Appunti di matematica finanziaria CAPITOLO I Leggi finanziarie … · 2012-12-17 · 1 Appunti di...

40
1 Appunti di matematica finanziaria (di Serena Balestra e Davide Benza) CAPITOLO I Leggi finanziarie (Libro di testo: “Matematica finanziaria” di Cristina Gosio, Bozzi Editore, Genova) La matematica finanziaria studia i modelli matematici necessari per governare le operazioni finanziarie. Cosa sono le operazioni finanziarie? Sono scambi di moneta contro moneta ($/€ non importa) che si protraggono nel tempo: impresto 100€ a Tizio, il quale si impegna a restituirmeli ad un tempo prefissato. Le operazioni finanziarie si possono rappresentare sull’asse dei tempi, cioè su una retta orientata r sulla quale ogni punto individua un tempo. Se in t 1 impresto il capitale C a Tizio, questo C per definizione è 0. C M Con 0t 1 t 2 t 0 t 1 t 2 r La somma che Tizio deve restituire si chiama montante (M). M rispetto a C e M>C per l’uso che viene fatto del denaro da chi lo riceve. Se M>C vuol dire che M = C + qualcosa; se questo qualcosa è l’interesse M = C + I. M segue delle leggi di capitalizzazione per la sua formazione così come ci sono delle leggi di interesse per la formazione di I. Vediamo per prime le Leggi di capitalizzazione per la formulazione del montante. M, il montante dipende dal capitale e dal tempo. È una funzione che chiamiamo Φ (“fi”) M = Φ. M è funzione di 3 variabili: C, t 1 , t 2 M = Φ (C, t 1 , t 2 ) Vediamo il dominio di Φ Φ = R + x R + x R + il codominio è: R + M 0. C x t 1 x t 2 Vediamo ora le proprietà minime che devono essere soddisfatte da Φ perché questa sia una legge di capitalizzazione. 1) Φ (0, t 1 , t 2 ) = 0: impiegando un C = 0 otterrò un M = 0. 2) Φ (C, t 1 , t 1 ) = C: se impresto in t 1 e mi restituiscono in t 1 otterrò C = C. 3) Φ (C, t 1 , t 2 ) < Φ (C, t 1 , t 3 ) con 0 t 1 t 2 t 3 Si può anche fare la derivata rispetto al terzo argomento Φ3 >0 4) Φ (C, t 1 , t 2 ) < Φ (C 2 , t 1 , t 2 ) con 0 C 1 C 2 Con la derivata Φ1 >0 Esempi: t 2 2 – t 2 1 Data la funzione Φ (C, t 1 , t 2 )=C * e è adatta a rappresentare una legge di capitalizzazione? Verifico le quattro proprietà: 1) se C = 0 la funzione = 0 OK 2) “e” è elevato a t 2 1 – t 2 1 quindi è elevato a 0; un numero elevato a 0 dà 1, che moltiplicato a C dà C OK t 2 2 – t 2 1 t 2 3 – t 2 1 3) C * e < C * e semplificando: t 2 2 < t 2 3 OK Oppure, facendo la derivata (?): t 2 2 – t 2 1 C * e * 2t 2 >0 OK >0 >0 >0 4) C 1 < C 2 OK Oppure: t 2 2 – t 2 1 = 1 * e >0 OK >0 >0 Calcolare il montante M di 200€ impiegati in 1 dopo 2,5. 200 M? t 0 t 1 t 2,5 2,5 2 – 1 2 M (200, 1, 2,5) = 200 * e = 38.113,25 Queste 4 proprietà minime devono essere verificate tutte 4 perché una Φ sia una legge di capitalizzazione. Ci sono poi altre proprietà che una legge di capitalizzazione può avere: 1) Uniformità o stazionarietà nel tempo Una legge si dice uniforme o unitaria nel tempo se: Φ (C, t 1 , t 2 ) = Φ (C, t 1 +x, t 2 +x) 0 t 1 t 2 200 M? t 0 t 1 t 1 +x t 2 t 2 +x Se una legge è uniforme allora il montante M di un capitale C non dipende dall’istante in cui è impiegato e dall’istante in cui è disinvestito, ma dipende dall’ampiezza dell’intervallo (cioè investire dal tempo 1 al 2 o dal 2 al 3 è lo stesso). T 1 – T 0 L’anno (per ora la nostra unità di misura) è diviso in mesi di 30 giorni ognuno! Ricordiamo da matematica generale che la derivata >0 implica che la funzione cresca.

Transcript of Appunti di matematica finanziaria CAPITOLO I Leggi finanziarie … · 2012-12-17 · 1 Appunti di...

1

Appunti di matematica finanziaria (di Serena Balestra e Davide Benza)

CAPITOLO I Leggi finanziar ie (Libro di testo: “Matematica finanziaria” di Cristina Gosio, Bozzi Editore, Genova)

La matematica finanziaria studia i modelli matematici necessari per governare le operazioni finanziarie. Cosa sono le operazioni finanziarie? Sono scambi di moneta contro moneta ($/€ non importa) che si protraggono nel tempo: impresto 100€ a Tizio, il quale si impegna a restituirmeli ad un tempo prefissato. Le operazioni finanziarie si possono rappresentare sull’asse dei tempi, cioè su una retta orientata r sulla quale ogni punto individua un tempo. Se in t1 impresto il capitale C a Tizio, questo C per definizione è ≥ 0. C M Con 0≤ t1≤ t2 t0 t1 t2 r La somma che Tizio deve restituire si chiama montante (M). M rispetto a C e M>C per l’uso che viene fatto del denaro da chi lo riceve. Se M>C vuol dire che M = C + qualcosa; se questo qualcosa è l’ interesse → M = C + I. M segue delle leggi di capitalizzazione per la sua formazione così come ci sono delle leggi di interesse per la formazione di I. Vediamo per prime le Leggi di capitalizzazione per la formulazione del montante. M, il montante dipende dal capitale e dal tempo. È una funzione che chiamiamo Φ (“ fi” ) → M = Φ. M è funzione di 3 variabili: C, t1, t2 → M = Φ (C, t1, t2) Vediamo il dominio di Φ → Φ = R+ x R+ x R+ → il codominio è: R+ → M ≥ 0. C x t1 x t2 Vediamo ora le propr ietà minime che devono essere soddisfatte da Φ perché questa sia una legge di capitalizzazione.

1) Φ (0, t1, t2) = 0: impiegando un C = 0 otterrò un M = 0. 2) Φ (C, t1, t1) = C: se impresto in t1 e mi restituiscono in t1 otterrò C = C. 3) Φ (C, t1, t2) < Φ (C, t1, t3) con 0 ≤ t1≤ t2 ≤ t3

Si può anche fare la derivata rispetto al terzo argomento Φ’3>0

4) Φ (C, t1, t2) < Φ (C2, t1, t2) con 0 ≤ C1 ≤ C2 Con la derivata Φ’1>0

Esempi: t22 – t21 • Data la funzione Φ (C, t1, t2)=C * e è adatta a rappresentare una legge di capitalizzazione?

Verifico le quattro proprietà: 1) se C = 0 → la funzione = 0 → OK 2) “e” è elevato a t21 – t21 quindi è elevato a 0; un numero elevato a 0 dà 1, che moltiplicato a C dà C → OK

t22 – t21 t23 – t21

3) C * e < C * e → semplificando: t22 < t23 → OK Oppure, facendo la derivata (?): t22 – t21

C * e * 2t2 → >0 → OK >0 >0 >0

4) C1 < C2 → OK Oppure: t22 – t21 = 1 * e >0 → OK >0 >0

• Calcolare il montante M di 200€ impiegati in 1 dopo 2,5. 200 M? t0 t1 t2,5 2,52 – 12 M (200, 1, 2,5) = 200 * e = 38.113,25 Queste 4 proprietà minime devono essere verificate tutte 4 perché una Φ sia una legge di capitalizzazione. Ci sono poi altre proprietà che una legge di capitalizzazione può avere:

1) Uniformità o stazionar ietà nel tempo Una legge si dice uniforme o unitaria nel tempo se: Φ (C, t1, t2) = Φ (C, t1+x, t2+x) 0 ≤ t1 ≤ t2

200 M? t0 t1 t1+x t2 t2+x Se una legge è uniforme allora il montante M di un capitale C non dipende dall’ istante in cui è impiegato e dall’ istante in cui è disinvestito, ma dipende dall’ampiezza dell’ intervallo (cioè investire dal tempo 1 al 2 o dal 2 al 3 è lo stesso).

T1 – T0 L’anno (per ora la nostra unità di misura) è diviso in mesi di 30 giorni ognuno!

Ricordiamo da matematica generale che la derivata >0 implica che la funzione cresca.

2

Teorema (prendi una donna, trattala male…fuori dal letto nessuna pietà ☺) Se Φ è uniforme nel tempo → Φ (C, t1, t2) = M (C, t) La Φ e quindi M è uguale a M = C + I (Anche I è una funzione di C, t1, t2. Se I è uniforme nel tempo vale la stessa proprietà, il teorema è comunque vero: I = f(C, t1, t2) → F(C, t1, t2) = K (C, t) Dimostrazione Se Φ è uniforme nel tempo → Φ (C, t1, t2) = Φ (C, t1+x, t2+x) Poniamo t1 = –x Φ (C, t1, t2) = Φ (C, –x+x, t2 – t1) = Φ (C, t2 – t1) = M (C,t) t2 = –t1 Esempio: t22 – t21 La funzione Φ (C, t1, t2) = C * e è uniforme nel tempo? (t2+x)2 – (t1+x)2 t22+x2+2t2x – (t1

2+x2+2t1x) → Φ (C, t1+x, t2+x) = C * e = C * e → non è uniforme nel tempo!

2) Additività r ispetto al capitale Una legge si dice additiva rispetto al capitale se il montante M di 2 capitali, C1 e C2, è uguale al montante del primo capitale C1 sommato al montante del secondo capitale C2: Φ (C1+C2, t1, t2) = Φ (C1, t1, t2) + Φ (C2, t1, t2) (in pratica investire 100+100 o 200 è lo stesso)

Teorema Se Φ è additiva rispetto al capitale → Φ (C, t1, t2) = C * f (t1, t2) → fattore di capitalizzazione: è una quantità che moltiplicata per C dà il montante M. Rappresenta il montante di un’unità di capitale impiegato da t1 a t2. Anche il fattore di capitalizzazione ha delle proprietà minime che derivano dalle proprietà minime di Φ.

• Dalla 1° proprietà di Φ non si ricava nulla. • Dalla 2° proprietà di Φ si ricava che f (t1, t2) = 1 • Dalla 3° proprietà di Φ si ricava che f2’ (t1, t2) > 0 • Da C1 * f (t1, t2) < C2 * f (t1, t2) si ricava che: f (t1, t2) > 0

Da queste 3 proprietà messe insieme si ricava non solo che f (t1, t2) > 0, ma anche che f (t1, t2) > 1. Supponiamo di avere C1, se devo calcolare l’ interesse faccio F (C1, t1, t2). In generale, se ho C farò F (C, t1, t2). Se divido la prima quantità F (C1, t1, t2) per C1: F (C1, t1, t2) / C1 ottengo l’ interesse I prodotto da un’unità di capitale che faceva parte di C1. Lo stesso vale per C2. Se supponiamo che l’ interesse che viene prodotto da un’unità di capitale C sia sempre lo stesso allora questa catena è una catena di uguaglianze (=): F (C1, t1, t2) / C1 = F (C2, t1, t2) / C2 = F (C, t1, t2) / C. Se però l’ interesse prodotto da un’unità di capitale è sempre lo stesso vuol dire che l’ interesse prodotto non dipende dal capitale C di cui è parte e allora abbiamo una nuova funzione K (t1, t2) che dipende solo da t1 e t2 e non dal capitale C: F (C, t1, t2) = C * K (t1, t2) Questa quantità è additiva rispetto al capitale. L’ interesse allora non dipende dal capitale di cui faceva parte: la legge è additiva rispetto al capitale. Con l’ ipotesi di additività supponiamo che un’unità di C dia lo stesso interesse di 100 unità di C (ciò si discosta dalla realtà).

3) scomponibilità e scindibilità Una legge di capitalizzazione si dice scomponibile se:

Φ (C, t1, t2) = Φ (Φ (C, t1, z), z, t2) nell’ istante z si disinveste il montante ottenuto in z e lo si rinveste C per il periodo restante. Con 0 ≤ t1 ≤ z ≤ t2 t0 t1 z t2 Non tutte le leggi sono scomponibili! Teorema Se Φ è scomponibile e additiva rispetto al capitale la legge è scindibile, cioè:

f (t1, t2) = f (t1, z) * f (z, t2) Dimostrazione Se Φ (C, t1, t2) = Φ (Φ (C, t1, z), z, t2) C * f(t1, t2) = C * f (t1, z) * f (z, t2) → E se Φ (C, t1, t2) = C * f (t1, t2) → f (t1, t2) = f (t1, z) * f (z, t2) ho dimostrato il teorema! Una legge per essere scindibile deve essere contemporaneamente additiva e scomponibile. Esempio: t2 – t1 La funzione Φ (C, t1, t2) = C * e è additiva rispetto a C? t2 – t1 t2 – t1 t2 – t1 Verifico Φ (C1, C2, t1, t2) = (C1 + C2) * e → Φ (C1, C2, t1, t2) = C1 * e + C2 * e → Φ (C1, C2, t1, t2) = = Φ (C1, t1, t2) + Φ (C2, t1, t2) → sì è additiva! È anche uniforme? t2 – t1 t2+x – t1–x t2 – t1 t2 – t1 Φ (C, t1, t2) = Φ (C, t1+x, t2+x) → C * e = C * e → C * e = C * e → sì! È scomponibile? t2 – t1 z – t1 t2 – z t2 – t1 t2 – t1 Φ (C, t1, t2) = Φ (Φ (C, t1, z), z, t2) → C * e = C * e * e → C * e = C * e → sì! → la legge è anche scindibile! Se una legge Φ è additiva e uniforme accade che: Φ (C, t1, t2) = C * f (t1, t2) = C * I = C * F (C, t1, t2) = C + C * K (t1, t2): conseguenza dell’additività devono valere Φ (C, t1, t2) = M (C, t): conseguenza dell’uniformità entrambe → → Φ (C, t1, t2) = M (C, t) = C (1 + K(t1, t2)): da ciò ricavo che: Φ (C, t1, t2) = C * (1 + K (t)) = C + CK (t): questo perché è uniforme, cioè perché non dipende da t1 e t2. Continua…

3

1 + K (t) = fattore di capitalizzazione → f (t) = 1 + K (t) è il montante M di un’unità di capitale C = 1 impiegata da 0 a t. C = 1 M

0 1 È una funzione a due variabili con proprietà minime che sono:

1) f (0) = 1 2) f’ (t) > 0 3) f (t) > 0

Esempio: Data f (t) = (1 + 0,01)t verificare se f (t) è un fattore di capitalizzazione.

1) f(0) = 1 → (1 + 0,01)0 = 1 ok 2) f’ (t) > 0 → (1 + 0,01)t * loge (1,01) → f’ (t) > 0 ok (da matematica ricordiamo che: D ax = ax * logea) 3) f(t) > 0 → (1 + 0,01)t > 0 ok

Ora parliamo del regime dell’ interesse semplice Φ (C, t1, t2) = C (1 + K(t)) = C + CK(t) → interesse e lo chiamiamo I (C,t) → I (1,1) è l’ interesse che viene prodotto da 1 unità di capitale C = 1 impiegato per t = 1 anno. È il cosiddetto Tasso “annuo” di interesse (i). L’ interesse è calcolato in modo direttamente proporzionale al capitale, nel regime dell’ interesse semplice si chiede che l’ interesse sia proporzionale anche al tempo, quindi C * i * t secondo un fattore di proporzionalità che è del tipo i > 0. Nel regime dell’ interesse semplice, il montante M è: Φ (C, t1, t2) = M (C,t) = M = C + C * i * t = C (1 + it) dove 1 + i è il fattore annuo di capitalizzazione Esempio: 100 M i = 0,02 0 3 1,5 4,5 M = 100 (1 + 0,02 * 1,5) = 103 Noi abbiamo supposto che nel regime dell’ interesse semplice, il tasso di interesse sia sempre lo stesso per tutto il periodo, ma nella realtà non è così! Introduciamo allora l’argomento del regime dell’ interesse semplice a tasso var iabile C 0 t1 t1 + t2……………………………….tr = t1 + t2 + … + tn t i0 i1 i… ir M (C, t) = C + C * i (1) * t1 + C * i (2) * t2 + … + C * i (r) * tr = C + C * ∑n

s=1 i (s) * ts → I = C * ∑n

s=1 i (s) * ts

C’è un altro regime: il regime della capitalizzazione composta “ annua” . C Con n intero 0 1 2…………………n

1) Φ (C, 0, 0) = C 2) Φ ( C, 0, 1) = C + C * i * t = C + C * i = C (1 + i) All’ interno dell’anno il regime è semplice, mentre

alla fine degli anni interi gli interessi maturati vanno ad aggiungersi al capitale per generare altri interessi in regime di interesse semplice (cioè l’ interesse viene capitalizzato): M (C, 2) = M (C, 1) + M (C, 1) * i * 1 Φ (C, 0, 2) = Φ (C, 0, 1) + Φ (C, 0, 1) * i = Φ (C, 0, 1) * (1 + i) = C (1 + i) * (1 + i) = C (1 + i)2 → in generale: Φ (C, 0, n) = C (1 + i)n

Ma se n non è intero come si fa? Per estendere la funzione ai valori non interi di n ci sono due tipi di convenzioni: 1) convenzione esponenziale: M = C (1 + i)No+p dove no è la parte intera e p è la parte decimale p = n – [no] 2) convenzione mista: M = C (1 + i)No * (1 + ip) →

Esempio: C = 100; n = 4 anni e 6 mesi; i = 0,03; M = ?

1) convenzione esponenziale: M = 100 * (1 + 0,03)4,5 = 114,23 Nota: se avessi 4 anni e 8 mesi, n ≠ 4,8 = 4 + 8/12 = 4,6 2) convenzione mista: M = 100 * (1 + 0,03)4 * (1 + 0,03 * 0,5) = 102,64 (è inferiore, visto che moltiplico e non elevo)

Domanda: qual è la differenza tra le due convenzioni? Le confronto (per le proprietà delle potenze posso dividerla così): 1) M = C (1 + i)No * (1 + i)p questi ultimi due determinano la differenza 1 2) M = C (1 + i)No * (1 + i * p) la variabile è p f (p) 2

Confrontiamo (1 + i)p e (1 + i * p) con 0 < p < 1 1+i 1) f (p) = (1+ i)p

f (0) = (1 + i)0 = 1 f (1) = (1 + i)1 = 1 + i 1

2) f (p) = (1 + i * p) f (0) = (1 + i * 0) = 1

f (1) = (1 + i * 1) = 1 + i 0 p 1 p

Esempio di legge scomponibile ma non scindibile: Φ(C, t1, t2) = (C + 1)et2 – t1 – 1

Classica domanda: introdurre il regime semplice, il tasso variabile e spiegare come si perviene all’espressione a tasso fisso se i1 = i2 = in.

Si applica la capitalizzazione esponenziale per n0 intero e quindi si applica, per la restante frazione, la capitalizzazione semplice.

