come ad esempio la sua grandezza, il numero dei

pin, ed altre ancora. L'operazione da compiere per poter passare dal software di disegno circuitale a

quello di progettazione del PCB è tipicamente la creazione di una netlist. Si tratta di un file di testo

in cui sono riportate tutte le informazioni sullo schematico disegnato, con l'elenco dei componenti a

cui è associato il relativo footprint e le varie connessioni.

Tale netlist verrà poi importata nel software di creazione del circuito stampato, e da questo punto ha

inizio la fase di definizione del layout fisico della scheda. Dopo aver effettuato delle operazioni

Page 33: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 5:Circuiti Stampati 33

preliminari, comunque necessarie, come l'impostazione delle dimensioni della scheda che si vuole

creare, la scelta della tecnologia realizzativa, l'eventuale associazione dei footprint per quei

componenti di cui non è stata effettuata precedentemente, se l'importazione della netlist ha avuto

esito positivo, il software di progettazione mostra una schermata in cui si hanno tutti i componenti

del circuito posti intorno a quello che rappresenta il bordo fisico del PCB.

Si passa quindi alla fase di placement dei componenti: uno ad uno, in genere manualmente, vanno

collocati all'interno dell'area rappresentante la scheda, secondo i classici criteri di piazzamento dei

componenti, come ad esempio il posizionamento in maniera consona per l'operatore, gli eventuali

connettori posti in maniera tale da non far passare i cavi sopra la scheda, ed altri accorgimenti

ancora, che dipendono fortemente dall'esperienza del disegnatore del circuito, detto masterista, in

quanto quello su cui egli sta lavorando è, appunto, il master del circuito stampato che si vuole

creare. I componenti possono essere ruotati e spostati a piacimento, evitando ovviamente di

sovrapporli e di lasciarne nessuno al di fuori dei bordi. Anche in questa fase esistono strumenti

software di controllo, che verificano il rispetto di alcune regole basilari di disegno, e altri ancora

che, ad esempio, controllano lo spazio libero sulla scheda o altri parametri. Alcuni software

particolarmente potenti offrono strumenti di piazzamento automatico, ma in genere vengono

scarsamente utilizzati, in quanto possono non rispettare delle particolari scelte progettuali del

masterista. È comunque possibile piazzare manualmente i componenti più importanti e bloccarli

nella posizione desiderata, lasciando al software l'incarico di sistemare i restanti. Piazzati tutti i

componenti, la fase successiva, una delle più impegnative di tutto il processo, è quella di routine

delle tracce, detta anche sbroglio. Infatti, se si seleziona un componente qualsiasi sul PCB, verranno

evidenziati tutti i collegamenti che lo interessano, sotto forma di linee dritte tra un componente e

l'altro, anche sovrapposte ad altri collegamenti tra altri componenti. Le tracce di un PCB, una volta

realizzato, non possono però sovrapporsi, in quanto, essendo la scheda bidimensionale,

risulterebbero cortocircuitate. È per questo che bisogna svolgere la fase di sbroglio: il masterista

deve associare a ciascuna connessione tra componenti un percorso conduttivo su di uno dei layer

della scheda, senza creare cortocircuiti che renderebbero il PCB inutilizzabile. Risulta evidente

come effettuare la fase di sbroglio di un circuito che impiega numerosi componenti può essere

molto impegnativo, e si necessita di tutta l'esperienza del masterista per portare a termine tale fase.

Ricordando che è possibile anche definire dei parametri particolari, come la larghezza di ciascuna

pista e la distanza tra le stesse.

Anche per il routing esistono software che svolgono tale compito automaticamente, ma per

comprendere appieno la loro complessità basti pensare che i più potenti vengono venduti a prezzi

elevati, sull'ordine delle migliaia di dollari, anche se limitati ad un certo numero di layer. I più

Page 34: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 5:Circuiti Stampati 34

potenti, senza limitazioni di layer, sono praticamente inaccessibili al piccolo operatore, proprio a

causa del loro costo, che di listino può raggiungere anche le centinaia di migliaia di dollari.

Se nonostante tutto non è possibile evitare l'intersezione di due tracce, viene utilizzato un via.