Esponenziale = curva Lineare = retta

Continua…

4

La convenzione mista dà valori > della convenzione esponenziale. Questo se p è compreso tra 0 ed 1. Ma se p è maggiore di 1, cosa succede? Se > 1, cioè se passa l’anno, la convenzione esponenziale mi dà un valore maggiore dell’ interesse semplice. Questo accade perché nella capitalizzazione composta alla fine dell’anno gli interessi maturati generano nuovi interessi, mentre nel regime dell’ intereresse semplice no, perché è una retta. Continuiamo a confrontare le due convenzioni:

1) M = C (1 + i)n per ogni n ponendo C = 1 Negli interi le 2 convenzioni danno gli stessi risultati. 2) M = C (1 + i)[n] (1 + i (n – [n]))

Nei decimali (normalmente, invece, una funzione esponenziale > retta) ci sono due casi: • se n € (0,1) → M = 1 + i * n è una retta. Es.: se n = 0,3 e C = 1 → M = 1 * (1 + i)0 + (1 + i(0,3–0)) = 1 + i * n • se n € (1,2) → M = (1 + i)1 * (1 + i(n – 1)) è ancora una retta.

f(p) 1 0 1 2 p Capitalizzazione composta convenzione esponenziale C 0 n1 n1+n2 n1+n2+…+nr i(1) i(2) M = (C, n) = C (1 + i1)

n1 * (1 + i2)n2 * … * (1 + ir)

nr = C * ∏ns=1 (1 + is)

ns dove ∏ “pi Greco” è il simbolo di produttoria. Regime di interesse semplice M (C, t) = C (1 + i * t) → M (1, i) = 1 + i → fattore di capitalizzazione I (C, t) = C * i * t → I (1, 1) = i sono uguali! Regime di capitalizzazione composta M (C, n) = C (1 + i)n → M (1, 1) = 1 * (1 + i)1 = 1 + i → fattore di capitalizzazione Tornando alla scomponibilità ci sono 2 considerazioni da fare: abbiamo detto che una legge è scomponibile se Φ (C, t1, t2) = Φ (Φ(C, t1, z), z, t2); poi una legge è additive se: Φ (C1 + C2, t1, t2) = Φ (C1, t1, t2) + Φ (C2, t1, t2). Se è sia scomponibile sia additiva, allora è scindibile.

1) interesse semplice: Φ = (C, t1, t2) = C (1 + i (t2 – t1)) → non è scomponibile.

2) capitalizzazione composta: Φ = (C, t1, t2) = C (1 + i)t2 – t1 → è scomponibile.

Esempi var i di calcolo: Regime dell’ interesse semplice M = C (1 + it) da cui: M/C = 1 + it → t = (M/C – 1)/i Se C = 795 i = 0,05 M = 860 Quanto dura l’ impiego? → 860 = 795 (1 + 0,05 * t) → t (860/795 – 1) / 0,05 → t = 1,635220126 → t = 1 anno Mesi = 0,635220126 * 12 = 7,622641512 Giorni = 0,62264152 * 30 = 18,6 ≈ 19 → la durata dell’ impiego è di 1 anno, 7 mesi e 19 giorni Capitalizzazione composta convenzione esponenziale M = C (1 + i)n → M/C = (1 + i)n per calcolare n applico i logaritmi: loge M/C = loge (1 + i)n → loge M/C = n * loge (1 +i) → n = (loge M/C)/(loge(1 +i)) → è sufficiente utilizzare la calcolatrice scientifica. Esempio: n = loge 860 – loge 795 = 0,034131322 = 1,610781083 loge (1 + 0,05) 0,021189299 Convenzione mista M = C (1 + i)No * (1 + i * p) con N0 = [n] e p = n – [n] Noto M, C e i trovare n o t:

• se No = 0 → M = C (1 + i * p) è = all’ interesse semplice • se No = 1 → M = C (1 + i)1 * (1 + i * p) in questo caso ci sono due incognite.

Noto M, C e i possiamo conoscere la parte intera; calcolo in convenzione esponenziale la durata dell’ impiego. M = C (1 + i)No → n = no – p. Ora prendo la convenzione mista M = C (1 + i)No * (1 + ip) dove p è l’unica incognita. Esempio: 860 = 795 (1 + 0,05)No * (1 + 0,05 * p) 860 = 795 (1,05)No → No = (loge 860 – loge 795)/loge 1,05 = 1,610781083

Il grafico è una spezzata e questo implica che la convenzione mista dia sempre valori maggiori della convenzione esponenziale, tranne che negli interi dove le due convenzioni danno lo stesso risultato.

Nota, soprattutto quando il tasso è variabile: mentre nella capitalizzazione semplice avevamo una som-matoria: M=C * (1 + ∑n

s=1 i (s) * ts), in convenzione esponenziale abbiamo una produttoria.

5

→ 860 = 795 (1,05)1 * (1 + 0,05 * p) → 860 = 834,75 * (1 + 0,05 * p) → 860 = 834,75 + 41,7375p → 860 – 834,75 = 41,7375p → 41,7375p = 25,25 → p = 0,604971548 Durata del tasso di interesse Noto M, C e t o n → trovare i

1) regime interesse semplice: M = C (1 + it) → M/C = 1 + it → M/C – 1 = it → i = (M/C – 1)*1/t

2) Convenzione esponenziale: M = C (1 + i)n → M/C = (1 + i)n → (M/C)1/n = (1 + i) → i = (M/C)1/n – 1

3) Convenzione mista: Sia con No = 0 sia con No = 1 si riesce a risolverla: No = 1 M = C (1 + ip) No = 0 M = C (1 + i) (1 + ip) x > 0 accettabile C = (1 + ip + i + i + i2p) due soluzioni → x < 0 non ˝

I l regime di c/c bancar io con capitalizzazione degli interessi al 31/12 Alla fine dell’anno solare, la banca fa il conto degli interessi e li aggiunge al capitale che ho versato in banca. C = 100

1/3/06 1/3/07 1/2/08 1/12 10/12 31/12/06 1 anno 31/12/07 M = 100 (1 + i)1 (1 + i 11/12) in convenzione mista → separa l’anno e “ i decimali” . Nel c/c bancario bisogna segnare le scadenze solari → M = 100 (1 + i 10/12) (1 + i)1 (1 + i 1/12) → “spezza” in 3 periodi. Questo se il tasso i è costante, ma se cambia cosa succede? 100 200 –10 (prelievo) 1/3/06 1/7/06 1/3/07 1/7/07 1/2/07 31/12/06 31/12/07

i1 i2 i3 S = saldo del c/c del 01/02/08 = c’è il cambio di tasso! = 100 (1 + i1 4/12 + i2 6/12)(1 + i2 6/12 + i3 6/12)(1 + i3 1/12) + 200 (1 + i2 4/12 + i3 6/12)(1 + i3 1/12) – 10 (1 + i3 1/12) Tassi di interesse equivalenti (pag. 37 del libro) Due tassi di interesse si dicono equivalenti se, applicati allo stesso capitale per la stessa durata di tempo, producono lo stesso montante. Con t in anni, esistono tassi semestrali, quadrimestrali, trimestrali etc. ed in generale possiamo dividere un anno in K parti, ciascuna delle quali è un Kesimo di anno: i = 1/K = tasso relativo ad un Kesimo di anno.

1) regime di interesse semplice M1 = C (1 + it) M2 = C (1 + i1/K t * K) M1 = M2 M1 = M2 → C (1 + it) = C (1 + i1/K t * K) → i = K * i1/K

2) regime dell’ interesse composto convenzione esponenziale M1 = C (1 + i)n M2 = C (1 + i1/K)nK M1 = M2 M1 = M2 → C (1 + i)n = C (1 + i1/K)nK → (1 + i) = (1 + i1/K)K studiare a memoria! i1/k → i = (1 + i1/K)K – 1 tasso annuo i = (1 + i)1/K – 1 tasso relativo a 1/K di anno. (pag. 40 del libro)

Esiste un altro tasso annuo, cioè il tasso annuo nominale conver tibile K volte l’anno (in capitalizzazione composta convenzione esponenziale). Si indica con ι (K) (“ iota”K). Cosa è ι(K)? ι (K) = K * i * 1/K = K * [(1 + i)1/K – 1] →1 + i = (1 + i 1/K)K i 1/K = (1 + ι)1/K – 1 Esempio: 100 0 3,5 ι (2) = 0,02 M = 100 (1 + 0,01)7 = 100 (1 + i)3,5 → (1 + 0,01)2 = 1 + i → i½ = (1 + 0,01)½ – 1 = 0,004 Considerazioni su ι (K): che andamento ha? ι (K) ι (K) = K * i1/K = K[(1 + i)1/K – 1] con K = 1,2, … K € [1, +∞) lim ι (K) = lim (1 + i)1/K – 1 = loge (1 + i) = δ (“delta” ) K→+∞ K→+∞ 1/K i È un c.d. “ limite fondamentale” : (ay – 1) / y = loge

a Regime di capitalizzazione continua (se K = ∞) (c’è sempre all’esame) C M(s) M s € [0,t] δ 0 s s + ds t (dif ferenziale di s) 1 K ρ (s) (“ rho”esse) è il tasso istantaneo di interesse annuo. Può essere costante per ogni istante oppure può cambiare anche da istante ad istante. Ora voglio trovare M: scrivo la legge di formazione del montante. M(s) è il montante del capitale C impiegato in zero fino a s. Poi considero un istante successivo s + ds. M(s + ds) è il montante del capitale C impiegato da zero fino a s + ds. Se faccio M(s + ds) – M(s) trovo l’ interesse che matura nel tempo ds.

assegnato il tasso annuo nominale convertibile semestralmente (1 + 0,01)2 = 1 + i

Asintoto orizzontale

Anatocismo: gli interessi passivi venivano addebitati ogni 3 mesi, mentre quelli attivi ogni anno. Noi considereremo tutto al 31/12.

1) e 2) sono sempre una funzione C * f(t)

Dalla f’ non cogliamo nulla, quindi, analizzando la f” , scopriamo che è > 0, quindi la f’ è crescente. Poiché limK→∞ f’ (K)=0, ι’ (K)<0. Quindi la f è fatta così:

6

LEGGE DI FORMAZIONE DEL MONTANTE = M(s + ds) – M(s) = M(s) ρ(s) ds + θ(ds). Non è uguale, perchè abbiamo supposto che il tasso ρ(s) sia uguale in tutto ds. Ma nella realtà non è così e allora devo aggiungere una quantità per rendere le due quantità uguali (“ teta” ) → θ(ds). È un infinitesimo di ordine superiore a ds. Quando ds tende a zero, anche θ(ds) tende a zero ma in modo più veloce di quanto tenda ds (tocca prima lo zero): lim θ(ds) forma indeterminata 0/0, ma θ(ds) tende a zero più velocemente e lim 0 = 0 ds→0 ds ds→0 ds Ma noi vogliamo trovare M: lim M(s + ds) – M(s) = lim M(s) θ(s) ds + lim θ(ds) = ds→0 ds ds→0 ds ds→0 ds lim f(x + h) – f(x) = f’ (x) M(s) θ(s) tende a zero h→0 h → M’(s) = M (s) * ρ (s) → è un’equazione differenziale del primo ordine perché esiste la derivata prima della funzione. → ρ (s) = M’(s)/M(s) → Nota la funzione M, trovare ρ (s). Qui abbiamo s, ma vale per qualunque t→ ρ(t) = M’(t)/M(t). Esempio: 0,01t2 Data M(t) = Φ (C, 0, t) = C * e ρ (t) = ? → ρ (t) = C * e0,01t2 * 2 * 0,01t = 0,02t C * e0,01t2 Nota M(t) ho trovato ρ (t), ma a noi interessa calcolare M(s) noto ρ(s) → ρ(s) = M’(s)/M(s) → D loge M(s) → ρ (s) = D loge M(s) integro da ambe le parti: ∫t0 ρ (s) = ∫t0 D loge M(s) → loge M (s)] t

0 = ∫t0 ρ (s) ds (Torricelli) → loge M(t) – loge M(0) = ∫t0 ρ (s) ds → loge M(t)/M(0) = ∫t0 ρ (s) ds → vogliamo trovare M (t) → e loge M(t)/M(0) = e ∫t0ρ(s)ds → M(t)/M(0) = e ∫t0ρ(s)ds → M (t) = M(0) * e ∫t0ρ(s)ds (dove M(0) = C; “ds” è per chiudere l’ integrale, non confondere) Esempio: 100 M con ρ (s) = 0,02s 0 3,5 eeelll eeevvvaaatttooo→→→ ∫3,5

0 0,02s ds 0,02 s2/2] 3,50 0,02 (3,5)2/2 – 0

M = 100 * e = 100 * e = 100 * e = 100 * 1,103031912 = 113,031912 Facciamo alcune considerazioni: (“ fi” di t)

1) M (t) = C * e∫t0ρ(s)ds ∫t0 ρ(s) ds è il fattore logaritmico di capitalizzazione e si indica con φ (t) → → ∫t0 ρ(s) ds = φ (t) → M (t) = C * e∫t0ρ(s)ds = C * eφ(t) → fattore di capitalizzazione da 0 a t in cap. continua

C M Da C ad M → capitalizzo 0 t Da t a 0 → attualizzo

Ma se si ha M, come si fa a trovare C? C = M * e – φ(t) → fattore di attualizzazione

2) Se ho M (t) = C * e∫t0ρ(s)ds e se ρ(s) è costante, cioè non dipende da s, chiamata δ (delta) → M(t) = C * e∫t0δds = = C * eδ ]t0 = C * eδ* t ma se sono in regime di capitalizzazione composta: M = C (1 + i)t dico che δ e i sono equivalenti se, applicati allo stesso capitale per la stessa durata di tempo, danno lo stesso montante: C (1 + i)t = C * e δ* t → eδ = 1 + i → δ = loge (1 + i) → i = eδ – 1 δ e i si dicono tassi corrispondenti (e non equivalenti).

Leggi di attualizzazione e di sconto V C C Con V < C e V = C – s 0 t1 t2 t3 Con le leggi di sconto trovo S (lo sconto); con le leggi di attualizzazione trovo V (il valore scontato). V = V (C, t1, t2) è il valore del capitale C, esigibile in t2, calcolato in t1. Propr ietà minime (vedi pag. 52 del libro)

1) V (0, t1, t2) = 0 2) C (C, t1, t2) = C 3) C (C, t1, t2) > V (C, t1, t3) con 0 ≤ t1≤ t2 ≤ t3 4) V (C1, t1, t2) < V (C2, t1, t2) con 0 < C1 < C2 1) Uniformità nel tempo

Una legge di attualizzazione è uniforme nel tempo se: V (C, t1, t2) = V (C, t1+x, t2+x) → V (C, t1, t2) → δ (C, t) attualizzazione → V (C, t1, t2) = C – S = C – φ(C, t) = δ (C, t) S (C, t) sconto

2) additività r ispetto al capitale V (C1 + C2, t1, t2) = V (C1, t1, t2) + V (C2, t1, t2) → V (C, t1, t2) = C * g (t1, t2) → g è il valore scontato di un’unità di capitale

a. g (t2, t1) = 1 b. g’2 (t1, t2) < 0 c. g (t1, t2) > 0

3) scomponibilità C V (C, t1, t2) = V (V(C, z, t2), t1, z) 0 t1 z t2

fattore di sconto/attualizzazione

Ricordiamo da matematica generale che il limite del rapporto incrementale è la derivata prima della funzione.

è la c.d. “equazione differenziale” del primo ordine perché c’è la derivata prima.

Per trovare l’ integrale tra t1 (cioè un istante successivo a 0) e t, anziché tra 0 e t, basta trovarlo anche tra 0 e t1 e far la differenza, ma è più comodo osservarlo in termini di φ: Mt1(t) = C * eφ(t) – φ(t1).

7

Se V è scomponibile e additiva allora la legge si dice scindibile, cioè i fattori di attualizzazione stanno così: g (t1, t2) = g (z, t1) * g (t2, z) per l’uniformità per l’additività Se V è additiva e uniforme rispetto al C allora V (C, t1, t2) = C – φ (C, t) = C * g (t1, t2) = C – C * h (t) = δ (C, t) = C * (1 – h(t)) → g (t) è il fattore di attualizzazione di un’unità di C da t a zero, le cui proprietà minime sono:

1) g (0) = 1 2) g’ (t) < 0 3) g (t) > 0

Esistono diversi regimi di sconto: 1) regime dello sconto commerciale (vedi pag. 55 del libro)

S (C, t) = C * h (t) = C * d * t dove d è il fattore di proporzionalità > 0; rappresenta lo sconto che viene fatto su un’unità di C: è il tasso di sconto annuo. (ricorda C * i * t della capitalizzazione semplice) S (1,1) = 1 * d * 1 = d sconto fatto su un’unità di tempo; se è l’anno sarà il tasso di sconto annuo. V (C, t) = C – Cdt con 0 < t < 1/d

Esempio: Dati C = 100 d = 0,02 t = 3 anni e 3 mesi → V = 100 – 100 * 0,02 * (3 + 3/12) = 93,5 V (1, 1) = 1 – 1 * d (1) = 1 – d → fattore annuo di sconto 1 – d > 0 → – d > – 1 → d < 1 ma sappiamo che d > 0 → 0 < d < 1

2) Regime dello sconto composto (pag. 56 del libro) . C 0 1 2……………….. n – 2 n – 1 n V (C, n, n) = C V (C, n – 1, n) = C – Cd = C (1 – d) V (C, n – 2, n) = V (C, n – 1, n) – V (C, n – 1, n) d = V (C, n – 1, n) * (1 – d) = (C – Cd) (1 – d) = (C(1 – d))*(1 – d) = = C (1 – d)2 In generale V (C, 0, n) = C (1 – d)n V (C, n) = C (1 – d)n con n intero → C M

1) M (C, t) = C (1 + it) → C = M(C, t)/(1 + it) → V (C, t) = C/(1 + it) 0 t 2) M (C, n) = C (1 + i)n → C = M(C, t)/(1 + i)n → V (C, n) = C/(1 + i)n Regime dello sconto composto

d (C, t) = C/(1 + it) d (C, n) = C/(1 + i)n Regime della capitalizzazione composta Il regime dello sconto composto e il regime della capitalizzazione composta, danno valori uguali. Se C (1 – d)n = C / (1 + i)n elevando alla radice ennesima → 1 – d = 1/(1 + i) Se conosco i posso calcolare d. (1 – d)n = valore scontato attuale in 0 di una unità di capitale disponibile in n. → 1 – d = 1/(1 + i) → 1 = (1 – d)(1 + i) Le leggi sono CONIUGATE, cioè: quando un fattore di capitalizzazione è

l’ inverso del fattore di attualizzazione, danno lo stesso valore. Fattore annuo di Fattore annuo di capitalizzazione: si indica con u → u = (1 + i) attualizzazione o di sconto, si indica con v = 1/(1 + i) Si osserva che u = 1/v → v * u = 1 Noto i → trovo d d = 1 – 1/(1 + i) = (1 + i – 1)/(1 + i) = i / (1 + i) = i * 1/(1 + i) = i * v Noto d → trovo i 1 + i = 1/ (1 – d) → i = 1 / (1 – d) – 1 = (1 – 1 + d) / (1 – d) = d/(1 – d) Ora confronto il regime dello sconto commerciale con il regime dell’ interesse semplice Se t = 0 → V (C, 0) = C se t = 1 → V (C, 1) = C – C d = C (1 – d) V (C, 0) = C V (C, 1) = C /(1 – d) Le due leggi sono coniugate. Se però t ≠ 0 e t ≠ 1, le due leggi non sono più coniugate → Per questo motivo si introduce il regime dello sconto razionale, che si costruisce come legge coniugata all’ interesse semplice (che non ha leggi coniugate).

3) regime dello sconto razionale (pag. 62) V (C, t) = C / (1 + it) = C – Sr (C, t) in regime di interesse semplice, se è richiesto il valore attuale. Sr (C, t) = C – C/(1 + it) = (C + Cit – C) /(1 + it) = Cit/(1 + it) ← se conosco i e devo trovare t. Se conosco d e devo trovare i → 1 +i = 1 / (1 – d) → i = 1 / (1 – d) – 1 → i = (1 – 1 + d)/(1 – d) = d/(1 – d) → V (C, t) = C – C * d/(1 – d) * t → semplificando ottengo → C – C * d * t → V = C – S 1 + d/(1 – d) * t 1–d + dt I tassi di sconto equivalenti (pag. 63) 2 tassi si dicono equivalenti se, applicati allo stesso C esigibile alla stessa scadenza, producono lo stesso valore attuale.

1) Regime sconto commerciale V1 = C (1 – dt) V2 = C (1 – d1/K * Kt) V1 = V2 con K intero e > 1; d = Kd1/K’ V1 = V2 → C (1 – dt) = C (1 – d1/K * Kt) → d = d1/K * K

2) Regime sconto composto V1 = C (1 – d)n V2 = C (1 – d1/K)nK V1 = V2

V1 = V2 → C (1 – d)n = C (1 – d1/K)nk → 1 – d = (1 – d1/K)K

Classica domanda per l’orale

(argomento facoltativo) Tasso annuo di sconto nominale convertibile K volte l’anno: è un tasso di sconto composto. dK = K * d1/K con d1/K = K[1 – (1 – d)1/K] limK→∞ = ι(K)= δ. Anche lo sconto ha legge coniugata, quindi possiamo prendere ρ sia per la capitalizzazione sia per l’attualizzazione. Osservazione: d1/K = 1 – (1 – d)1/K

8

Esercizi del 28/02/07 • Esercizio 1

Determinare il M se C = 100€ investito per un anno e 5 mesi, a tasso annuo i = 0,02 in regime di interesse semplice. I = C * i * t M = C + I = 100 [1 + 0,02 * (1 + 5/12)] = 102,83333333

• Esercizio 2 C = 100.000€ t = 7m, 15 gg M = 106.750 i = ? 100.000 106.750

1 7/12+15/360 (perché abbiamo ipotizzato tutti mesi di 30 gg.) 106.750 = 100.000[1 + i(5/8)]; i = 10,8%.

• Esercizio 3: tasso variabile, interesse semplice C = 450.000 impiegato per un anno, sapendo che il tasso annuo i è stato i1 = 0,09 per i primi 4 mesi, i2 = 0,1 per i successivi 2 mesi e i3 = 0,105 per i mesi restanti. 450.000 Nota: sarebbe errato = C (1 + i1) + C (1 + i2) + C (1 + i3) Perché si ripeterebbe il capitale iniziale generando un montante più alto. 0 4/12 6/12 1 M = C[1 + i1 x t1 + i2 x t2 + i3 x t3] = 494.625

• Esercizio 4: Capitalizzazione composta C = 5.000€ 6 anni e 4 mesi i = 0,12 in caso di:

1) convenzione esponenziale = ? 2) convenzione mista = ?

C M

2 n = n0 + p 1) M = C (1 + i)n0 + p = 5.000 * (1 + 0,12)6+4/12 = 10.249, 06265 2) M = C (1 + i)n0 (1 + ip) = 5.000 * (1 + 0,12)6 (1 + 0,12*4/12) = 10.263,87796

Notiamo che il montante in convenzione mista è maggiore del montante in convenzione esponenziale. • Esercizio 5

C = 1.000€ è impiegato in capitalizzazione composta semestrale per 3 anni e mezzo, al tasso semestrale di i½ = 0,05. M = 1000 (1 + 0,05)7 = 1.407,100423

• Esercizio 6 Determinare il montante prodotto da 100€ impiegati in capitalizzazione composta mensile per un anno, sapendo che il tasso mensile i è stato i1 = 0,01 da Gennaio a Febbraio, i2 = 0,011 nei mesi da marzo a settembre ed i3 = 0,012 da ottobre a dicembre. 100€ 0 2 9 12 0,01 0,011 0,12 Nota: m1, m2, m3 sono già tassi mensili, quindi non devono esser divisi per 12 M = C * (1 + i1)

m1 * (1 + i2)m2 * (1 + i3)

m3 = 100 * (1,01)2 * (1,011)7 * (1,012)3 = 114,1411843 • Esercizio 7

C1 = 1.050 al tasso i1 = 0,08 C2 = 1.000 al tasso i2 = 0,12 Dopo quanto tempo, in capitalizzazione semplice, producono lo stesso montante? 1.050 M1 M1 = 1.050 (1 + 0,08 * t)

0 t 0,08 1.000 M2 M2 = 1.000 (1 + 0,12 * t)

0 t 0,12 1,05(1 + 0,08t) = 1,012t → t = 1,3888888 Lo esprimiamo in anni: 1 anno + 0,3888888 0,3889 * 12 = 4,66677777 quindi 4 mesi + 0,6667 → 0,6667 * 30 ≈ 20 gg.

106.750 = 100.000 [1 + i* (7/12+15/360)] → 106.750 = 100.000 [1 + i* (210+15)/360] → 106.750 = 100.000 + i*225*100.000/360 → 106.750 – 100.000 = i*62.500 → 6.750 = i*62.500 → i = 6.750/62.500 = 0,108 = 10,8%

Approfondimento sull’esercizio 5: Non è possibile raddoppiare semplicemente il tasso (per passare da quello semestrale a quello annuale) ed elevare all’equivalente in anni per ottenere lo stesso risultato: M = 1.000(1 + 0,05 x 2)3,5 =1.395,9646 Per trasformare nel tasso equivalente dovremmo utilizzare la formula dei tassi equivalenti (pag. 5 di questi appunti): 1 + i = (1 + i1/K)K 1 + i = (1 + 0,05)2 → i = 0,1025 Infatti: M = (1 + 0,1025)3,5 = 1.407,100423

9

• Esercizio 8 C = 5.000; i = 0,11; M = 12.000 Determinare la durata dell’ impiego se la convenzione è esponenziale. 5.000 12.000 M = C (1 + i)n 12.000 = 5.000 (1 + 0,11)n

0 n 2,4 = (1 + 0,11)n 0,11 Siccome n è all’esponente dobbiamo applicare i logaritmi! Ln2,4 = ln(1 + 0,11)n Ln2,4 = n * ln 1,11 n = ln2,4/ln1,11 = 8,3889 → 8 anni + 0,388928793 (prosegui come nell’esercizio 7)

• Esercizio 9 Trovare i 2 tassi semestrali della capitalizzazione semplice equivalenti per 2 anni rispettivamente al tasso annuo i = 0,1 della capitalizzazione composta e al tasso trimestrale i¼ = 0,03 della capitalizzazione composta trimestrale. C I tassi sono equivalenti se producono lo stesso montante quindi: C (1 + i½ * 4) = C (1 + 0,1)2 → 4 * i½ = 1,12 – 1 → confronto semestre con anno 0 2=4 semestri → i½ = 0,0525 C Il capitale è semplificato infatti qui è indifferente investire 1 milione o 1 €. C (1 + i½ * 4) = C (1 + i¼)8 → 1 + i½ * 4 = 1,038 → confronto semestre con trimestre 0 2=8 trimestri → i½ = 0,06669252 Nota: non si deve calcolare su base annua così: (1 + i x 2) = 1,034!

• Esercizio 10 Ci detta ora un esercizio che non abbiamo ancora visto in classe e che in parte non dovremmo sapere risolvere. Dato un tasso quadrimestrale in capitalizzazione composta i1/3 = 0,04 trovare:

1) i equivalente ad i1/3 = ? = trovare il tasso annuo equivalente. 2) punto che non dovremmo ancora saper risolvere: tasso annuo nominale convertibile 6 volte l’anno

corrispondente ad i, cioè ι(6) (“ iota 6” ) C M C (1 + i1/3)

3 = C (1 + i)1 → 1,043 = 1 + i → i½ = 0,124864 0 1=3quadrimestri

• Esercizio 11 1/7/4 C1 = 100 1/2/5 C2 = 200 Determinare il montante al 31/12/5 se è assegnato il tasso i = 0,01 di capitalizzazione composta annua convenzione esponenziale. 100€ 200€ M=? 7 11 1/7/4 1/2/5 31/12/5 Detto ciò, M è la somma dei due montanti: M = 100 (1 + 0,01)18/12 + 200 (1 + 0,01)11/12 = 303,336 Nota: NON è 100 (1 + 0,01)18/12 + 300 (1 + 0,01)11/12

• Esercizio 12 i = 0,04 C1 = 100 1/1/5 C2 = 200 1/4/5 C3 = 300 1/7/5 Calcolare il montante all’1/7/5 nelle seguenti ipotesi:

1) capitalizzazione composta annua convenzione esponenziale 2) capitalizzazione composta trimestrale al tasso trimestrale equivalente ad i

100€ 200€ 300€ 1/1/5 1/4/5 1/7/5 3/12 6/12 non capitalizzato

1) M1 = 100 (1,04)6/12 + 200 (1,04)3/12 + 300 = 603,9510716 2) Per prima cosa cerchiamo i1/4: C (1 + i)1 = C (1 + i1/4)

4 1,04 = (1 + i1/4)

4 → 1,041/4 = (1 + 4/4)1 → i1/4 = 0,009853407 M2 = 100 (1 + i1/4)

2 + 200(1 + i1/4)1 + 300 = 603,951 che è infatti lo stesso montante di prima!

Lezione pomer idiana

• Esercizio 13 (siamo arrivati in ritardo per cui ne manca “un pezzetto” ) Determinare f (2,5) = 1,021 2a(5 – 2) = 1,021 applicando la funzione logaritmica a destra e sinistra avremo: ln23a = ln1,021 → a ≈ 0,01

n = (loge M/C)/(loge(1 +i)) (vedi pag.4 di questi appunti) = (ln(12.000/5.000))/ln1,11 = ln2,4/ln1,11 = = 0,875468737339 / 0,104360015324243 = 8,38892 → 8 anni, 4 mesi, 20 gg. BASTA USARE LA CALCOLATRICE SCIENTIFICA

10

• Esercizio 14 Dato M(t) = a + btet/20 Determinare per quali valori di a e b è adatta ad esprimere il montante di un euro investito al tempo 0. M(0) = C = 1 (sostituisco 0 a t) M’(t) > 0 (la derivata deve essere maggior di 0 perché aumenta nel tempo) M(0) = a + b * 0 * e0/20 = 1 → a = 1 M(t) = 1 + btet/20 → M’(t) = bet/20 + btet/20 * 1/20 * 1 = b[et/20 + t t/20* 1/20] M’(t) > 0 et b > 0

• Esercizio 15 Dato f(t) = e 0,08t (1 + kt), verificare che per K > 0 è adatta a rappresentare un fattore di capitalizzazione da 0 a t. K > 0.

1) f (0) = 1 2) f’ (t) > 0

f (0) = e0,08*0 (1 + K * 0) = 1 sì f’ (t) = faccio la derivata del prodotto = e0,08t * 0,08 (1 + kt) + e0,08t * K sì

• Esercizio 16: tratto da una prova d’esame! C1 = 100 1/1/5 C2 = 200 1/7/6 Calcolare il montante all’1/7/7:

1) in regime di interesse semplice se è in vigore il tasso i = 0,02 2) in regime di interesse semplice se è in vigore il tasso i1 = 0,02 dall’1/1/5 all’1/1/6 e successivamente i2 = 0,04 3) in regime di capitalizzazione composta annua convenzione esponenziale al tasso annuo di interesse i = 0,02 4) in regime di capitalizzazione composta annua convenzione esponenziale se è in vigore il tasso annuo i1 = 0,02

dall’1/1/5 all’1/1/6 e i2 = 0,04 successivamente 5) in regime di capitalizzazione composta annua convenzione mista al tasso annuo i = 0,01 6) in regime di capitalizzazione composta semestrale convenzione mista a tasso semestrale i½ = 0,01

100€ 200€ M=? è come fosse esponenziale in quanto t è intero 1/1/5 1/1/6 1/7/6 1/7/7 cioè 2 anni e mezzo

1) M = 100 (1 + 0,02 * 2,5) + 200 (1 + 0,02 * 1) = 309 2) M = 100 [1 + (i1 * 1) + (i2 * 1,5)] + 200 (1 + i2 *1) = 316 → semplice: sommatoria

3) M = 100 (1 + 0,02)2,5 + 200 (1 + 0,02)1 = 309,0752494 4) M = 100 (1 + 0,02)1 (1 + 0,04)1,5 + 200 (1 + 0,04)1 = 316,180798 → esponenziale: produttoria 5) M = 100 (1 + 0,01)2 (1 + 0,01 * 0,5) + 200 (1 + 0,01)1 = 304,52005 6) M = 100 (1 + 0,01)5 + 200 (1 + 0,01)2 = 309,121005 • Esercizio 17 (tratto dalla prova d’esame del 19/04/06)

Verso 100€ per il pesce d’aprile del 2005, nella seguente ipotesi: In regime di interesse semplice:

a. determinare il montante all’1/1/8 al tasso annuo di interesse del 2%. b. Al tasso annuo di interesse del 2%, quanto tempo deve trascorrere per avere un montante di 113€? c. Determinare a quale tasso annuo di interesse dobbiamo impiegare i 100€ l’1/4/5 fino all’1/1/8 per avere un

montante pari a 105€. d. Determinare il montante all’1/1/8 se il tasso di interesse semestrale è del 2% dall’1/4/5 all’1/10/5 e

successivamente il tasso semestrale è del 3%. In regime di capitalizzazione continua: dobbiamo ancora spiegarlo a lezione… a. 100€ 1/4/5 1/1/6 1/1/8 0 9/12 2+9/12 (espressi in anni) M = 100 (1 + 0,02 * (2 + 9/12)) = 105,5 b. 113 = 100 + 100 * 0,02 * t → 13 = 2 t → t = 13/2 = 6,5 113 = 100 (1 + 0,02 * t) la nostra incognita è “ t” quindi: 1,13 = 1 + 0,02t → 6,5 anni → 6 anni e mezzo → 6 anni 6 mesi c. 100€ 105€

2 anni 9 mesi 1/4/5 1/1/8 M = 100 (1 + i * (2 + 9/12)) = 105 troviamo i = 5/275 = 0,0181818181818 d. 100€ 105€ 1/4/5 1/10/5 1/1/8 i½=0,02 i½= 0,03 2 anni e 3 mesi = 4,5 semestri M = 100 (1 + i1 * t1 + i2 * t2) = 100 (1 + 0,02 * 1 + 0,03 * 4,5) = 115,5

Nota: in capitalizzazione semplice NON si deve fare: 100 (1 + 0,02 * 5,5) + 100 (1 + 0,03 * 4,5)

11

Esercizi del giorno 14 Marzo 2007 • Esercizio 18 (tratto dall’esame della sessione di settembre 2006, riproposto identico al 3° appello della sessione estiva del 2007)

Versiamo 100 Euro l’1/4/5 in ipotesi di capitalizzazione continua a tasso annuo istantaneo ρ(s) = 0,02/(0,2+0,02s). L’ istante iniziale di tale legge è l’1/1/5. Determinare il montante all’1/1/8. Nota: il tasso medio delta soprassegnato è quel tasso che, in regime di capitalizzazione continua, è equivalente a ρ(s) nell’ intervallo t1, t2, se M1 = M2: δ(t2 – t1) = … Soluzione: 100 * Per prima cosa calcolo φ(t) = ∫t0 ρ(s) ds. Poiché la derivata è al numeratore, si trasforma nel modulo del logaritmo naturale del denominatore: φ(t) = loge|0,2 +0,02s| |0

t 1/1/5 1/4/5 1/1/8 * Applico il teorema di Torricelli-Barrow: φ(t) = loge(0,2+0,02t) – (loge0,2 + 0) * Per le proprietà dei logaritmi diventa (“ trasformo il meno in diviso” ): φ(t) = loge(0,2 + 0,02t)/0,2

* Semplifico e trovo la φ(t) finale: φ(t) = loge(1 + 0,1t) * Ora utilizzo la formula M = C * eφ(t), ricordando che, per calcolare il tempo da t1 a t2, bisogna calcolarlo da t0 a t2 e sottrarre da t0 a t1:

M = 100 * eφ(t) – φ(t1) = 100 * eφ(3) – φ(3/12) = M = 100 * e loge (1 + 0,1 x 3) – loge (1 + 0,1 x 3/12) = per le proprietà dei logaritmi, “ trasformo ancora il meno in diviso” , poi, con la calcolatrice scientifica, trovo che M = 126,829.

• Esercizio 19 Data la funzione M(t) = 100 / (1 – 0,05t) con t € [0,10]

1) determinare il capitale C di cui M(t) rappresenta il montante al tempo t 2) scrivere l’espressione di ρ(t) in regime di capitalizzazione continua 3) calcolare il montante prodotto al t10 e l’ interesse prodotto al t5 per l’ impiego iniziale di 100 4) calcolare i seguenti tassi equivalenti a ρ(t), nel periodo [0,10],

a. tasso di interesse annuo del regime di capitalizzazione composta b. tasso di interesse semestrale del regime di capitalizzazione composta

5) in regime di interesse semplice: a. tasso di interesse annuo b. tasso di interesse trimestrale

Soluzione: 1) M(0) = 100 / 1 – 0 = 100 (perché M(0) = C) 2) ρ(t) = M’(t)/M(t) = [0,05*100/(1 – 0,05t)2] / [100/(1 – 0,05t)] = 0,05/(1 – 0,05t) 3) M(10) = 100 / (1 – 0,05 x 10) = 200

M(5) – M(0) = 100/(1 – 0,05 x 5) – 100 = 33,333333 4) M1 = C(1 + i)10 = 100(1 + i)10

M2 = M(10) = 100 / (1 – 0,05 x 10) a. il tasso annuo: (1 + i)10 = 1 / (1 – 0,5) elevo dx e sx alla 1/10 e trovo i = 0,071773463 b. il tasso semestrale: 1 + i = (1 + i½)2 = 0,035264924

5) M1(10) = 200 = M2(10) = 100(1 + ī x 10); a. ī = 0,1 b. ī1/4 = 0,1/4 = 0,025

• Esercizio 20 (tratto dall’esame della sessione estiva 2006) Dato il tasso annuo nominale convertibile 3 volte l’anno ι(3) = 0,06

1) determinare il tasso di interesse quadrimestrale ad esso corrispondente ed il tasso di interesse annuo ad esso corrispondente

2) determinare il montante prodotto all’1/1/6 dai capitali 100 impiegato l’1/1/4 e 400 impiegato l’1/5/5 È data la legge di capitalizzazione continua ad intensità annua di interesse ρ(s) = 0,06/(1 – 0,06s)

3) determinare il fattore di capitalizzazione da 0 a t 4) determinare il tasso medio relativo all’ intervallo [0,2] ed il tasso medio relativo all’ intervallo [2,5]

Soluzione: Implicitamente sappiamo che siamo in regime di capitalizzazione composta.