Una via è, fondamentalmente, un foro praticato nel PCB che permette al rame di transitare da uno

strato della scheda all'altro, senza causare cortocircuiti attraverso la metallizzazione.I vias sono

definiti dai padstack, alla stessa maniera dei footprint. I padstack sono delle raccolte di informazioni

su come un pin si connette fisicamente al PCB: include dati riguardo ciascun layer della scheda,

definendo anche la dimensione dell'area di rame intorno a ciascun pin, come la dimensione del foro

da praticare sulla scheda.

Completata anche la fase di sbroglio, il layout della scheda è terminato. Dopo aver effettuato tutti i

controlli di routine per assicurarsi che ogni fase sia andata a buon termine, senza aver tralasciato

nessun componente fuori dalla scheda o delle tracce che si sovrappongono, ciò che rimane da fare è

generare i file gerber, contenenti tutte le informazioni necessarie per il costruttore del PCB su come

tagliare, laminare e forare la scheda. Per ogni suo layer ne viene creato uno: ad esempio un file

gerber TOP definirà come lavorare il TOP layer del PCB, BOTTOM sarà relativo al BOTTOM

layer, e così via. Una volta definiti tutti i file gerber relativi a tutti i layer della scheda, questi

dovranno essere passati a chi si occuperà della realizzazione fisica della stessa, senza più possibilità

di intervento da parte del progettista del circuito o del masterista del PCB.

Page 35: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 35

Capitolo 6 Progetto e Collaudo

6.1 Simulazione Spice

In figura 6.1 è riportato lo schema elettrico completo dell’amplificatore Hi Fi di potenza in classe

AB, ove si individuano i tre principali stadi:

1. lo stadio differenziale di ingresso costituito dai transistor Q1 e Q2, polarizzati mediante

uno specchio di corrente Q3, la cui tensione di base è ottenuta mediante un diodo LED;

2. lo stadio intermedio di amplificazione realizzato mediante un emettitore comune Q5;

3. lo stadio di uscita in classe AB costituito da Q8 e Q 14.

Figura 6.1 - Schema elettrico completo dell'amplificatore audio

La polarizzazione dello stadio di uscita è ottenuta mediante il moltiplicatore di Vbe Q4. Come

stadio di potenza si è scelto una topologia che impiega due transistori di driving (Q6 e Q7),

necessari ad abbassare il valore della corrente di pilotaggio dello stadio intermedio. L’amplificatore

utilizza una forte retroazione negativa sia statica che dinamica, ottenuta riportando il segnale di

Page 36: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 36

uscita sullo stadio differenziale (base di Q2). La retroazione in DC è necessaria al fine di evitare una

tensione continua sul carico nulla ed evitare quindi il danneggiamento dell’altoparlante. La

retroazione in AC, che utilizza le capacità C6 e C10, riduce la distorsione e linearizza la risposta

dell’amplificatore nella banda di interesse. La frequenza di taglio superiore è determinata dalla

capacità C17 che ha anche il duplice effetto di stabilizzare in frequenza l’amplificatore, evitando

auto oscillazioni. Il cappio R15-C11, compensa il comportamento della bobina dell’altoparlante alle

alte frequenze.

1. Variando la resistenza R25, che in realtà è un potenziometro multigiro da 2 K, si effettua

una regolazione della corrente di riposo nei transistori di potenza. Con una corrente a riposo

di circa 70 mA si evidenzia un offset di tensione in uscita pari a -12,5 mV.

2. Mediante tale simulazione si è visualizzata la risposta in frequenza dell’amplificatore,

determinando la frequenza di taglio inferiore e superiore e il guadagno di centro banda per i

seguenti valori di C17: 100pF, 470pF, 2,2nF ottenendo i seguenti risultati:

Frequenza inferiore

[Hz]

Frequenza Superiore

[kHz]

Amplificazione di

centro banda [dB]

100 pF 2,33 375,45 26,40

470 pF 2,33 184,00 26,40

2,2 nF 2,29 46,40 26,40

Tabella 6.1 - Risultati della simulazione con valori C17 diversi

Frequency

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHzdb(V(Out)/ V(In))

-20

0

20

40

Figura 6.2 - Risposta in frequenza dell'amplificatore con valori di C17 riportati in tabella 6.1

100pF 470pF 2.2nF

Page 37: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 37

3. Imponendo un segnale sinusoidale di frequenza 1 kHz e ampiezza pari a 1,35 Vpp

all’ingresso dell’amplificatore con la capacità C17 pari a 2,2 nF si evidenzia una distorsione

armonica di 1,40*10-1%. La potenza sul carico in queste condizioni è di 99,7 W è ovvio che

l’amplificatore può fornire una potenza maggiore al carico, purchè si tolleri una distorsione

armonica maggiore.