1) i1/3 = ι(3)/3 = 0,06/3 = 0,02 (1 + i) = (1 + i1/K)K → i = -1+1,023 = 0,061208

2) 100 400 1/1/4 1/5/5 1/1/6 M1/1/6 = 100 (1 + i)2 + 400(1 + 0,061208)8/12 = 528,7762419 (2 quadrimestri = 8 mesi) Essendo tassi equivalenti si può calcolare anche così: …+400(1 + i1/3)

2… 3) f(t) = f(0,t) = eφ(t) = e∫0t – 0,06/(1 – 0,06s) ds = e – loge (1 – 0,06t) = per le proprietà porto il –1 all’esponente = 1/(1 – 0,06t) 4) eδx2 = f(2) N.B.: nei tassi medi più che ricordare la formula pensate al significato: è quel tasso equivalente alla

ρ dove si eguagliano i due montanti. eδx2 = 1/(1 – 0,06x2) δ = 0,06391 eδ(5 – 2) = e φ(5) – φ(2) = e φ(5) / φ(2) → f(5) / f(2) = [1/(1 – 0,06x5)] / [1/(1 – 0,06x2)] = 0,07628

12

Esercizio del giorno 21 Marzo 2007 mercoledì pomer iggio • Esercizio 21

Determinare il tasso d corrispondente ad i = 0,02 1 – d = 1 / (1 + i) d = i * v = 0,02 /1,02 = 0,019607843 Determinare i tassi semestrali:

a) in regime di sconto commerciale: d * 1/2 = d/2 = 0,009803922 “Corrisponde” , infatti alla cap. semplice. b) in regime di sconto composto: 1 – d = (1 – d1/K)K d1/2 = 1 – (1 – d)1/2 = 0,009852

d1/K = 1 – (1 – d)1/K • Esercizio 22

Supponendo che oggi, 1/1/4, si disponga dei seguenti crediti: C1 = 1000 esigibile l’1/1/7, C2 = 1.500 esigibile l’1/7/8. Determinare il valore oggi dei due crediti:

a) in regime di capitalizzazione composta annua convenzione esponenziale a tasso annuo i = 0,02 1000€ 1500€

1/1/4 1/1/7 1/7/8 V1/1/4 = 1000/(1 + 0,02)3 = 942,3223345 Oppure: 1000 * (1 + 0,02)–3 V1/1/4 = 1500/(1 + 0,02)4,5 = 1372,114918

b) con lo sconto razionale: sappiamo che dobbiamo far tutto in regime di interesse semplice: V1/1/4 = 1000/(1 + 0,02 x 3) = 943,3962264 V1/1/4 = 1500/(1 + 0,02 x 4,5) = 1376,146789

c) Determinare il valore oggi in regime di sconto commerciale se è assegnato il tasso d semestrale. V1/1/4 = 1000(1 – d(1)

1/2 x 2 x 3) = 941,176 (??? 1000x(1 – 0,01x2x3) = 940, perché alla prof. fa 941????) d) In sconto composto a tasso semestrale d2.

V1/1/4 = 1000/(1 – d(2)1/2)

2x3 = 942,0452353 e) In regime di capitalizzazione continua a tasso δ corrispondente ad i.

V1/1/4 = 1500eδ – 4,5= … Oppure: V1/1/4 = 1000(1 +0,02) δ – 4,5= 1372,114 equivale al punto a)

f) Dimostrare che è una legge di attualizzazione (per il corso da 6 crediti). … Abbiamo sempre parlato di attualizzazione di capitali che avvengono da t a 0, ma potremmo avere un’attualizzazione da t2 a t1, cioè una legge V(C, t1, t2) = C (1 + 0,02)t1 – t2 = C (1 + 0,02) – (t1 – t2) È una legge di attualizzazione perché verifica le proprietà che lo dimostrano. V = V(1000, 0, 3) + V (1500, 0, 4,5) = 1000 (1 + 0,02) – 3 + 1500(1 + 0,02) – 4,5 = 2314,434 A questo punto sappiamo capitalizzare ed attualizzare capitali singolarmente. Possiamo passare alle rendite.

Formula di partenza: e = (1 + i)–1 -e δt = (1 + i) – 1t

13

CAPITOLO I I La rendita (pag. 85 del libro) Si definisce rendita cer ta o discreta una successione di somme (o capitali), uguali o meno tra loro, disponibili incondizionatamente a scadenze determinate. Le singole somme si chiamano Rate.

R1 R2 Rs Rn Rendita posticipata → i termini sono disponibili alla fine di ogni periodo. 0 t1 t2 ts tn

R1 R2 R3 Rn+1 Rendita anticipata → i termini sono disponibili all’ inizio di ogni periodo (es.: l’affitto). 0 t1 t2 tn La rendita (discreta o certa) può essere, con riferimento alla durata:

a) temporanea → se ha un numero finito di rate / perpetua → se ha un numero infinito di termini o rate; b) immediata → se i termini partono subito / differita → se i termini partono dopo un po’ ; c) a termini variabili / a termini costanti → Le R sono tutte uguali (→ unitarie se tutte le R valgono 1).

Rendita immediata, posticipata, temporanea per t anni, di termine var iabile R1 R2 Rn

1 / (1 + i)n = Vn 0 t1 t2………………………….tn V(0) = R1 (1 + i) –t1 + R2 (1 + i) –t2 + … + Rn (1 + i) –tn → V(0) = ∑n

s=1Rs (1 + i) –ts V (tn) = R1 (1 + i) tn–t1 + R2 (1 + i) tn–t2 + … + Rn → V (tn) = ∑n

s=1Rs (1 + i) tn–ts = (1 + i)tn * ∑ns=1Rs (1 + i) –ts =

= (1 + i)tn * V (0) → questo solo se siamo in regime di capitalizzazione composta, convenzione esponenziale. → V (0) = V (tn) (1 + i) –tn In generale:

R1 R2 Rn formalizzazione generica 0 t1 t2…………… tz………….tn V (tz) = R1 (1 + i)tz – t1 + R2 (1 + i)tz – t2 + … + Rn (1 + i) –(tn – tz) = Rn (1 + i)tz – tn = ∑n

s=1 Rs (1 + i)tz – ts = Valutazione in tz Esempio: 200 300 500 0 1 2 3 4 5 6

1) Regime di capitalizzazione composta convenzione esponenziale V4 = 200 (1 + i)2 + 300 (1 + i)1 + 500 (1 + i) –2

Oppure: Valore attuale = V0 = 200 (1 + i) –2 + 300 (1 + i) –3 + 500 (1 + i) –6 = V (4) (1 + i)4

2) Regime di interesse semplice con legge coniugata per l’attualizzazione V4 = 200 (1 + i * 2) + 300 (1 + i * 1) + 500 * 1 / (1 + i * 2)

Rendita immediata, posticipata, per iodica (il periodo è sempre =) di per iodo 1 (annua), a rate costanti = 1 R = 1 R = 1 Rn = 1

0 1 2 n V (0) = (1 + i) –1 + (1 + i) –2 + … + (1 + i) –n = δ + δ2 + … + δn → i termini variano in progressione geometrica S = somma = a1 * (1 – qn) / (1 – q) dove q è la ragione (se individuiamo la ragione, il 1° termine ed il n° dei termini, si fa così la ∑). → V (0) = δ * (1 – δn) / (1 – δ) = (1 – δn) / (µ – 1) = (1 – δn) / (1 + i – 1) = (1 – δn) / i = a n┐ i Fissato i → a n┐ i = [1 (1 + i) – n] / i

a) Valore attuale di una rendita posticipata: a n┐ i 1……………………………………1

0 1 2………………………….n a n┐ i = δ + δ2 + … + δn = δ * (1 – δn) / (1 – δ) = (1 – δn) / i Esempio: Se R = 1 posticipata di n = 10 e i = 0,03 → δn = (1 + 0,03)–10 → a 10┐ 0,03 = [1 – (1 + 0,03) –10] / 0,03 = 8,530202837

b) Valore attuale di una rendita anticipata: α n┐ i 1 1………………..1

0 1………………n – 1 n α n┐ i = 1 + δ + δ2 + … + δn – 1 = µ (δ + δ2 + … + δn) = µ * a n┐ i = 1 /δ * (1 – δn) / i = (1 – δn) / δ µ = 1 + i = 1 / δ →δ = fattore di sconto = 1/(1+i)

c) Valore finale di una rendita posticipata: s n┐ i 1 1 1

0 1 2 .n s n┐ i = µ n–1 + µ n–2 + … + µ + 1 = 1 * (µn – 1) / (µ – 1) = (µn – 1) / (1 + i – 1) = [(1 + i)n – 1] / i = (µn – 1) / i

Deriva da: i a n┐ i + δn = 1

la scegliamo perché ha legge coniugata ed è il caso più semplice: il valore finale di una rendita è = al valore attuale capitalizzato per tn anni. Attualizzazione: esponenziale = elevo a –n Semplice = divido per (1 + i * n)

Il valore finale di una rendita posticipata unitaria periodica temporanea immediata si indica con s n┐ i, si definisce “ temporanea n anni” o “ figurato n” . Quando “ i” non c’è è sottinteso.

µ * v = 1 → µ = 1/v

Ricordarsi che qui le rate sono unitarie, negli esercizi bisogna moltiplicarle!

14

d) Valore finale di una rendita anticipata: S n┐ i 1 1 1 1

0 1 2…………………………n–1 n S n┐ i = µ n + µ n–1 + … + µ = µ (µ n–1 + µ n–2 + … + µ + 1) = µ * s n┐ i = (µn – 1) / i * µ Vediamo ora alcune relazioni:

1) a n┐ i = s n┐ * δn 2) (1 / a n┐) – (1 / s n┐) = i Dimostro: (1 / a n┐) – (1 / a n┐ * µn) = (µn – 1) / (a n┐ * µn) = (µn – 1) / (µn – 1) * i = i 3) α n┐ = a n–1

┐ + 1 e anche S n┐ = s n–1┐ + 1

Dimostro: α n┐ = (1 – δn) / i * µ = (µ – δ n–1) / i = (1 + i – δ n–1) /i = [(1 + δn–1) / i] + 1 = a Dimostro: S n┐ = (µn – 1) / i * µ = (µ n+1 – µ) / i = (µn+1 – 1 + i) / i = (µn+1 – 1) / i + i/i = s n+1

┐ + 1 Schema riassuntivo sulle rendite immediate

Valore iniziale Valore finale Posticipata R R

a

R R R

s Anticipata R R R

α

R R

S Valori iniziali Valori finali

Posticipato (a) Anticipato: α = a * (1 + i) Posticipato (s) Anticipato: S = s * (1 + i) 1 – (1 + i) –n

i 1 – (1 + i) –n * (1 + i) =

i (1 + i)n – 1

i (1 + i)n – 1 * (1 + i)

i = 1 – (1 + i)–n+1 + 1

i N.B.: qui n è il numero di rate NON di anni!

Non sempre coincidono.

Tutte le rendite viste finora erano immediate. Consideriamo ora le rendite differite, cioè disponibili dopo un tot di anni: Nota: ogni testo utilizza una sua simbologia e dicitura per α,a,s,S, noi utilizziamo queste lettere ma su altri testi possono variare. Le rendite differ ite

a) valore attuale di una rendita posticipata differ ita di m anni: /m a n┐ i 1 1 1 0 1……….m m+1 m+2…..m+n /m a n┐ i = δ m+1 + δ m+2 + … + δ m+n = δ m (δ1 + δ2 + … + δ n) = δm * a n┐ i Indica che la rendita è differita di m anni.

b) valore attuale di una rendita anticipata differ ita di m anni: /m α n┐ i 1 1 1 0 1 m m+1 m+2…..m+n /m α n┐ i = δm * α n┐ i

c) valore finale di una rendita posticipata differ ita di m anni: /m s n┐ i 1 1 1 0 1 m m+1 m+2…..m+n /m s n┐ i = µ m+n–(m+1) + µ m+n–(m+2) + … + 1 = µ m+n–m–1 + µ m+n–m–2 + … + µ + 1 = s n┐ i

d) valore finale di una rendita anticipata differ ita di m anni: /m S n┐ i 1 1 1 0 1 m m+1 m+2…..m+n /m S n┐ i = S n┐ i Ci sono poi le rendite perpetue. Rendita perpetua, posticipata, in n anni con n → +∞ (es.: la pensione) R R R 0 1 2 3 +∞ lim 1 – δn = lim 1 – 1/(1 + i)n = 1 / i = a i n→+∞ i s n┐ = (µn – 1) / i → lim (µn – 1) / i = +∞ non si può parlare di valore finale di una rendita perpetua, ovviamente, in quanto ∞.

n→+∞

15

Esempio (Rendita a termini variabili): 100 200 300 con i = 0,02 1/1/05 1/1/07 1/7/08 1/1/09 V1/1/09 = 100 (1 + 0,02)4 – 200 (1 + 0,02)2 + 300 (1 + 0,02)0,5 = 619,3083641 V1/1/07 = 619,3083641 (1 + 0,02) –2 = 595,2598656 Oppure: 100 (1 + 0,02)2 + 200 + 300 (1 + 0,02) –1,5 = 595,2598656 Esempio (Rendita a termini costanti): R R R R R con R = 1.000 e i = 0,02 1/1/05 1/1/06 1/1/07 1/1/08 1/1/09 V1/1/09 = R * s 5

┐ 0,02 = R * s 4┐ 0,02 + R = 1000 * [(1 + 0,02)5 – 1] / 0,02 = 1000 * [(1 + 0,02)4 – 1] / 0,02 * (1 +

+ 0,02) + 1000 = 5.204,04 R * s 5┐ calcolato con le posticipate = s4

┐+R con le anticipate. Esempio (Rendite a tassi variabili): R R R R R con R = 100 1/1/05 1/1/06 1/1/07 1/1/08 1/1/09 i1 = 0,01 i2 = 0,02 Tasso posticipato: V1/1/09 = Rs3

┐ 0,01 (1 + 0,02)2 + Rs2┐ 0,02

Tasso anticipato: V1/1/09 = 100 (1 + 0,01)2 * (1 + 0,02)2 + 100 (1 + 0,01) * (1 + 0,02)2 + 100 (1 + 0,02)2 + 100 (1 + 0,02) + 100 = = 517,251604 Esempio (sui tassi): Sia assegnato il tasso annuo nominale convertibile trimestralmente ι (4) = 0,02. Determinare:

1) il tasso trimestrale i ¼ e il tasso i corrispondente a ι(4). ι(4) = 0,02 / 4 = 0,005 → ι(4) = 0,005 (1 + i) = (1 + i ¼)4→ 4√(1 + i) = 1 + i ¼→ 4√(1 + 0,005) = 1 + i ¼→ 1 + i ¼ = 3,972506971→ i ¼ = 2,972507

2) il tasso semestrale i ½ corrispondente a ι(4) e il tasso annuo nominale convertibile semestralmente ι(2). (1 + i) = (1 + i ½)2 → √(1 + 0,02015) = 1 + i ½ → i ½ = 0,010024752 ι(2) = 2 * i ½ = 1 * 0,010024752 = 0,020049504

3) Il tasso annuo istantaneo δ a ι(4) 1 + i = eδ → δ * loge (1 + i) dove i = 0,020015 → δ = loge 1 + 0,020015 = 0,020015

• Esercizio 23 (tratto da un tema d’esame):

Sia dato un regime di capitalizzazione continua a tasso annuo istantaneo ρ (t) = 2 / (a + t) con a > 0. 1) Determinare il fattore logaritmico di capitalizzazione φ (t).

φ (t) = ∫t0 2 / (a + s) ds = 2 loge (a + s)] t0 = 2 [loge (a + t) – loge (a + 0)] = 2 loge (a + t)/a = loge [(a + t)/a]2

2) Determinare per quale valore del parametro a, il tasso medio dell’ intervallo [0, 5] è δ = 0,05. δ* = 0,05 = φ (t2) – φ (t1) → φ (5) – φ (0) → loge [(a + 5)/a]2 – 0 = 0,05 → loge [(a + 5)/a]2 = 0,05 * 5 → __________ t2 – t1 5 – 0 5 → √[(a + 5)/a] 2 = √e0,025 → (a + 5) / a = √e0,025 → a + 5 = √e0,025 * a → a = 5 + √e0,025 → a = 37,55

3) Assunto a = 40 scrivere il fattore di capitalizzazione f(t). f(t) = loge [(a + t)/a]2 → e loge [(a + t)/a]2 → [(a + t)/a]2 = [(40 + t)/40]2

4) Calcolare il montante prodotto da un capitale C = 100 € impiegati in 0 fino a 10 anni e il montante prodotto da C = 200€ impiegati alla fine del 1° anno per 10 anni. 100 200 0 1 10 11 Ф (100, 0, 10) = 100 * e φ(10) = 100 * f(10) = 100 [(40 + 10) / 40]2 = 156,25 Ф (200, 1, 11) = 200 * e φ(11) – φ(1) = 200 * φ(11)/φ(1) = 200 * f(11)/f(1) = = 200 * [(40 + 11)/40]2 / [(40 + 1)/40]2 = 200 * 1,625625 / 1,050625 = 309,4586556

5) Calcolare M prodotto dopo 12 anni di tempo o da una rendita continua di intensità annua R (s) = 40 + s legge con istante iniziale 0, versato da [2 a 12] + espresso in anni e valutata al tasso annuo istantaneo ρ (s). 0 2 12

V12 = ∫t2t1 R (s) * e φ(t2) – φ(t1) ds = ∫122 (40 + s) * e φ(12) – φ(2) ds = ∫12

2 (40 + s) * f(12)/f(2) ds = = ∫12

2 (40 + s) * [(40 + 12)/40]2 / [(40 + 2) / 40]2 ds = ∫122 (40 + s) * 1,69/1,1025 ds =

= (40 + s) * 1,532879819]122 = (40 + 12) * 1,532879819 – (40 + 2) * 1,532879819 =

= 79,70975057 – 64,3809524 = 15,32879817

16

Esercizi del giorno 28 Marzo 2007 • Esercizio 24

Rendita in regime di capitalizzazione continua a tasso ρ(t) = 2 / (40 + t) t = 12 anni da t0. R(s) = 40 + s [2, 12] Montante = ? M12 = ∫2

12 R(s) * e φ(12) - φ (s) ds Possiamo trasformare il “–“ in “ /” : ∫2

12 R(s) * e φ(12) / e φ(s) ds = ∫212 R(s) * f(12)/s ds

φ(t) = ∫0t 2 / (40 + s) ds = 2 * ∫0

t D ln (40 + s) ds; utilizziamo Torricelli: = 2 (ln (40 + s) ]0

t = 2 [ln (40 + t) – ln 40] = ln [(40 + t) / 40]2 Ma siccome a noi interessa φ(t) = e ln[(40+t)/40]2 = [(40 + t) / 40]2 = = ∫2

12 (40 + s) * [(40 + s) (che sarebbe R(s)) / 40]2 / [(40 + t) / 40]2 = ∫212 522 * 1 / (40 + s) ds; utilizziamo Torricelli:

= 522 * ln (40 + 12) – ln 42 = 577,5 Nota: questo è l’esempio più complicato possibile sulle rendite continue!

• Esercizio 25 Oggi t0 si decide di versare una rendita di termine costante R = 100 trimestralmente e posticipatamente per 2 anni. Determinare il montante all’atto dell’ultimo versamento se sono dati rispettivamente:

1) il tasso trimestrale del 2% della capitalizzazione composta trimestrale; 2) il tasso annuo nominale, convertibile trimestralmente, del 4%; 3) il tasso annuo effettivo del 3% della capitalizzazione composta annua convenzione esponenziale; 4) il tasso annuo istantaneo δ = 0,01 della capitalizzazione continua; 5) il tasso annuo istantaneo ρ = 0,02 * s; istante iniziale di tale legge il t0.

Soluzione: R R R R R R R R R 0 ¼ 2/4 ¾ 1 1 + ¼ 1+2/4 1+3/4 2

1) i1/4 = 0,02 M2 = R s 8¬0,02 = 100 [(1 + 0,02)8 – 1] /0,02 = 858,296 2) ι(4) = 0,04 = 4 + 1/4 → i1/4 = 0,01 → M2 = R s 8¬0,01 = 828,567 3) i = 0,03

Primo metodo: M2 = R [(1 + 0,03)2 – ¼] + R[(1 + 0,03)2 – ½] + … Secondo metodo: 1 + i = (1 + i¼)4 1 + 0,03 = (1 + i¼)4 → i¼ = 0,007417072 M2 = R s 8¬0,007417 = 821,0787474

4) valutazione di rendita discreta in capitalizzazione continua O lo valutiamo uno per uno così: M2 = R * e δ(2 – ¼) + R * e δ(2 – 2/4) + … Oppure ricordiamo che: δ = ln (1 + i) → eδ = 1 + i → i = e 0,01 –1 = 0,01005 → 1 + 0,01005 = (1 + i¼)4 → i¼ = 0,002503 M2 = R s 8¬ 0,002503 = 807,04

5) M2 = R * e φ(2) – φ(1/4) + R * e φ(2) – φ(2/4) + … + R = … Per prima cosa come al solito bisogna calcolare φ(t) = ∫0

t 0,02s ds = 0,02 s2/2]0t = 0,01t2 = 100 * e 0,01x22 – 0,01(1/4)2 +

+ 100 * e 0,01x22 – 0,01(2/4)2 + … + 100 = 819,55

• Esercizio 26 importante per capire le rendite Sia assegnato il tasso annuo nominale convertibile trimestralmente ι(4) = 0,02. Oggi, l’1/1/5, dispongo delle seguenti rendite: rendita A: annua di termine costante = 100, 1° termine disponibile l’1/1/5 e ultimo termine disponibile l’1/1/12. rendita B: semestrale di termine costante = 50, 1° termine disponibile l’1/7/5 e ultimo termine disponibile l’1/7/10. Determinare: il valore oggi ed il valore all’atto dell’ultimo versamento delle due rendite. 100 100 100 100 100 100 100 100 1/1/5 1/1/6 1/1/7 1/1/8 1/1/9 1/1/10 1/1/11 1/1/12

1/7/5 … … … 1/7/10 V1/1/5 di A: da ι (4) ad annuo: i¼ 0,02/4 → i = 0,020150501; 100 α 8¬0,02015 = 746,826101 Qui è un VI ant. V1/1/12 di A: 746,8261 (1 + i)7 oppure 100 s 8¬i = 858,7534483 Qui è un VF post. V1/1/5 di B: (1 + i¼)4 = (1 + i½ )2 → i½ = 0,010025 → 50 a 11¬i½ = 518,3057096 Qui è un VI post. V1/7/10 di B: 518,305(1 + i½)11 oppure (1 + i)5,5= 578,4147399 oppure 50 s11¬0,010025 Qui è un VF post.

17

CAPITOLO I I I L ’ammortamento (pag. 127 del libro) Si supponga che in un certo istante zero un soggetto impresti un certo capitale A ad un altro soggetto, il quale si impegna in un certo tempo a restituirgli il capitale A + gli interessi. A A+I = A(1 + i)n questo è un amm.to globale degli interessi e del capitale. 0 n Si può però ammortizzare diversamente; per esempio restituire alla fine di ogni anno gli interessi dovuti. A A* i A* i A* i+A questo è un amm.to periodico degli interessi e globale del capitale. 0 1 2………n (è il c.d. “ammortamento americano”) Prevede che si paghino gli interessi sul debito fino a scadenza e la restituzione globale del capitale a scadenza. Le rate valgono: R1 = R2 = … = Rn – 1 = i; Rn = 1 + i Le quote capitale valgono: C1 = C2 = … = Cn – 1 = 0; Cn = 1 Le quote interesse IS valgono tutte i per ogni s. In entrambi i casi (globale o americano), comunque, i risultati devono essere uguali (entrambi sono attualizzati in 0):

1) A (1 + i)n (1 + i) –n = A 2) A * i a n┐ i + A (1 + i) –n = A * i * [1 – (1 + i) –n] / i + A * (1 + i) –n = A – A (1 + i) –n + A (1 + i) –n = A

C’è poi l’ammortamento generale, cioè l’ammortamento periodico del capitale e periodico degli interessi: A R1 R2 Rn 0 1 2………n Il soggetto in questo caso paga un insieme di rate “ennupla di rate” che però non sono prese a caso, cioè devono verificare la condizione di amm.to → equivalenza finanziaria tra avere A oggi, tempo 0, e avere la somma di n Rate alla fine di n anni: n

A = ∑ Rs * δs dove δs = (1 + i)–s s = 1 Esaminiamo ora il problema di costituzione del capitale. Supponiamo che per una certa scadenza n si voglia avere a disposizione una certa somma C; per far ciò accantoniamo delle somme, delle rate R, che devono soddisfare la condizione di costituzione: n

C = ∑ Rs * µn–s

s = 1 Problema di ammortamento in generale: A = { R = (R1, R2, …, Rn), Rs ≥ 0 per ogni s, ∑n

s=1 Rs * δn = 1} (pag. 132) Problema di costituzione in generale: C = { R = (R1, R2, …, Rn), Rs ≥ 0 per ogni s, ∑n

s=1 Rs * µn–s = 1} I due problemi sono legati da due teoremi: 1° teorema: data una ennupla di rate che ammortizza il debito di 1 $ in n anni → la stessa ennupla di rate costituisce il capitale µn. Cioè: Se R € A = { R = (R1, R2, …, Rn), Rs ≥ 0 per ogni s, ∑n

s=1 Rs * δs = 1} → → R € Č = { R = (R1, R2, …, Rn), Rs ≥ 0 per ogni s; ∑n

s=1 Rs * µn–s = µn} (pag. 133) Dimostro: ∑n

s=1 Rs * δs = 1 → ∑ns=1 Rs * µn = µn → ∑n

s=1 Rs * µn–s = µn è vero! Ma era prevedibile perché: R1 R2 Rn questa per ipotesi è l’amm.to di 1$ visto che siamo in capitalizzazione 0 1 2………n composta convenzione esponenziale e allora i * µn = µn 2° teorema: se abbiamo una ennupla di rate che ammortizza in n anni 1 $ → la ennupla di rate che si ottiene moltiplicando ciascuna rata per δn costituisce in n anni il capitale di 1$. Cioè: Se R € A = { R = (R1, R2, …, Rn), Rs ≥ 0 per ogni s, ∑n

s=1 Rs * δs = 1} → R = { R = (R1 * δn, R2 * δn, …, Rn * δn)} = (R1, R2, …, Rn) € C dove C = { R = (R1, R2, …, Rn), Rs > 0 per ogni s; ∑n

s=1 Rs * µn–s = 1} Dimostro: I II III

I) Se ho una ennupla di rate e la moltiplico per una quantità >0 avrò sempre una ennupla di rate. II) Ciascuna componente di Rs è >0 perché ciascuna rata la moltiplico per δn. III) Vale la condizione di costituzione?→∑n

s=1 Rs * µn–s = ∑ns=1 Rs * δn * µn * µ–s = ∑n

s=1 Rs * µ–s = ∑ns=1 Rs * δn = 1

Questo vale nel discreto, ma nel continuo com’è? Supponiamo di essere in regime di capitalizzazione continua con tasso ρ (s) e di dover ammortizzare 1€ in n anni, versando una rendita continua di flusso R(s). Rs 0 s n 1 1 n

∫ = R(s) * e-φ(s) ds = 1 condizione di amm.to nel continuo 0 n

∫ = R(s) * eφ(n) – φ(s) ds = 1 condizione di costituzione nel continuo 0

Perché ho supposto che A = C = 1 { indica un vettore.

18

Mentre, come abbiamo visto, la costituzione di capitale nel discreto è ∑ns=1 R(s) * µn–s = 1

R1 R2 Rz Rn 0 1 2……… z n 1 Fz è il fondo ammortamento alla scadenza z; è la valutazione finanziaria delle rate versate fino all’ istante z. Fz = ∑z

s=1 R(s) * µz–s = 1 Il fondo Fz in n vale: Fz * µn–z = ∑n

s=1 R(s) * µz–s * µn–z = ∑ns=1 Rs * µz–s + n–z = ∑n

s=1 Rs * µn–s Questo accade se i è uguale in ogni istante. Esempio: Dati i = 0,01 e 1.000€ da costituire in 5 anni, versando R. 100 50 300 200 R5 = ? 0 1 2 3 4 5

1) determinare R5 → 1000 = 100 (1 + 0,01)4 + 50 (1 + 0,01)3 + 300 (1 + 0,01)2 + 200 (1 + 0,01) + R5 → → 1000 = 104,060401 + 50,00005 + 306,03 + 202 + R5 → R5 = 1000 – (662,090451) → R5 =337,909549

2) Determinare F2 → F2 = R1 (1 + i) + R2 = 100 (1 + 0,01) + 50 = 151 3) Quanto vale F2 alla scadenza 5? → 151 (1 + 0,01)3 = 155,575451 (si porta a scadenza)

Nella realtà però non abbiamo i costante e allora: 100 50 300 200 337,9 0 1 2 3 4 5 i = 0,02

1) Quale C si costituisce?→C=100(1 + 0,01)(1 + 0,02)3 +50(1 + 0,02)3 +300(1 + 0,02)2 + 200 (1 + 0,02) +337,9 = = 1,061208 + 53,0604 + 432 + 204 + 337,9 = 1.028,021608

2) Da 2 in poi si sospendono i versamenti previsti e si versa una rendita posticipata, costante di rata R. Quanto vale R per avere 1.000?

100 50 R R R 0 1 2 3 4 5 i1 = 0,01 i2 = 0,02 1.000 1.000 = F2 (1 + 0,02)3 + Rs 3┐0,02 → 1.000 = 151(1 + 0,02)3 + Rs 3┐0,02 → Rs 3┐0,02 = 1.000 – 160,242408 → → R * µn – 1 = 839,757592 → R * (1 + i)n – 1 = 839,757592 → R * (1 + 0,02)3 – 1 = 839,757592 → R = 274,394717 i i 0,02

3) Calcolare K → F2 (1 + 0,02)3 + K = 1.000 → K = 1.000 – F2 (1 + 0,02)3 = 1.000 – 151 (1 + 0,02)3 = = 839,757592

In generale è possibile costruire un progetto/piano di costituzione di capitale. Esempio: C = 1.000; i = 0,01; R1 = 200; R2 = 400; R3 = ? → 1.000 = 200 (1 + 0,01)2 + 400 (1 + 0,01) + R → 1.000 = 204,02 + 404 + R → R = 1.000 – 608,02 → R = 391,98 Z anni Fondo iniziale Interessi Rata Fondo finale 1 / / 200 200 2 200 2 400 602 3 602 6,02 391,98 1.000 C’è poi un caso particolare: ∑n

s=1 Rs * µn–s = 1 ma se R è costante → R ∑ns=1 µ

n–s = 1 → R * sn┐i = 1 → R = 1 / (sn┐i) = σ n┐i (“sigma minuscola” = termine costante di costituzione) → F2 sarà: F2 = ∑n

s=1 Rs * µz–s = Rsz┐ = sz┐ / sn┐ Questo nel discreto, ma nel continuo è: ∫n0 R(s) e φ(n) – φ(s) ds = 1 Rs 0 s z n Se vogliamo calcolare il fondo in z sarà la valutazione finanziaria delle rate da 0 a z, il tutto valutato in 0. → Fz = ∫z0 R(s) e φ(z) – φ(s) ds → Fn = Fz * e φ(n) – φ(z) = ∫z0 R(s) e φ(z) – φ(s) ds * e φ(n) – φ(z) = ∫z0 R(s) e φ(n) – φ(s) ds Consideriamo ora l’ammortamento: R1 R2 Rz Rn 0 1 2………z………n Condizione di amm.to: ∑n

s=1 R(s) δs = 1 Ora dividiamo la Rata in quota Capitale Cs e in quota interesse Is → Rs = Cs + Is. Seguono le definizioni: Dove Cs è dato da: ∑n

s=1 Cs = 1 (se il debito è unitario) → ∑ns=1 Cs = debito estinto = Bz ← è la somma delle quote di

capitali pagate fino a z (detta anche somma capitale di ammortamento). → 1 – Bz = debito residuo = Dz → Dz = 1 – Bz = ∑n

s=1 Cs – ∑zs=1 Cs = ∑n

s=z+1 Cs = Dz Se B0 = 0 → D0 = 1 Se Bn = 1 → D0 = 0 Rs = Cs + Is ≥ 0 Se Cs > 0 ogni volta che pago una rata estinguo una parte di debito Bz>Bz – 1 In questo caso si ha un amm.to graduale, cioè le Bz al crescere di Cs sono una funzione crescente mentre Dz decresce.

19

I1 è la parte di rata che paga gli interessi su 1 → I1 = i * 1 = i * D0 = i (1 – B0) I2 = i * D1 = i (1 – B1) → Is = i * Ds – 1 = i (1 – Bs – 1) È quindi possibile costruire un piano di ammortamento. Esempio: Si versano 4 rate annue posticipate: i = 0,02 A = 2.000 n = 4 con R1 = R2 = 500 e R3 = R4 500 500 R R 0 1 2 3 4 2.000 2.000 = 500 (1 + 0,02) –1 + 500(1 + 0,02) –2 + R(1 + 0,02) –3 + R(1 + 0,03) –4 → 2.000 = 490,1960784 + 480,5843906 + R (0,942322334) + R (0,888487047) → R (1,830809382) = 2.000 – 970,780489 → R = 1.029,219531 / 1,830809382 = 562,1664063 Z = anni Rz = R Dz =Dz–1 – Cz Iz = Dz * i Cz = Rz – Iz Bz = Cz cumulato 0 0 2.000 / / / 1 500 1.540 40 460 460 2 500 1.070,8 30,8 469,2 929,2 3 551,151 541,065 21,416 529,735 1.458,935 4 551,151 / 10,8213 540,3297 1.999,27 In questi casi l’ammortamento è determinato; ma c’è un altro caso in cui l’amm.to è determinato: Teorema: se sono assegnate le quote capitali e l’amm.to è graduale, cioè se Cs > 0 → l’amm.to è determinato. Cs>0 amm.to determinato → per essere determinato devono verificarsi le seguenti 3 ipotesi:

� una ennupla di rate � R > 0 � Verificare le condizioni di ammortamento: ∑n

s=1 Rs δs = 1

Se Cs > 0 sappiamo che Bz > Bz–1 per ogni z; questo implica che ogni anno si estingue il debito. (Se Cs = 0 pago solo gli interessi e non estinguo nessun debito, se Cs < 0 il debito aumenta.) Dimostrazione:

1) che ho una ennupla di rate: Rs = Cs + Is = Cs + i (1 – Bs – 1) → posso scrivere anche così: Bs * Bs – 1 + i (1 – B s – 1) → Cs = Bs – Bs – 1 perché Bs = ∑n

z=1 Cz → Bs – 1 = ∑n–1

z=1 Cz = C1 + C2 + … + Cs–1 + Cs – C1 – C2 – … – Cs–1 = Cs Is = i (1 – Bs–1) Quindi per dimostrare 1): Rs = Cs + (1 – Bs–1) Cs > 0 → Rs = Cs + i (1 – Bs–1) Così dimostro che ho una ennupla di rate con

>0 va da 0 a 1 rate > 0 e quindi dimostro anche: 2) perché C > 0 3) l’ammortamento verifica le condizioni di ammortamento? → ∑n

s=1 Rs * δs = 1 ??? → ∑n

s=1 (Bs – Bs – 1 + i (1 – Bs – 1)) * δn = ∑ns=1 [Bs – Bs – 1 + i (1 – Bs – 1) + 1 – 1] * δn =

= ∑ns=1 [(1 – Bs – 1) + i (1 – Bs – 1) – (1 – Bs)] * δs = ∑n

s=1 [(1 – Bs – 1)*(1 + i) – (1 – Bs)] * δs = dove (1+i)=µ = ∑n

s=1 (1 – Bs – 1) * δs–1 – ∑ns=1 (1 – Bs)* δs =

= (1 – B0)δ0 + (1 – B1)δ + … + (1 – Bn–1)δ

n–1 – (1 – B1)δ – … – (1 – Bn)δ = 1 – 0 = 1 → è vero! dove Bn = 1 Conclusione: note le quote capitali>0, quindi ammortamento graduale, se Bz>Bz-1, l’ammortamento è determinato. Quindi per delineare il piano non serve sempre aver le rate, ma bastano delle quote capitale > 0. Esempio: C = 250 D = 1.000 i = 10% Z R Dz Iz Cz Bz 0 / 1.000 / / / 1 350 750 100 250 250 2 325 500 75 250 500 3 300 250 50 250 750 4 275 / 25 250 1.000 Dimostrazione: Si dimostri che Dz non è altro che la valutazione finanziaria delle rate che devono essere ancora versate. Dz = ∑n

s=z+1 Rs δs–z → → usiamo la stessa strada utilizzata qui sopra. 1 – Bz = Dz. Così possiamo evitarci di sviluppare tutto il piano d’ammortamento. TIPI DI AMMORTAMENTO:

1) Ammortamento francese (a rate posticipate costanti): (pag. 148) R R R R R (“alfa” ) 0 1 2 3………n–1 n ∑n

s=1Rδs = 1 cioè:

1 = R * a n┐i da cui ricavo R = 1 / (a n┐i) che si scrive α n┐i → Osservazione → 1 / (a n┐i) – 1 / (s n┐i) = i α n┐i – σ n┐i = i → α n┐i = 1 + σ n┐i mentre α n┐i – i = σ n┐i Visto che l’ammortamento francese → R = Rz+1 con z = 1…n–1 Iz + Cz = Iz+1 + Cz+1 → Iz+1 = Iz – iCz Quindi sostituendo Iz+1 avremo: Iz + Cz = Iz – iCz + Cz+1 → Cz+1 = Cz + iCz → Cz+1 = Cz (1 + i) Questo implica che le quote capitale variano in progressione geometrica di 1° termine σ n┐e ragione (1+i), perché ogni quantità si ottiene moltiplicando la precedente per una costante (1 + i) → Cz = σ n┐i * (1 + i)z–1

Rata unitaria costante per ammortizzare in n anni. R = A / a n┐i

Cz = A/sn┐i *(1+i)z–1

20

2) Ammortamento italiano o uniforme (o a quote capitale costanti): A = 1, n, i Cz = C z = 1, 2, n

∑ns=1 Cs = 1 → C + C + C = 1 → nC = 1 quindi: Cz = C = 1/n

n volte Bz = ∑n

s=1 Cs = 1/n + 1/n + 1/n = z/n Dz = 1 – Bz = 1 – z/n = (n – z) / n Iz = i (1 – Bz–1) = i * [1 – (z – 1)/n] I termini variano in progressione aritmetica di primo termine i e ragione i/n.