4. Imponendo un segnale di ingresso a 1 V con frequenza 1kHz, sinusoidale, e visualizzando la

tensione sul collettore di Q1, si nota che in questo punto la distorsione è elevata, figura 6.3,

ma viene successivamente eliminata all’uscita mediante la retroazione.

Time

0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10msV(Q1:c)

34.39V

34.40V

34.41V

34.42V

34.43V

Figura 6.3 - Tensione sul collettore di Q1

Visualizzando la forma d’onda sul collettore di Q5, si misura il guadagno di tensione e

considerando il valore di gm5, prelevato dal file di uscita si valuta il valore del carico

resistivo visto dal collettore di Q5 ottenendo i seguenti risultati:

gm5 = 2,37*10-1

Vout (Q5) = 45,20 Vpp

Vin (Q5) = 26,13 mV

Ω≈=⇒=

==

kgm

AvQquivalentequivalentegmQAv

VinQVoutQQAv

3,755ReRe*5)5(

173055)5(

5. Visualizzando la corrente di collettore su Q8 si valuta la massima potenza dissipata nelle

condizioni di potenza nominale in uscita che assicura la minima distorsione ammissibile.

Nelle stesse condizioni si valuta anche la potenza dissipata sul driver Q7.

Page 38: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 38

( ) ( )[ ] ( )

( ) ( )[ ] ( ) mWdttIcQtVeQtVbQT

PdissQ

WdttIcQtVcQtVeQT

PdissQ

82,927*7817

48,248*8818

=−=

=−=

6. Nelle condizioni di simulazione del punto precedente si valuta la potenza dissipata sulle

resistenze R13 e R14.

∫ =Δ= WdttIRtVRT

PdissR 06,4)(13*)(13113

7. Come ultimo punto della simulazione si valuta il rendimento complessivo dell’amplificatore

%2,62626,0256,157516,98

⇒===WW

PccPloadη

Alcuni di questi valori verranno verificati sperimentalmente con delle prove sul prototipo.

6.2 Dimensionamento del dissipatore

Come noto, a partire dalla massima temperatura di giunzione e dalla resistenza termica tra

giunzione e case, reperibili sui data sheets (fogli tecnici) dei singoli componenti, si deve

dimensionare il dissipatore in modo che la temperatura di giunzione stessa non superi i valori

massimi consentiti. Normalmente il dimensionamento consiste nel determinare la resistenza

termica dissipatore-ambiente.

Nel nostro caso si è agito all’inverso, scelto il tipo di dissipatore, Allegato 7, ed il materiale

termoconduttore posto tra case e dissipatore si è determinata la temperatura di giunzione a cui si

porta il dispositivo di potenza quando è chiamata a fornire la massima potenza sul carico.

Dalla simulazione Spice di cui sopra si ha che un dispositivo di potenza dissipa 24,4W quando

sul carico si hanno circa 100W.

Pd =24,4W

Ta =35 °C;

θjc =0,7°C/W

θcd =0,82°C/W con isolante tipo kepton

θda =0,73°C/W

)()( dacdjcPdTaTjdacdjcPdTaTj θθθθθθ +++=⇒++=−

Page 39: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 39

Prima di passare ai conti è bene fare una considerazione: il circuito di potenza è a simmetria

complementare utilizzando due BJT di potenza montati sullo stesso dissipatore per cui

l’equivalente termo-elettrico a cui fare riferimento è il seguente:

Figura 6.4 - Equivalente termo - elettrico dei dispositivi di potenza

in cui si evidenzia che i due dispositivi di potenza sono, nell’equivalente termo-elettrico, in

parallelo.

CCCWCW

CWCTj °=°+°=

⎥⎥

⎢⎢

⎡°+

⎟⎟⎟

⎜⎜⎜

⎛ °++°= 10772357,0

2

82,073,0*4,24*235

Considerando che la massima temperatura di giunzione è 150°C, Allegato 5, il dissipatore scelto

garantisce un buon margine di sicurezza del dispositivo dal punto di vista termico. A titolo

informativo si determina la temperatura esterna a cui si porta il dissipatore :

CCWCWTd

TadaPdTdda

TaTdPd

°=°+°=

+=⇒−

=

53,843573,0*8,48

*θθ

Con una temperatura di giunzione pari a quella calcolata la massima potenza dissipabile quando

la temperatura ambiente vale 25°C considerando la curva di riduzione riportata sul data sheets,

vale:

( ) ( ) WWCCW

CWTcTc

jcPdTcPd 48,2485,8225107

7,0120001max)( >=°−°°

−=−−=θ

Inoltre, se la temperatura di giunzione fosse pari a 150°C, condizioni peggiori la potenza

dissipata sarebbe nulla.