Rz = 1/n + [1 – (z – 1)/n] = 1/n + i – 1/n (z – 1) → C([1/n + i – i/n(z – 1)] C’z = Cz = A/n RIVEDERE SUL LIBRO

3) Ammortamento tedesco (facoltativo dal 2007, come l’ammortamento inglese): È uguale a quello italiano dal punto di vista finanziario, ma qui gli interessi vengono dati anticipatamente rispetto a quello italiano nel quale vengono dati posticipatamente. I0 = i * δ = d → Iz = Ia

z = i * δ * (1 – Bz–1) Se però i tassi non sono costanti:

i(1) i(2) 0 1 2………n D’0 = 1 (debito che si ha all’ inizio) → D0 I’1 = i(1) * D’0 = i(1) * D0 D’1 = D’0 – C’1 R’1 = C’ 1 + I’1 I’2 = i(2) * D’1 A = 1 Rz Dz Cz Iz Se prefisso la quota capitale D’0 = 1 I’1 = i(1) * D’0 = i(1) * D0 C’1 = C1 R’1 = C’ 1 + I1 = C1 + I’1 D’1 = D’0 – C’1 = D0 – C1 = D1

C’2 = C2 I’2 = i(2) D1 R’2 = C2 + I’2 D’2 = D1 – C2 = D2 C’z = Cz R’z = Cz + Iz D’z = Dz I’z = i(z) * Dz

• Esercizio 27 A = 10.000 da ammortizzare in 4 anni a tasso annuo 0,01. Amm.to Francese. Compilare il piano d’amm.to. R R R R 0 1 2 3 4 10.000 10.000 = R * a n┐i → 10.000 = R * 1 – (1 + i)–n → 10.000 = R * 1 – (1 + 0,01)–4 → 10.000 = R * 3,901965549 i 0,01 → R = 2.562,811

Z Rz Dz Cz Iz 0 / 10.000 / / 1 2.562,811 7.537,19 2.462,811 100 2 2.562,811 5.049,7509 2.487,4391 75,3719 3 2.562,811 2.517,437409 2.512,313491 50,497509 4 2.562,811 / 2.537,636626 25,17437409

• Esercizio 28 Compilare il piano di ammortamento a quote di capitale prefissate in questo amm.to francese: i1 = 0,01 i2 = 0,02 i3 = 0,03 i4 = 0,04 Z R’z Dz Cz I’z Iz 0 / 10.000 / / / 1 2.562,89 7.537,1 2.462,89 100 0,01 2 2.636,1806 4.900,9294 2.487,4384 148,7422 0,02 3 2.662,340382 2.238,589018 2.515,3125 147,027882 0,03 4 2.626,978561 / 2.537,435 89,54356072 0,04 R’z verifica la condizione di ammortamento?

R1 R2 R3 R4 0 1 2 3 4 0,01 0,02 0,03 0,04

10.000 = R’1 (1 + 0,01)–1 + R’2 (1 + 0,01)–1 (1 + 0,02)–1 + R’3 (1 + 0,01)–1 (1 + 0,02)–1 (1 + 0,03)–1 + + R’4 (1 + 0,01) –1 (1 + 0,02) –1 (1 + 0,03) –1 (1 + 0,04) –1 Leggere da pag. 153 a 163.

4) Ammortamento amer icano (impor tante): vedi pag. 17 di questi appunti.

Lungo tutta la durata n vengono versate n quote capitale C costanti annue posticipate e la corresponsione degli interessi avviene mediante il versamento di n quote interesse annue posticipate.

21

Esercizi del giorno 4 Apr ile 2007 • Esercizio 29

Vengono effettuati 5 versamenti annui di 100€ ciascuno 1° versamento 1/1/3. 1) determinare il capitale costituito all’1/1/7 in regime di capitalizzazione composta a tasso annuo di interesse del 10%. 2) compilare il piano di costituzione. 3) determinare il capitale costituito se il tasso di interesse annuo l’1/1/5 (dopo il versamento della rata qui prevista) passa dal 10 al 12%. Facoltativo) Compilare il nuovo piano di costituzione. 4) L’1/1/3 vengono effettuati 5 versamenti annui di R€ ciascuno per costituire il capitale di 1.000€ per l’1/1/7. Determinare quanto deve valere R in regime di capitalizzazione composta semestrale convenzione esponenziale a tasso semestrale di interesse i½ = 0,05 5) assunto R sopra determinato, determinare il capitale costituito all’1/7/8 Soluzione

1) i = 0,1; C1/1/7 = ? = 100 s5¬0,1 = 610,51 oppure: 100(1,1)4+100(1,1)3+100(1,1)2+10(1,1)+100 = 610,51 R1 R2 R3 R4 R5 1/1/3 1/1/4 1/1/5 1/1/6 1/1/7

2) piano di costituzione: Z Fz – 1 Interessi Rate Fz 1 / / 100 100 2 100 10 100 210 3 210 21 100 331 4 331 33,1 100 464,18 5 464,1 46,41 100 610,51 (torna)

3) Fino all’1/1/5 = 10%, poi 12% C = Rs3¬0,1(1 + 0,12)2 + Rs2¬0,12 = 331(1 + 0,12)2 + Rs2¬0,12 = 627,2064 nota: con (1 + 0,12)2 porto a scadenza.

Facoltativo) Z Fz – 1 Interessi Rate Fz 1 / / 100 100 2 100 10 100 210 3 210 21 100 331 (fin qui =) 4 331 39,72 100 470,72 5 470,72 56,4864 100 627,2064

4) R1 R2 R3 R4 R5 1/1/3 1/1/4 1/1/5 1/1/6 1/1/7

Prima cosa da fare è passare ai tassi annui. i ½ = 0,05 → 1 + i = (1 + i ½ )2 = (1 + 0,05)2 i = 0,1025 1.000 = Rs5¬0,1025 → R = 162,98 5) C1/7/8 = 1000(1 + 0,05)3 = 1177,625

• Esercizio 30 A = 2000 n = 4 i = 1% 2000 = Ra4¬0,01 R = 512,5621 Z R Dz Iz Cz 0 / 2000 / / 1 512,5621 1507,4378 20 492,5621 2 512,5621 1009,95 15,074378 497,4877 3 512,5621 507,4874 10,0995 502,4626 4 512,5621 ≈ 0 5,074874 507,4872

22

CAPITOLO IV I prestiti R1 R2 Rt Rn 0 t1 t2………t………tn v (t, i*) = ∑ Rs (1 + i*)–(ts–t) ↓ ts>t: somma estesa da ts a t → non metto anche l’uguale perché le rate scadenti in t le considero già versate. valore del prestito. Capitalizzazione convenzione esponenziale. Se però il tasso non è i* ma δ* corrispondente ad i* → δ = loge(1 + i*) → v (t, δ*) = ∑ts>t Rs e –δ* (ts – t) (in cap. continua) C’è un caso particolare con R scadenti negli interi (scadenze annue): R1 R2 Rz Rz+1 Rn v (t=z+p, i*) = ∑n

s=z+1 Rs (1 + i*)–(s – (z+ρ)) 0 1 2 z……..t=z+p….z+1………n v (t=z+p, δ*) = ∑n

s=z+1 Rs * e –δ* (s – (z+ρ)) dove 0 ≤ p ≤ 1 Se l’ istante di valutazione t = z, per definizione si considera già versata: v (z, i*) = ∑n

s=z+1 Rs (1 + i*) –(s–z) (con p = 0) v (z, δ) = ∑n

s=z+1 Rs e –δ* (s–z) Sapendo che R si divide in Cs + Is si può scrivere così: ∑n

s=z+1 (Cs + Is)(1 + i*) –(s–z) = ∑ns=z+1 Cs (1 + i*) –(s–z) + ∑n

s=z+1 Is (1 + i*) –(s–z) Az,i: Nuda proprietà + µz,i: Usufrutto Valutazione finanziaria in z delle: quote capitale quote interesse Se i* = i, Vz,i è il debito residuo: v (z,i) = Dz.

• Esercizio 31: Tema d’esame Il debito di 4.000 concesso 1/1/01 viene ammortizzato in 4 anni nei seguenti modi: Caso A: Amm.to con 2 rate annue posticipate a quote di capitale costante con i precisato dopo; Caso B: Amm.to in capitalizzazione composta semestrale di 2% con le seguenti R: R1 = 800 disponibile il 1/7/01 R2 = ? 1/1/02 R3 = 800 1/7/02 R4 = 1.000 1/1/03 Caso C: Amm.to mediante versamento di 2R costanti = 2.200 versate rispettivamente l’1/1/02 e l’1/1/03. Determinare il tasso annuo in ammortamento con capitalizzazione composta annua. Svolgimento: Caso A: stendere il piano d’ammortamento con i = 5% e stendere il piano d’amm.to ipotizzando tassi annui del 5% nel primo anno e del 6% nel 2° anno a quote di capitale prefissate. A = 4.000 n = 4 C = 4.000/2 = 2.000 i = 5% Z Cz Dz Iz Rz 0 / 4.000 / / 1 2.000 2.000 200 2.200 2 2.000 / 100 2.100 Z iz Cz Dz Iz Rz 0 / / 4.000 / / 1 0,05 2.000 2.000 200 2.200 2 0,06 2.000 / 120 2.120 Caso B:

1) Descrivere condizione di ammortamento e determinare R2 2) Determinare il D subito dopo il versamento della seconda rata 3) Determinare il valore del prestito subito dopo il versamento della 2a rata al tasso annuo di valutazione del 6%

convenzione esponenziale. 800 R2 800 1.000 1/7/01 1/1/02 1/7/02 1/1/03

1) 4.000 = 800 (1 + 0,02)–1 + R2 (1 + 0,02)–2 + 800 (1 + 0,02)–3 + 1.000 (1 + 0,02)–4 4.000 = 784,3137255 + R2 (0,961168781) + 753,8578677 + 923,845426 R2 (0,961168781) = 4.000 – 2.462,017019 → R2 = (4.000 – 2462,017019) * 1,022 = 1.600,117

2) D1/1/02 = 800 (1 + 0,02)–1 + 1.000 (1 + 0,02)–2 = 1.745,482507 3) V1/1/02 = 800 (1 + 0,06)–½ + 1.000 (1 + 0,06)–1 = 1.958,88? 1.720,424916

Caso C: 2200 2200 1/1/01 1/1/02 1/1/03 4.000

4.000 = 2.200 (1 + i)–1 + 2.200 (1 + i)–2 → 4.000 = 2.200 [(1 + i)–1 * (1 + i)–2] → semplificando ottengo: 40 = 22 (1 + i)–1 + 22 (1 + i)–2 → 20 = 11 (1 + i)–1 + 11 (1 + i)–2 → i = → –1,51 non accettabile 0,06596

Non ho ben capito come abbia risolto l’esercizio in classe, ma a casa l’ho risolto così: ho posto (1 + i)–1 = z. Viene una parabola: 11z2 + 11z – 20 = 0; con Ruffini: ∆=112 – 4 (–20) 11 = 1001; z1,2 = neg, (–11+31,63858404)/(2*11) = 0,938117456; Quindi: (1 + 1)–1 = 0,938117456; ho elevato ambo i lati alla – 1: 1 + i = 0,938117456 –1 → i = 0,065964601 e il risultato torna! ;)

23

• Esercizio 32: A = 1.000 in 10 anni Determinare R: 1) con un ammortamento francese con tasso annuo del 4% 2) a quote di ammortamento costante con tasso 4%

1) 1.000 = R a 10┐ 0,04 → 1.000 = R * [1 – (1 + i)–n]/0,04 → R = 123,2909443 2) Rz = A (1/n + i – i/n(z – 1)) cioè: R = I + C

R1 = 1.000 (1/10 + 0,04 – 0,04/10(1 – 1)) = 140 cioè: Rata1 = 1.000x4% + 1.000/10 = 140 R2 = 1.000 (1/10 + 0,04 – 0,04/10(2 – 1)) = 136 cioè: Rata2 = 900x4% + 1.000/10 = 136 e così via… R3 = 1.000 (1/10 + 0,04 – 0,04/10(3 – 1)) = 132 R4 = 1.000 (1/10 + 0,04 – 0,04/10(4 – 1)) = 128 R10 = 104

Nell’ ipotesi di ammortamento francese: 3) determinare il debito residuo subito dopo il versamento della 7a rata

R R R D7 = R a 3┐0,04 = 342,14358 7 8 9 10

4) determinare il valore del prestito dopo il versamento della 7a rata se il tasso di valutazione i½ = 0,02 con capitalizzazione composta esponenziale. D7 = R (1 + 0,02)–2 + R (1 + 0,02)–4 + R (1 + 0,02)–6 = 341,88

5) Subito dopo il versamento della 7a rata si sospendano i versamenti all’8a e 9a rata. Determinare l’ammontare R’ della 10a rata necessaria per completare l’ammortamento al tasso annuo i = 0,04. 1000 = 123,2909 a 7┐0,04 + R’ (1 + 0,04)–10 = 384,865

Fin qui abbiamo sempre visto soltanto prestiti indivisi. Prestiti Divisi (pag. 185 del libro) Se per una SPA, per esempio, un prestito è ingente, non è opportuno trovare un unico finanziatore e si ricorre al prestito diviso, che consiste nel suddividere l’ importo in obbligazioni. Si hanno così prestiti con un solo soggetto debitore a cui non fa fronte un unico finanziatore (creditore) ma una pluralità di finanziatori i quali sottoscrivono una quota di prestito. Per ogni titolo occorre distinguere: valore nominale, sul quale viene corrisposto l’ interesse, valore di emissione, che è il prezzo pagato dai sottoscrittori, valore di mercato (o corso), valore di rimborso all’atto dell’estinzione del debito. L’emissione ed il rimborso dei titoli può avvenire alla pari, sotto la pari o sopra il valore nominale. I tipi più diffusi di titoli di credito sono:

1) Buoni o certificati di credito: se è prefissata la data del rimborso del capitale che è la stessa per tutti i sottoscrittori:

a. BOT: non è previsto il pagamento degli interessi per cui sono detti zero coupon bond; b. BTP: a scadenza superiore all’anno e tasso fisso con cedole; c. CCT: a scadenza superiore all’anno e tasso variabile con cedole.

2) Obbligazioni: è previsto un piano di rimborso graduale del debito mediante estrazione ed il pagamento periodico degli interessi.

Ora parliamo di prestiti divisi, cioè di titoli: A / N = C Ci sono vari tipi di titoli:

1. I titoli a capitalizzazione integrale: non danno diritto al pagamento di interessi periodici. Es. i BOT. C0 C Possono avere scadenza trimestrale, semestrale o annua al massimo. 0 t Che regime di capitalizzazione utilizzano? Interesse semplice. C = C0 (1 + it)

2. I titoli senza pagamento di cedola si chiamano zero coupon bond (z.c.b.): non prevedono il pagamento di interessi periodici, hanno scadenze intere, viaggiano in regime di capitalizzazione composta se serve in convenzione esponenziale.

C = C0 (1 + i)t 3. Esistono anche titoli che danno origine al pagamento di cedole (Coupon Bond, come i BTP, buoni del tesoro

pluriennali), interessi periodici “annui” in ammortamento americano. Ci Ci Ci+C ← Se C’ (il valore di rimborso) = C lo schema è questo.

0 1 2……… n Se ho più titoli devo moltiplicare per N: N * C Tutti e 3 i titoli sono uguali per tutti i sottoscrittori. Obbligazioni Funzionano come i BTP, ma lo Stato all’ inizio stabilisce il numero delle obbligazioni che alla fine di ogni anno vengono estinte, cioè quelle per cui viene pagato il debito. Avviene per estrazione a sorte. Esempi: Z.C.B. 98 100 Se le pago 98 e alla fine varranno 100, di che tasso di rendimento godono? 0 2 100 = 98 (1 + i)2

A = valore nominale del prestito N = numero di titoli emessi C0 = valore di emissione di un titolo C = valore nominale di un titolo C’ = il valore di rimborso di un titolo Ci = valore della cedola n = la durata in anni del prestito diviso

24

I problemi nascono con i BTP, nel determinare il tasso effettivo di rendimento dei titoli con cedola. Ci Ci Ci+C

0 1 2 n C = Ci a n┐i + C (1 + i)–n condizione di ammortamento se C0 ≠ C → C0 = Ci a n┐x + C (1 + x)–n è tutto noto tranne x f(x) x = tasso effettivo di rendimento di chi acquista quel titolo C0 = f(x) Cin + C x € [0, +∞) f(0) = Cin + C (basta sostituire 0 ad “x” ) C0 0 x x Vediamo perché è disegnata così: f(x) = Ci (1 + x)–1 + Ci (1 + x)–2 + … + (Ci + C) (1 + x)–n lim f(x) = 0 per capire il suo andamento studio la derivata prima: x→∞ f’ (x) = Ci (1 + x)–2 + Ci (1 + x)–3 < 0 decrescente (in realtà erano tutte cose con segno negativo, quindi + … < 0) f ” (x) > 0 concava vs l’alto 0 < C0 ≤ Cin + C : condizione fondamentale; il problema ha soluzione e il tasso effettivo di rendimento x è determinato. Come si fa a trovare la soluzione? C0 = Ci a n┐x + C (1 + x)–n Con n = 1 C0 Ci + C C0 = (Ci + C)(1 + x)–1 0 1 Con n = 2 C0 Ci Ci+C C0 = Ci (1 + x)–1 + (Ci + C)(1 + x)–2 0 1 2 Con n > 2 si utilizza il metodo di iterazione che non dà una soluzione, ma consente di avvicinarsi ad essa: Teorema A Se abbiamo un’equazione del tipo x = φ(x), x € [a; b] e φ(x) € [a; b] e deve esistere φ’ (x) e tale derivata deve avere una caratteristica fondamentale cioè | φ’ (x) | ≤ K ≤ 1. Esiste un’unica soluzione x tale che x = φ (x). Se x0 € [a; b] x1 = φ (x0) x2 = φ (x1) e scopro che xn+1 = φ (xn) che si avvicina sempre di più a x. Trovo una successione di valori che non so come sia fatta. Teorema B Ci permette di capire come sia fatta la successione, quindi se valgono le stesse ipotesi del teorema A la successione è così: Se φ (xn)>0 → x0 < x1 < x2 < … < x oppure x < … < x2 < x1 < x0 Se φ’ (xn)<0 → si procede a saltelli cioè: x0 < x2 < x < x3 < x1 (è il celeberrimo c.d. “ teorema della ragnatela” ) φ(x) y = x coeff.angolare = 1 si incontrano. b φ(x)coeff.angolare<1 φ(x0)

φ(x1) Questo se φ’ (x)>0 φ’ (x)<1 a 0 a x x2 x1 x0 b x Se φ’ (x)<0 funzione decrescente, come? | φ’ (x) | ≤ K < 1 – φ’ (x) ≤ K < 1 cioè φ’ (x) ≥ –K > –1 φ(x) b La retta tangente alla curva ha un coefficiente angolare > –1. φ(x1) la successione di valori non si ha tutta in un senso o tutta in un altro come

prima: si ha a saltelli. Si ha una c.d. convergenza a ragnatela. φ(x0) L’ ipotesi del coefficiente angolare è fondamentale per ottenere la conver-

genza. Nel caso di emissione sopra la pari si potrebbe dimostrare che φ’ (x0)>0 e φ” (x0)<0: l’approssimazione si ha tutta in un senso, indietro. a Accade, ovviamente il contrario sotto la pari: C0 < C, a saltelli. 0 a x1 x x2 x0 b x Titolo con cedola (applichiamo quanto appena detto ai BTP):

Ci Ci Ci+C C0 = Ci a n┐x + C (1 + x)–n 0 1 2………..n x = tasso effettivo di rendimento = ? Se n = 1 oppure se n = 2 ho un’equazione di 1° o 2° grado quindi so come risolverlo e non ci son problemi.

se C0 > C → emissione sopra la pari C0 > C’ → rimborso sopra la pari se C0 = C → emissione alla pari C0 = C’ → rimborso alla pari se C0 < C → emissione sotto la pari C0 < C’ → rimborso sotto la pari

25

Se n > 2 utilizzo il teorema di iterazione. x = φ(x) C0 = Ci a n┐x + C (1 + x)–n si moltiplicano entrambi i lati per (1 + x)n quindi: C0 (1 + x)n = Ci a n┐x (1 + x)–n + C sottraggo ad ambo i membri C0 (a n┐x diventa s n┐x) C0 (1 + x)n – C0 = Ci s n┐x + C – C0 divido e moltiplico per x x * [C0 (1 + x)n – C0]/n = Ci s n┐x + C – C0 x * [C0 (1 + x)n]/n – 1 = Ci s n┐x + C – C0 → x = Ci / C0 + C – C0/C0 s n┐x = Ci / C0 + (C/C0 – 1)/s n┐x

x = Ci / C0 + (C/C0 – 1)/s n┐x la successione si determina così: x0 = Ci/C0; x1 = φ(x0); x2 = φ(x1) • Esercizio 33

Si hanno tre titoli A, B, C, tutti di valore nominale = al valore di rimborso Ci = C scadenti a 2 anni da oggi. A titolo zero coupon bond valore nominale C0 = 94,27 B titolo coupon bond cedola annua post = 12 valore emissione C0 = 117,27 C titolo coupon bond cedola 6 mesi posticipata = 5,5 valore emissione C0 = 115,44 Determinare il tasso effettivo di rendimento dei tre titoli. Soluzione: < 0 non accettabile A 94,27 100 94,27 = 100(1 + x)–2 → x = 0,029943133 0 2 B 117,27 12 12+100 117,27 = 12(1 + x)–1 + 112(1 + x)–2

0 1 2 117,27(1 + x)2 – 12(1 + x) – 112 = 0 0 + x = 12 ± √122 + 4 x 117 x 112 / (2 x 117,27) → x = 0,029959… (la soluzione <0 no!)

C 115,44 5,5 5,5 5,5 5,5+100 115,44 = 5,5 a┐4x½ + 100 (1 + x½)–4 0 1 2 applico il teorema di iterazione.

x = 5,5/115,44 + (100/115,44 – 1)/s4┐x0 x = 0,047643797 – 0,133749/s4┐x0 x0 = 0,047643797; x1 = 0,0165035; x2 = 0,015022972; x3 = 0,0149500; x4 = 0,014947107

Valutazione di prestiti divisi δ (t, i*) = ∑ts>t Rs (1 + i*)–(ts – t) Nel caso degli zero coupon bond non ci sono problemi per la valutazione: δ (t, i*) = C (1 + i*)–(n – t) Se abbiamo invece un BTP (caso tipico di titolo con cedola): Ci Ci Ci Ci Ci + C c < p < 1 0 1 2……… z t z+1…… n n – (z + 1) + 1 = n – z è il numero dei termini δ (t, i*) = Ci an–z┐i* * (1 + i*)–(1 – p) + C(1 + i*)–[n – (z+p)] è il valore del BTP secondo la nostra definizione ≠ listini pubblici Corso secco e corso tel quel (ecco come si ragiona sui mercati, nella realtà): Ci Ci Ci + C z z+1 z+2 n t = z+p si chiama dietimo α(p) Si ipotizza che all’ interno dell’anno la cedola si formi in modo direttamente proporzionale al tempo: t = Ci * p Ciò implica che inizia la cedola = 0 e in z + 1 = Ci. Il soggetto che acquista il titolo ha diritto a Ci (1 – p), infatti Cip + Ci (1 – p) = Ci → il soggetto che acquista deve pagare dietimo + corso secco (= corso tel quel). → s (z + p, i*) = Ci (1 – p)(1 + i*)–(1–p) + Ci a n–z–1┐i* (1 + i*)–(1–p) + C(1 + i*)–(n – (z+p)) n – (z + 2) + 1 = n – z – 1 è il numero dei termini Confronto tra corso tel quel e valore del titolo δ (t, i*) = Ci an–z┐i* * (1 + i*)–(1 – p) + C(1 + i*)–(n – (z+p)) 1 1 1 a = 1 + a 0 1 2 n – z – 1 n – z n – z – 1 = Ci(1 + an–z–1┐ i* )(1 + i*)–(1–p) + C(1 + i*)–(n – (z+p)) = = (Cip + Ci(1 – p))(1 + i*)– (1–p) + C an–z–1┐ i* (1 + i*)–(1–p) + C(1 + i*)–(n – (z+p)) = α(p) (1 + i*)– (1–p) + Ci (1 – p)(1 + i*)– (1–p) + Ci an–z–1┐ i* (1 + i*)–(1–p) + C (1 + i*)–(n – (z+p)) = α(p) (1 + i*)– (1–p) + φ (z + p, i*) Dietimo scontato + corso secco α(p) + φ (z + p, i*) > δ (t, i*) → corso tel quel > valore del titolo. Questo accade perché il soggetto che paga il dietimo paga anticipatamente quello che riceverà a fine anno. Se pago al corso tel quel pago di più di quanto vale il titolo; quindi il tasso che ho è minore di “quello che ha chi lo ha comprato al suo valore” .

• Esercizio 34 3 3 3*8/12 3+100 Calcolare dietimo α, corso secco φ e corso tel quel. i* = 0,04 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 p = 4/12 1/5/02 1 – p = 8/12 α(4/12) = Ci * p = 3 * 4/12 = 1 dietimo 98,43+1 = 99,43 corso tel quel φ(2 + 4/12 * 0,04) = 3 * 8/12 (1 + 0,04)–8/12 + 103 (1 + 0,04) – 1 – 8/12 = 98,43 corso secco δ (2 + 4/12; 0,04) = 3 (1 + 0,04)–8/12 + 103 (1 + 0,04) – 1 – 8/12 = 99,405 → corso tel quel > δ Per capire di che tipo di titolo si sta parlando si attribuiscono degli indici al titolo:

1. la durata o indice temporale; Questi primi 2 indici non tengono conto della componente finanziaria e 2. la vita residua o “maturity” . non danno informazioni in merito alla cedola.

È stabile sullo 0,0149

Si poteva fare anche 100=94,27(1+TER)2

Ma col TER si attualizza.

26

3. la duration: è l’ indice più importante; si può associare a qualsiasi titolo; è la media delle scadenze residue, ts – t, ponderata con i valori attuali in t delle somme Rs scadenti rispettivamente in ts. Formula ed esempio: D (t, i*) = ∑ts>t (ts – t) Rs(1 + i*)–(ts – t) 10 10 10 10 10+100

∑ts>t Rs(1 + i*)–(ts – t) 0 1 2 3 4 5 con i* annuo 2+3/12

D (2 + 3/12, i*) = 9/12 x 10 (1 + i*)–9/12 + (1 + 9/12) x 10 (1 + i*)–1–9/12 + (2+9/12) * 110 (1 + i*)–2–9/12 10 (1 + i*)–9/12 + 10 (1 + i*)–1–9/12 + 110 (1 + i*)–2–9/12

Assegnando δ*, cioè = log(1 + i*), come si scriverà la duration? D (t, δ*) = ∑ts>t (ts – t) Rs e–δ* (ts – t)

∑ts>t Rs e–δ* (ts – t) Se ho uno zero coupon bond: Rn con δ* 0 t n

D (t, δ*) = (n – t) Rn e–δ* (n – t) = n – t (maturity titolo) Rn e–δ* (ts – t)

Supponiamo di avere un tasso δ* che subisce un incremento di valore: δ* + d δ*; come reagisce il titolo a questo cambiamento? Si passa da V(t, δ*) a V(t, δ* + d δ*).

V (t, δ* + d δ*) – V (t, δ*) x d δ* ≈ ∂ V (t, δ*) / ∂ δ* x d δ* V(t, δ*) d δ* V (t, δ*) (si divide allo scopo di poter confrontarli) Variazione relativa Derivata parziale ∂ V (t, δ*) / ∂ δ* = ∑ts>t Rs e – δ* (ts – t) –(ts – t) Ora sostituisco e ottengo: variazione relativa ≈ –∑ts>t (ts – t) Rs e – δ* (ts – t) x d δ* = – D (t, δ*) d δ*

volatilità V (t, δ*) – duration x dif ferenziale (∂V/∂δ*)/V

Più la duration è alta più la variazione relativa è alta, in valore assoluto; il titolo allora risente di più delle variazioni dei tassi. Un titolo è tanto più volatile quanto più la duration è alta. Al crescere di i, quindi all’aumentare della cedola Ci, la duration decresce. I titoli che hanno la duration più alta sono quelli con cedola nulla, cioè gli zero coupon bond. Ciò è detto “effetto cedola” . Variazione relativa nel caso di tasso annuo i* → i* + d i* calcolare la variazione relativa (domanda da esame): V(t, i* + di*) – V(t, i*) ≈ ∂V(t, i*) / ∂i* x di* V = (t, i*) = ∑ts – t Rs (1 + i*) (ts – s) V(t, i) V(t, i) volatili tà

volatili tà

∂V(t, i*) = ∑ts – t Rs [– (ts – t)(1 + i*)] = –∑ts – t Rs (ts – t) Rs(1 + i*) – (ts – t) x 1 x di* = – D (t, i*) x 1 x di* ∂i* duration al tasso i* V (t, i*) (1 + i*) (1 + i*)

• Esercizio 35: Compito d’esame sulla duration: Oggi 1/1/00 è disponibile il titolo di valore nominale C = 100 che dà diritto a cedole annuali al tasso annuo nominale del 6%; prima cedola al 1/1/01 e rimborso alla pari al 1/1/03. Sia i* = 0,05 il tasso di valutazione. Determinare:

1) Duration e valore del titolo oggi; 2) Variazione relativa del titolo quando il tasso passa da i* = 0,05 a i* + di* = 0,05 + 0,55; 3) Legame tra la duration e la variazione relativa. Verificare numericamente; 4) 1/04/00 dietimo, corso secco e corso tel quel.

Soluzione: oggi 1/4/00 6 6 6+100 1/1/00 1/1/01 1/1/02 1/1/03

1) V(0) = 6 (1 + 0,05)–1 + 6 (1 + 0,05)–2 + 106 (1 + 0,05)–3 = 102,7232 D(0) = 6 x 1 (1 + 0,05) –1 + 6 x 2 (1 + 0,05)–2 + 106 x 3 (1 + 0,05)–3 = 2,83 la duration è una misura di tempo

102,7232 2) Variazione relativa = [V(0,55) – V(0,05)]/V(0,05) = – 0,01337847 era sbagliato!(?) correzione calcolo:

Variazione relativa ≈ – D (0) 1/(1 + i*) di* = –2,83/(1 + 0,05) x 0,55 = ––– 000,,,000111333555000333666 → –1,482780952 3) p = 3/12 1 – p = 9/12 α(p) = α(3/12) → 6 x 3/12 = 1,5 dietimo

corso secco = (6 – 1,5)(1 + 0,05)–9/12+6*1,05–1–9/12+106*1,05–2–9/12 = 102,53 corso tel quel = 104,03 • Esercizio 36: primo appello sessione estiva 2006 (svolto in classe il giorno 18/4/7)

Il capitale di 10.000 € è ammortizzato in 10 anni con un ammortamento uniforme. Se il tasso di ammortamento è del 5% annuo, si determini:

1) le quote capitale e compilare le prime 3 righe del piano di ammortamento 2) calcolare quanto vale la decima rata 3) calcolare la nuda proprietà alla scadenza = 5 al tasso annuo di valutazione i* = 0,04

Supponiamo che, dopo il versamento della terza rata, si sospenda l’ammortamento a quote di capitale costanti e si prosegua l’ammortamento con un ammortamento francese ancora per i 7 anni previsti al tasso annuo del 5%.

4) determinare la rata costante da versare 5) verificare la condizione di ammortamento del debito iniziale di 10.000€.

27

Soluzione: 1) A = 10.000 n = 10 i = 0,05

Z C Dz Iz Rz 0 - 10.000 - - 1 1.000 9.000 500 1.500 2 1.000 8.000 450 1.450 3 1.000 7.000 400 1.400 Avevamo detto che anche se non abbiamo le quote capitali, possiamo determinare lo stesso l’ammortamento in questi casi, inoltre lo costruiamo non per righe ma per colonne. 2) Rz = A (1/n + i – i/n(z – 1)) → R10 = 10.000 (1/10 + 0,05 – 0,05/10 * 9) = 1.050 (ci si poteva arrivare anche proseguendo con il piano di ammortamento) 3) x x x x x z = 5 6 7 8 9 10 A5;0,04 = C a 5┐0,04 = 1.000 a5┐0,04 = 4.451,82 4) x x x R R R R R R R 0 1 2 3 4 5 6 7 8 9 10 Su quale debito io pago? Sul debito residuo, che abbiamo già calcolato = 7.000 e va ammortizzato come fosse francese. D3 = 7000 = R a 7┐0,05 → R = 1.209,738729 10.000 = R1 (1 + 0,05)–1 + R2 (1 + 0,05)–2 + R3 (1 + 0,05)–3 + R/3 a 7┐0,05 = Il differimento (R differito3) che avevamo chiamato vm: R/3 a 7┐0,05 = R a 7┐0,05 (1 + 0,05) –3

• Esercizio 37 Abbiamo sempre un debito di 10.000 contratto l’1/1/5 ed ammortizzato con 10 rate annue posticipate al tasso annuo i = 0,06 in uno dei seguenti modi:

a) ammortamento francese i. determinare la rata, l’ammontare della sesta quota capitale e quello della sesta quota interessi ii. determinare il debito residuo ed il valore del prestito al tasso annuo istantaneo δ = 0,05

subito dopo il versamento della sesta rata. b) ammortamento americano

i. determinare l’ammontare di ciascuna rata d’ammortamento. ii. Per costituire il capitale A = 10.000 per l’1/1/2015, si versano 10 rate annue posticipate

costanti di ammontare T al tasso annuo di costituzione i1 = 0,04 iii. Determinare l’ammontare T e il capitale costituito subito dopo il versamento della sesta rata. iv. Dopo aver fatto i primi sei versamenti di ammontare T, si sospendano i versamenti settimo

ed ottavo. Determinare l’ammontare T’ delle due rate uguali tra loro che, versate l’1/1/2014 e l’1/1/2015, permettono di costituire 10.000 alla prevista scadenza 1/1/2015.

x x x R R R R R R R 1/1/5 1 2 3 4 5 6 7 8 9 1/1/2015 A = 10.000 a) 10.000 = R a 10┐0,06 → R = 1.358,679582 Ricordiamo che le rate variano in progressione geometrica di ragione 1 + i e termine sigma n: Cz = σ n┐i (1 + i)z – 1. C6 = A/(s 10 ┐0,06) (1 + 0,06)5 = 1.015,284 I6 = R – C6 = 343,396 D6 = R a 4┐0,06 = 4.707,97 0 6 7 10 V (6,δ = 0,05) → R = a 4┐ĩ → R e–δx1 + R e–δx2 + R e–δ+3 + R e–δ+2 = 4.803,617 b) R1 = R2 = … = R9 = Ai = 10.000 x 0,06 = 600 R10 = A + Ai = 10.600 T = 10.000 σ 10┐0,04 = 832,9094435 F6 = T s 6┐0,04 = s6┐0,04 / s10┐0,04 = 5.524,67 5.524,67 * (1 + 0,04)4 + T’ (1 + 0,04) + T’ = 10.000

• Esercizio 38: lezione pomeridiana del giorno 2007-05-02 Oggi, 1/1/5, sono disponibili 2 titoli entrambi di valore nominale 100 e con rimborso alla pari l’1/1/7. Il titolo A è zero coupon bond, il titolo B è un coupon bond con 2 cedole annue, ciascuna di ammontare 3, disponibili rispettivamente l’1/1/6 e l’1/1/7. Al tasso annuo di valutazione i* = 0,01 determinare all’1/2/5:

1) Il valore del titolo A e B 2) Il dietimo ed il corso secco del titolo B

Soluzione: vA = 100 (1 + 0,01) –(1 + 11/12) = 98,11092423 vB = 3 (1 + 0,01) – 11/12 + 103(1 + 0,01) – 1 – 11/12 = 104,02 αP = (1/12) = 3 x 1/12 = 0,25 S (1/12, 0,01) = 3 x 11/12 (1 + 0,01) – 11/12 + 103(1 +0,01) – 1 – 11/12 = 103,7792829

Possiamo, su questo argomento, svolgere sempre gli esercizi in questo modo, più semplice che utilizzare le rendite.

Soluzione:

28

Lezione del giorno 2007-05-09 • Esercizio 39

Oggi tempo 0, 1/1/5 sono emessi i seguenti 2 titoli, scadenti tra 3 anni, rimborsati alla pari, valore nominale 100: - Titolo A: zero coupon bond con valori di emissione C0 = 91. - Titolo B: coupon bond cedola annua = 2,5, prima cedola tra 1 anno valore di emissione C0 = 97.

Determinare in 0: a) I tassi di effettivo rendimento dei 2 titoli b) Valori dei 2 titoli al tasso annuo di valutazione i1 = 0,03 c) La duration al tasso i1 = 0,03

Soluzione: A 91 100 0 3 B 97 2,5 2,5 100 0 1 2 3

a) Ci sono svariati metodi: Primo metodo: 91(1 + TER)3 = 100 → (1+TER)3=100/91=1,098901099 → elevo alla 1/3 → TER = 1,0989010991/3 – 1 = 0,031936251 Oppure con la radice: (1+TER)3 = 100/91→ faccio la radice terza→ 1+TER = 3√1,098901099 → TER = 0,031936251 Secondo metodo: 100(1 + TER)–3 = 91 → (1+TER) –3=91/100 → elevo alla –1/3 → TER= 0,91–1/3 – 1= 0,031936251 97 = 2,5 a3┐iB + 100 (1 + iB)–3 iB = f(iB) x = Ci/C0 + (C/C0 – 1)/1 n┐iB = 2,5/97 + (100/97 – 1) /1 n┐iB = 0,025773195 + 0,30927135/1 n┐iB iB

0 = 0,025773185 iB

1 = f(iB1) = 0,035821278 applico l’approssimazione a saltelli

iB2 = f(iB

2) = 0,035721844 iB

0 = f(iB3) = 0,035722822 possiamo dire stabile i = 0,03572

b) VA (0,03) = 100 (1 + 0,03)–3 = 91,51416594 VB (0,03) = 2,5 a3┐0,03 + 100 (1 + 0,03) –3 = 98,58

c) DA = 100 * 3 * (1 + 0,03) –3 = 3 anni 100(1 + 0,03) –3

DB = 2,5 * 1 * (1 + 0,03)–1 + 2,5 * 2 * (1 + 0,03)–2 + 102,5 (1 + 0,03)–3 = 2,926856947 anni VB(0,03)

29

CAPITOLO V La struttura del mercato Osserviamo uno zero coupon bond emesso oggi con valore A, scadente in t con valore C. A C 0 t C = Φ(A, 0, t) se è additiva: A f0 (0, t) noti C e A posso determinare il fattore di capitalizzazione: f0 (0, t) = C/A Posso trovare il tasso effettivo di rendimento: f0 (0, t) = (1 + i0 (0, t))t = C/A Tasso a pronti o tasso spot

Come lo calcolo? i0 (0, t) = (C/A)1/t – 1 è il tasso effettivo di rendimento di uno zero coupon bond emesso in zero e scadente in t.