Page 40: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 40

6.3 Dimensionamento dell’alimentatore ausiliario

L’alimentatore ausiliario ha lo scopo di alimentare la ventola del dissipatore e il relè del circuito

di protezione.

Figura 6.5 - Schema elettrico dell'alimentatore supplementare

Dai fogli tecnici della ventola e del relè si evince che la prima ha un assorbimento di 160 mA e

il secondo ha un assorbimento di 10 mA, pertanto questo alimentatore ausiliario è chiamato ad

erogare una corrente complessiva pari a 170 mA, entrambi i dispositivi hanno bisogno di una

tensione pari a 12 V.

Dalle specifiche di progetto di cui sopra, si nota che tra collettore ed emettitore di Q1 dovrebbe

esserci una caduta di tensione pari a ben 23 V, rischiando di superare la temperatura massima di

giunzione, per questo motivo si è inserita in serie al collettore una resistenza R16 che ha lo

scopo di abbassare la caduta di tensione ai capi del transistor.

Avendo supposto una caduta di tensione sulla resistenza pari ad 8 V se ne determina il valore:

Ω==Δ

= 47170

816mAV

IloadVR

mentre la potenza dissipata sulla medesima vale:

( ) WRVPdR 36,116

162

=

Tale resistenza viene scelta con una potenza dissipabile pari a 2W che è il valore commerciale

più vicino a quello calcolato.

In seguito a tale considerazione si determina la potenza dissipata dal transistore :

Page 41: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 41

( )WVmAPdQ

VVVVbeVzVinVceVVVVVVin

VceIloadPdQ

43,23,1417013,14)6,01,12(27

27835*1

=+==+−=+−=

=−=Δ−=

=+

bisogna ora verificare che la potenza dissipata dal transistore non faccia superare la massima

temperatura di giunzione:

CPdTTCT

WC

WCCTj

cajcambj

amb

ca

jc

°=++=°=°=

°=°=

95,192)(35

/5,62

/5,2150max

θθ

θ

θ

E’ evidente che la temperatura di giunzione supera il valore massimo consentito pertanto il

transistore Q1 necessita di un dissipatore, scegliendo un dissipatore con una resistenza termica

tra dissipatore e ambiente pari a 23°C/W e resistenza termina tra case e dissipatore pari a 1°C/W

la temperatura di giunzione scende a:

( ) CPdTT dacdjcambj °=+++= 4,99θθθ

valore accettabile rispetto alla massima temperatura di giunzione.

Come ultima parametro si determina il valore della resistenza Rz necessaria a polarizzare il

transistore e il diodo Zener

( )Ω=

−=

==+

=

KI

VzVinR

AAII

Bz

EB

44

34050117,0

β

data la bassa corrente in gioco, quindi bassa potenza, tale resistenza viene scelta con una

potenza dissipabile pari ad ¼ di W e di valore 10KΩ.

Page 42: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 42

6.4 Dimensionamento del circuito di protezione

Si è provveduto ad implementare sulla scheda un circuito di protezione il quale offre una

protezione DC per il carico, che evita il danneggiamento dello stesso a causa di una componente

continua eccessiva, ed una protezione termica che evita il superamento della massima

temperatura di giunzione dei BJT di potenza.

6.4.1 Circuito di comando

La prima parte del circuito di protezione è quella riportata in figura 6.6 e provvede a generare un

segnale di comando del vero circuito che scollega il carico.

Figura 6.6 – Circuito di comando delle protezioni

Il filtro in ingresso (R23 C16) serve ad evitare che il circuito intervenga anche per basse

frequenze evitando il buon funzionamento dell’amplificatore per le stesse:

HzfsFCkR

1 1 101610023

=⇒=⇒⎩⎨⎧

==

τμ

I diodi in antiparallelo D6 e D7 servono ad evitare che sulle basi dei BJT Q12 e Q16 vi sia una

tensione negativa o positiva rispettivamente, la quale ne causerebbe la rottura.

Page 43: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 43

Quando il segnale ‘out’ ha una componente DC alta Q12 va in conduzione, Vc (potenziale del

collettore) di Q12 si abbassa mandando in conduzione Q15 e quindi il segnale ‘off ’ assume un

valore alto.

Viceversa se ‘out’ è negativo Q16 conduce e il segnale ‘off ’ assume valore sempre alto.

6.4.2 Protezione DC e Termica.

Il relativo circuito è riportato in figura 6.7.

Figura 6.7 - Circuito di protezione

Il circuito di protezione prosegue con Q9 e Q10.

Quando ‘off ’ è alto (>0.6V) Q9 è in conduzione, la sua Vce si porta al valore di saturazione di

0.2V e quindi Q10 si spegne non alimentando il relè: e quindi il carico risulta scollegato.

Viceversa quando ‘off’ è basso Q9 è spento, Q10 è acceso ed il carico è collegato.

Si è provveduto anche a ritardare di qualche secondo il collegamento del carico al momento

dell’accensione dell’amplificatore in modo da evitare il click sull’altoparlante che può risultare

dannoso.

Out

Page 44: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 44

Questo ritardo è dato dalla capacità C2 e dalla resistenza R26:

sFCkR

7.4 471610023

=⇒⎩⎨⎧

==

τμ

La protezione termica è realizzata mediante il sensore NTC che varia la sua resistenza in

funzione della temperatura con la seguente legge:

⎟⎠⎞

⎜⎝⎛ −⋅

= TnTB

NT eRR11

Se la temperatura aumenta la RNTC diminuisce. Si nota che la variazione di resistenza non è

lineare quindi un NTC è adatto per una protezione ma non per una misura di temperatura.

All’aumentare della temperatura, quindi, la tensione sul partitore tra RNTC e la R36 aumenta;

quando questa supera la tensione di zener Q11 si accende, Q10 si spegne e il cario si scollega.

Il dimensionamento è basato sulla temperatura raggiunta dal dissipatore in condizioni di

massima potenza, stimata a 90°C.

Dai dati tecnici dell’NTC, a temperatura ambiente, B=4300K e RN=10k. Quindi:

Ω=⋅=⎟⎠⎞

⎜⎝⎛ −⋅

° 7501010 2981

36314300

390 eR

Come R36 si è scelto un trimmer da 10k posto a metà: R36=5k. Allora

a 90°C si ha il partitore riportato in figura_.

Si possono determinare le potenze che devono dissipare R36 e l’NTC:

mAI 1.65750

35==

mWIRP NTCNTC 282 =⋅=

mWIRPR 18523636 =⋅=

Sono valori accettabili.

Figura 6.4 - Partitore di protezione termica a 90°C

Page 45: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 45

Si determina la Vx in modo da poter scegliere il diodo Zener:

VRR

RVccVx

NTC

NTC 4.3036

=+

⋅=

Si è scelto un diodo zener da 30V.

6.5 Il PCB

Di seguito sono riportati i piani del PCB dell’amplificatore audio di potenza progettati da noi

con il Protel e realizzati presso una ditta esterna. Le dimensioni reali della basetta sono:

h 12,6 cm l 16,3 cm

1. Top Layer

Page 46: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 46

2. Bottom Layer

3. Top Overlay

Page 47: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 47

6.6 Verifiche sperimentali sul progetto

Le prove sperimentali sul progetto sono state effettuate su un carico resistivo da 4Ω 100W

(Vedi figura 6.6.1) imponendo un segnale sinusoidale in ingresso di 2.48 Vpp e frequenza 1kHz.

Figura 6.9 - Carico resistivo 4Ω 100W

Figura 6.10 - Segnale di ingresso e di uscita analizzati con l'oscilloscopio

Verificando il guadagno in queste condizioni si sono ottenuti approssimativamente i valori

calcolati in fese di progettazione: Av = 30.27 V/V ; 29.62dB

Page 48: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 48

La successiva verifica è stata fatta per determinare la banda passante dell’intero amplificatore,

come da figura 6.6.3

Banda di frequenza

0

5

10

15

20

25

30

1 10 100 1000 10000 100000

Frequenza (log)

Gua

dagn

o [d

B]

65kHz,23.4dB2.15Hz,23.4dB

Figura 6.11 - Banda passante dell'amplificatore rilevata sperimantalmente

L’ultima verifica è stata la determinazione del rendimento nelle condizioni di cui sopra:

%64 64.0 129

56.8221 2

==⇒⎪⎩

⎪⎨

=

=⋅=

PccPo

WPcc

WR

VoPoL η

[Hz]

Page 49: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 49

Figura 6.12 - Vista complessiva del prototipo dell'amplificatore

Figura 6.13 - Particolare del dissipatore con ventola

Page 50: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Capitolo 6:Progetto e Collaudo 50

Con riferimento allo schema elettrico di figura 6.1. si elencano i componenti utilizzati nella

realizzazione del progetto dell’amplificatore audio:

Q1, Q2, Q3, Q4, Q9 BC546B D1 Diodo LED verde

Q10, Q11, Q12 BC546B D2 1N4148

Q5, Q6 MJE15035 D3 UF4002

Q7 MJE15034 D4, D5, D6, D7 1N4148

Q8 MJL21193 D8 Zener 30.1V

Q13 TIP112

Q14 MJL21194

Q15, Q16 BC556B

R1, R6 2,2 KΩ ¼ W C1, C3 4700µF 50V elettrolitico

R2, R3, R8 560 Ω ¼ W C2, C4 47µF 50V elettrolitico

R4 , R18 220 Ω ¼ W C5 4,7 µF 50V elettrolitico

R5, R7, R10 22 KΩ ¼ W C6, C10 100 µF 63V elettrolitico

R9, R11 1 KΩ ¼ W C7, C8, C11, C12 100 nF 100V poliestere

R12, R17 3,3 KΩ ¼ W C13, C15, C18 100 nF 100V poliestere

R13, R14 0,33 Ω 5 W C16 10 µF 100V poliestere

R15 10 Ω 2 W C9 22 pF ceramico

R16 47 Ω 2 W C14 10 pF ceramico

R19,R24,R29 10kΩ ¼ W C17 47 pF ceramico

R20, R21,R23,R26,R27 100kΩ ¼ W

R22 47kΩ ¼ W

R25,R30 Trimmer 10kΩ

R28 4.7kΩ ¼W

N° 1 Relè 12 V 2 scambi

N° 2 Portafusibili da stampato

N° 2 Fusibili 3 A

Page 51: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 1:BC546 51

Page 52: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 1:BC546 52

Page 53: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 1:BC546 53

Page 54: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 1:BC546 54

Page 55: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 2: BC 556 55

Page 56: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 2: BC 556 56

Page 57: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 2: BC 556 57

Page 58: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 2: BC 556 58

Page 59: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 3:TIP 115/117 59

Page 60: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 3:TIP 115/117 60

Page 61: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 3:TIP 115/117 61

Page 62: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 3:TIP 115/117 62

Page 63: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 3:TIP 115/117 63

Page 64: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 3:TIP 115/117 64

Page 65: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 4: MJE 15034/MJE 15035 65

Page 66: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 4: MJE 15034/MJE 15035 66

Page 67: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 4: MJE 15034/MJE 15035 67

Page 68: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 4: MJE 15034/MJE 15035 68

Page 69: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 4: MJE 15034/MJE 15035 69

Page 70: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 5: MJL 21193/MJL 21194 70

Page 71: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 5: MJL 21193/MJL 21194 71

Page 72: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 5: MJL 21193/MJL 21194 72

Page 73: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 5: MJL 21193/MJL 21194 73

Page 74: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 5: MJL 21193/MJL 21194 74

Page 75: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 5: MJL 21193/MJL 21194 75

Page 76: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 6: Dissipatore per TO 220 76

Page 77: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 7: Dissipatore con ventola 77

Page 78: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 7: Dissipatore con ventola 78

Page 79: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 9: NTC 79

Page 80: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 9: NTC 80

Page 81: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 9: NTC 81

Page 82: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 9: NTC 82

Page 83: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 9: NTC 83

Page 84: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 9: NTC 84

Page 85: Corso di Laboratorio di Elettronica...Laboratorio di Elettronica a.a. 2005-2006 De lla Grotta Federico Serapide Emilio Indice 3 Allegati Allegato 1 BC546 pag. 51 Allegato 2 BC556 pag.

Laboratorio di Elettronica a.a. 2005-2006 Della Grotta Federico Serapide Emilio

Allegato 9: NTC 85