Osservando i vari tassi spot di vari titoli: cosa succede sul mercato? Eccone la struttura: i(0,t)

per tutti gli zero coupon bond con quella scadenza si può indivi- duare il tasso di effettivo rendimento, per la condizione di arbi- traggio: cioè se ci fossero occasioni migliori sul mercato tutto si equilibrerebbe a quel determinato tasso. Il mercato interpola. Riusciamo, grazie a t, a stabilire i valori in qualsiasi t. 0 t1 t2 t3 t4 t t = tempi di osservazione di qualunque zero coupon Se i tassi spot di tutti gli zero coupon bond fossero uguali avremmo una struttura piatta di mercato:

i(0,t) C = A f0 (0, t) tasso annuo spot f0 (0, t) = C/A 0 t1 t2 t3 t4 t Gli stessi ragionamenti valgono per il tasso istantaneo spot anziché annuo. e δ0(0, t)* t = C/A → δ0 (0, t) = 1/t* loge(C/A) tasso istantaneo spot δ0(0, t) = loge(1 + i0(0, t)) 2 Maggio 2006 (corrispondente alla lezione del giorno 9 Maggio 2007, con t1 e t invertiti sugli assi dei tempi) Tasso annuo spot i0 (0, t) δ0(0, t) δ0(0, t) = loge(1 + i0(0, t)) Noti tutti i tassi spot, si può osservare il grafico della struttura di mercato. Fissato il tempo 0 oggi, prendiamo in considerazione uno ZCB con prezzo A1 in t1 e scadente in t con valore C1. A1 C1 0 t1 t con 0 ≤ t1 ≤ t C1 = Φ0 (A1, t1, t) C1 = A1 f0 (t1, t) → f0 (t1, t) = C1/A1 i0 (t1, t) tasso annuo forward o a termine (1 + i0(t1, t))

t – t1 = C1/A1 → i0(t1, t) = (C1/A1)1/(t – t1) – 1 per la formula dei tassi spot basta porre t1 = 0.

δ0(t1, t) → f0 (t1, t) →e δ0(t1, t)(t – t1) = (C1/A1) → δ0(t1, t)(t – t1) = loge C1/A1 → δ0(t1, t) = 1/(t – t1) * loge (C1/A1) Ora il tasso spot e il tasso forward sono legati tra loro? Un mercato si dice coerente, consistente o in equilibrio se: f0 (0, t) = f0 (0, t1) f0 (t1, t) come già visto, è la scindibilità. Per spiegare quando un mercato è in equilibrio, possiamo dire che il mercato non è in equilibrio quando vale il minore o il maggiore. Esempio: f0 (0, t) > f0 (0, t1) f0 (t1, t) significa che è possibile comprare e vendere titoli allo scoperto, aven- do un guadagno certo, cioè significa poter far arbitraggi. In un mercato in squilibrio posso vendere oggi a Tizio allo scoperto un titolo che mi dà diritto ad incassare + C/ [f0 (0, t1) f0 (t1, t)]. Tizio con questo acquisto si garantisce in t1 – C/ f0 (t1, t); in zero ho incassato e allora vado sul mercato e compro dei titoli a questo prezzo: – C/ f0 (0, t); tali titoli in t mi renderanno +C; ma in t1 dovrò dare a Tizio quello che gli spetta quindi oggi compro dei titoli allo scoperto da Caio + C/ f0 (t1, t) e dovrò dare a Caio – C. Quindi ho comprato e venduto allo scoperto. In t: incasso C e vendo C In t1: dovevo – C/ f0 (t1, t) e mi spettava + C/ f0 (t1, t) 0 t1 t + C/[ f0 (0, t1) * f0 (t1, t)] – C/ f0 (t1, t) +C facciamo la somma algebrica! – C/ f0 (0, t) + C/ f0 (t1, t) –C C/[ f0 (0, t1) * f0 (t1, t)] – C/ f0 (0, t) > 0 0 0 “guadagno dove ho >” C/ f0 (0, t) < C/[ f0 (0, t1) * f0 (t1, t)] → f0 (0, t) > f0 (0, t1) * f0 (t1, t) Noi però prendiamo in considerazione un mercato in equilibrio; allora deve valere f0 (0, t) = f0 (0, t1) * f0 (t1, t). 1a considerazione: se il mercato è in equilibrio, noti i tassi spot → possiamo determinare i forward. (1 + i0 (0, t))t = (1 + i0 (0,t1))

t1 * (1 + i0 (t1,t))t – t1

numeratore denominatore incognita

i0 = (1 + i0(0,t))t 1/(t – t1) (1 + i0(0,t1))

t1 – 1 formula dei tassi forward con t1 < t

Fino ad oggi avevamo ipotizzato, appunto, una struttura piatta, o al max a “scalini” , cioè con tasso variabile per certi intervalli di tempo.

30

2a considerazione: oggi determino il fattore di capitalizzazione, in vigore da t1 a t. In condizioni di certezza posso prevedere cosa accade in t1, quando il fattore di capitalizzazione non dipende dall’oggi, “se oggi è proprio domani” . Posso determinare allora il valore di un titolo con cedola, nota la struttura del mercato, con tassi spot? R1 R2 Rn Nel calcolare V(0) supponiamo che quel titolo R1 sia composto da tanti zcb di cui 0 t1 t2………tn conosco il valore. i0(0,t) appartiene a t. V(0) = R1(1 + i0(0,t1)

–t1 + R2(1 + i0(0,t2)–t2 + … + Rn(1 + i0(0,tn)–tn

∑ns=1 Rs(1 + i0(0, ts))–ts con i tassi spot

Se avessi i tassi forward: V(0) =R1 * e –δ(0,t1)–t1 + R2 * e –δ(0,t2)–t2 + … + Rn * e –δ(0,tn)

–tn ∑n

s=1 Rs * e –δ(0,t1)ts con i tassi forward Duration→D(0) = ∑n

s=1 ts * Rs (1 + i0(0,t1))–ts tassi spot

∑ns=1 Rs (1 + i0(0,t1))

–ts Duration→D(0) = ∑n

s=1 ts * Rs (e–δ(0,ts)ts) tassi forward ∑n

s=1 Rs e–δ(0,ts)ts La Duration era un indice di volatilità, considerando i* che passa ad i* + di*. Ora nel caso D(0), volendo studiare la variazione negativa con una determinata struttura del mercato, vogliamo capire se la Duration è ancora indice di volatilità. Supponiamo che, data una certa struttura del mercato, questa subisca un incremento (o un decremento) tutto uguale, cioè che abbia uno shift additivo (da δ0(0, ts) a δ0(0, ts)+h): cioè il titolo risente di più o di meno della struttura di mercato. h δ0(0, ts) → δ0(0, ts) + h δ relativa = ∑n

s=1 Rs e–[δ0(0,ts)+h] – ∑ns=1 Rs * e–δ0(0,ts)* ts = raccogliendo …

∑ns=1 Rs e–δ0(0,ts)* ts

= ∑ns=1 Rs e–δ0(0,ts)* ts [e–h*ts – 1] =

V(0, δ0(0,ts)) ≈ – h ∑n

s=1 Rs e–δ0(0,ts)* ts = – h D(0) anche qui quello che determina la variazione negativa del valore del titolo V(0, δ0(0,ts)) è la duration, che è sempre un indice di volatilità.

• Esercizio 40 (Tema d’esame): Oggi sul mercato sono disponibili 3 zero coupon bond di valore nominale 100:

A) Prezzo oggi = 98,83 rimborso tra 3 mesi B) Prezzo oggi = 97,82 rimborso tra 6 mesi C) Prezzo oggi = 95,88 rimborso tra 1 anno

Inoltre è disponibile il titolo D) di valore nominale 100 con cedole semestrali di ammontare 2 ciascuna; 1a cedola disponibile tra 1 semestre da oggi, rimborso alla pari tra un anno. Si fissi l’origine dei tempi oggi e si misuri il tempo in anni:

1) scrivere la Duration dei titoli A, B, C 2) in ipotesi di struttura piatta del mercato al tasso annuo i* = 0,04, calcolare oggi il valore del titolo D) e la

duration 3) determinare i tassi annui spot i0(0,t) per t = ¼ t = ½ t = 1 e determinare anche le rispettive intensità δ0(0,t)

Utilizzando la struttura non piatta determinata calcolare oggi: 4) il valore del titolo D) 5) la Duration del titolo D)

Soluzione: 1) A) 98,93 100 Titolo B) 97,82 100

0 3/12=¼ 0 6/12=½ Titolo C) 95,88 100 Titolo D) 2 2+100 0 1 0 ½ 1 DA(0) = 100 * ¼ * (1 + i)–¼ = ¼ DB(0) = 100 (½ * (1 + i)–½ = ½ DC(0) = 1

100(1 + i) –¼ 100 (1 + i)–½ (quindi nei ZCB durata = duration) 2) V0

D = 2 * (1 + 0,04)–½ + 102 (1 + 0,04)–1 = 100,038 (insomma è sufficiente attualizzare) DD(0) = 2 * ½ (1 + 0,04)–½ + 102 * 1 * (1 + 0,04)–1 = 0,990197927 VD(0) → 100,038

3) titolo A) 98,93 = 100 (1 + i0(0, ¼))–¼ → i0(0, ¼) = 0,048201601 i0(0, ts) = (C/C’ )–1/t – 1 titolo B) 97,82 = 100 (1 + i0(0, ½))–½ → i0(0, ½) = 0,045068321 titolo C) 95,88 = 100 (1 + i0(0, 1))–1 → i0(0, 1) = 0,04297038

δ0(0,t) = loge (1 + i0(0,t))→ formula intensità δ0(0, ¼)=loge (1 + 0,0482)=0,047; δ0(0, ½)=loge (1 + 0,045068)=0,04408; δ0(0,1)=loge (1 + 0,04297)=0,04207

4) VD(0) = 2 (1 + i0(0, ½))–½ + 102 * 1 * (1 + i0(0,1))–1 = 99,754 5) DD(0) = 2 * ½ (1 + i0(0, ½))–½ + 102 * 1 * (1 + i0(0,1))–1 = 0,9901937

δD(0) → 99,754

Sviluppo in serie di Taylor ex ≈ 1 + x + x2/2! + x3/3! + … dove ! → fattoriale e–hts ≈ 1 – hts (“Taylor troncato” )

31

• Esercizio 41: lezione pomeridiana del giorno 9 Maggio 2007 Al tempo 0 acquisto un titolo che dà diritto ad incassare i capitali R1 = 50 e R2 = 1.050 rispettivamente tra un anno e tra due anni da oggi.

1) In ipotesi di struttura piatta, al tasso annuo di interesse i* = 0,04 determinare al tempo 0 il valore e la duration del titolo.

2) In ipotesi di struttura piatta, determinare al tempo 0 la variazione relativa del valore del titolo se il tasso passa da i* = 0,04 a i* + di* = 0,038.

3) In ipotesi di struttura piatta, al tasso annuo istantaneo di interesse δ* = 0,04, determinare al tempo 0 il valore del titolo.

4) Ho acquistato oggi il titolo pagandolo 1.018 e lo tratterrò per i due anni previsti. Determinare il tasso annuo di effettivo rendimento.

5) In ipotesi di struttura non piatta, determinare al tempo 0 il valore e la duration del titolo se sono dati i seguenti tassi annui spot

a. i(0,1) = 0,0385; b. i(0,2) = 0,0405.

Soluzione: 1) V(0) = 50 (1 + 0,04) –1 + 1.050 (1 + 0,04) –2 = 1.018, 86

D(0) = 50 * 1 * (1 + 0,04)–1 + 1.050 (1 + 0,04)–2 * 2 = 1,952813067 1.018,86

2) Vrel = [50 (1 + 0,038)–1 + 1.050 (1 + 0,038) –2 ] – 1.018,86 = 0,003766 1.018,86

È una funzione decrescente al crescere del tasso perché la sua derivata prima è negativa, quindi il risultato della prima parte del numeratore è 1.022,698. Un altro modo sarebbe stato il seguente (per approssimazione): Vrel ≈ - Duration / (1 + i*) x di* = - 1,95 / (1 + 0,04) (- 0,002) = 0,00375

3) V(0) = 50e – 0,04 x 1 + 1.050 e – 0,04 x 2 = 1.017,31 4) Scriviamo la condizione di ammortamento:

1.018 = 50(1 + x)–1 + 1.050 (1 + x)–2 Non va applicata l’ iterazione, infatti abbiamo un’equazione di solo 2° grado, quindi risolviamo così: 1.018 = 50(1+TER)–1 + 1.050(1+TER)–2 poniamo (1+TER)–1 = z 1.050z2 + 50z – 1.018 = 0 con Ruffini: ∆ = b2 – 4ac = 4.278.100 (-b±√∆)/2a = neg, 0,961122303 (1+TER)–1 = 0,961122303 Elevo alla -1: 0,961122303–1 = 1+TER TER = -1 + 1,040450312 = 0,040450312

Fino a qui erano cose della scorsa lezione: in ipotesi di struttura piatta. 5) i0(0,1) = 0,0385

i0(0,2) = 0,0405 Scomponiamo in tanti zero coupon bond V(0) = 50 (1 + 0,0385)–1 + 1.050 (1 + 0,0405)–2 = 1.017,99 D(0) = 50 * 1 * (1 + 0,0385)–1 + 1.050 * 2 ( 1+ 0,0405)–2 diviso 1.017= 1,9527

• Esercizio 42 Oggi sul mercato sono disponibili 3 zero coupon bond (a, b, c) di valore nominale 105. Determinare in ipotesi di mercato coerente:

1) I tassi spot i0(0,1), i0(0,2), i0(0,3) 2) I tassi annui forward i0(0,2), i0(0,3)

Se la struttura del mercato è quella sopra definita, determinare: 3) Il prezzo oggi di un titolo coupon bond con cedole annue posticipate = 8 di vita residua 3 anni e valore di

rimborso = 115. 4) La duration oggi di questo titolo.

Se la struttura del mercato è piatta, a tasso annuo istantaneo di valutazione δ* = 0,05 determinare: 5) La duration tra un anno e 6 mesi da oggi di:

a. Che scade tra un anno con valore di rimborso = 107 b. Che scade tra 2 anni con valore di rimborso = 110 c. Che scade tra 3 anni con valore di rimborso = 112

E del titolo coupon bond (del punto 3) Soluzione:

1) 105 = 107 (1 + i0(0,1) –1 => i0(0,1) = 0,019047619 105 = 110 (1 + i0(0,2) –2 => i0(0,2) = 0,023532631 105 = 112 (1 + i0(0,3) –3 => i0(0,3) = 0,02174591

2) Senza far troppi conti conviene ragionare: Se (1+i0(0,1)) = 107/105 e (1+i0(0,1))2 = 110/105 107/105 x 105 /110 Allora i0(1,2) = 0,02803 f0(0,3) = f0(0,2)f0(2,3) oppure come ragionamento sopra.

32

i0(2,3) = 0,018181818 3) C0 = 8 (1 + i0(0,1)–1 + 8 (1 + i0(0,2))–2 + 123 (1 + i0(0,3))–3 = 130,7993309 (attualizzato con i tassi spot)

4) D(0) = [8 * 1 * 105/107 + 8 * 2 * 105/110 + 123 * 3 * 105/112] / 130,79 = 2,821579376 Oppure: 8* 1 * (1 + i0(0,1))–1 + 8 * 2 * (1 + i0(0,2))–2 + 123 * 3 * (i0(0,3))–3 = 2,821579376 130,7993309

5) DB = 0,05 DC = 1,5 D (0,δ* = 0,05) = 8 * 1 * e – 0,05 + 8 * 2 e – 0,05 * 2 + 123 * 3 * e – 0,05 *3 = 1,43

8 * e – 0,05 * 1 + 8 * e – 0,05 * 2 + 123 – 0,05 * 3 • Esercizio 43

Oggi 1/1/4 ho a disposizione i seguenti 2 titoli di valore nominale C = 100, entrambi con rimborso l’1/1/6 pari al valore nominale. Uno è zero zoupon bond, l’altro è coupon bond con 2 cedole, ciascuna di ammontare = 7, disponibili l’1/1/5 e l’1/1/6. Supponiamo che oggi lo zero coupon bond abbia un prezzo = 95,18 e il coupon bond abbia un prezzo = 108, 64 Sia f0 (z,t) il fattore di capitalizzazione da z a t. Determinare in ipotesi di mercato coerente:

a) F0 (0,2) e i0(0,2) b) F0(0,1) e i0(0,1)

Assumiamo i seguenti valori: i0(0,1) = 0,03 e i002 = 0,025 c) Determinare il tasso annuo forward i0(1,2) ed il fattore f0(1,2)

Soluzione: 95,18 100 1/1/4 1/1/6 108,64 7 7+100 1/1/4 1/1/5 1/1/4 f0(0,2) = 100/95,18 = 1,0506 (1 + i0(0,2))2 = 1,0506 i0 (0,2) = 0,025 108,64 = 7 / f0(0,1) + 107/f0(0,2) f0(0,1) ≈ 1,030 i0(0,1) = 0,03 f0(0,2) = f0(0,1)f0(1,2) f0(1,2) = 1,0506/1,03 = 1,02

33

CAPITOLO VI Le scelte finanziar ie sugli investimenti (argomento per 6 CFU, beati i 5 CFU!) Un’operazione finanziaria può essere rappresentata come un’entrata (= Ricavi) e un’uscita (= Costi). Se ho un’operazione finanziaria come questa: Costo 100 Entrata 70 Entrata 80 0 1 2 Un 1° modo per rappresentare l’operazione finanziaria è quella di scrivere l’ insieme dei Costi e dei Ricavi.

C = { (100,0)} R = { (70,1),(80,2)} In generale: C = { (C0,t0);(C1, t1);…} R = { (r0,t0),(r1,t0);…} Un 2° modo è quello di scrivere le uscite con un meno e le entrate con un più. –100 +70 +80 0 1 2 Posso individuare le poste P = { (–100,0);(+70;1);(+80;2)} In generale: P = { (x0,0);(x1;t1);…} Il 3° modo (più usato) è: X = (x0, x1, …, xn) = (–100;+70;+80) vettore delle poste prese con il loro segno

T = (t0, t1, …, tn) = (0, 1, 2) vettore delle scadenze Detto questo: se abbiamo delle operazioni finanziarie tra cui scegliere come si fa a scegliere quella migliore? È meglio imprestare o comprare titoli? Dobbiamo cercare dei criteri che ci guidino nella scelta tra progetti alternativi che però devono essere dello stesso tipo. Bisogna quindi distinguere prima di tutto tra investimenti e finanziamenti. Un 4° modo per rappresentare un’operazione finanziaria è il saldo di cassa che è la somma algebrica delle poste fino all’ istante t. x0 x1 x2 xn S(t) = ∑ts≤t Xs 0 t1 t2 tn S(t) 0 t<0 S(t)= –100 0≤t<1 50 –30 1≤t<2 +50 t≥2 0 1 2 t – 30 –100 Come facciamo ad individuare l’operazione finanziaria? Come faccio ad individuare quale operazione è dal saldo di cassa? È una funzione il cui grado determina un’operazione finanziaria. X = (–100,+70,+80) T = (0,1,2) Allora tra questi progetti dobbiamo saper distinguere gli investimenti dai finanziamenti! Partiamo dagli investimenti. Indici di finanziamento: a) scadenza media aritmetica b) scadenza media finanziaria a) Si indica con: z = ∑n

s=0 xs ts è la media delle scadenze delle poste ponderate con le poste stesse. ∑n

s=0 xs Esiste una scadenza media dei costi e dei ricavi. –100 +70 +80 z = 70(1) + 80(2) = 1,53 Ricavi z = 100(0) = 0 0 1 2 70+80 100 b) scadenza media finanziaria: x0 x1 x2 xn z(i) è quella scadenza per la quale è indifferente avere la somma delle poste 0 t1 t2 z(i) tn o avere ciascuna posta disponibile alla relativa scadenza. Siamo in capitalizzazione composta convenzione esponenziale. t = anni i* anno (∑n

s=0 xs)*(1 + i)–z(i) = (∑ns=0 xs)*(1 + i)–ts

incognita Dobbiamo ricavare la scadenza media finanziaria: (1 + i)–z(i) = ∑n

s=0 xs (1 + i) –ts applichiamo i logaritmi ∑n

s=0 xs loge (1 + i) –z(i) = loge ∑

ns=0 xs (1 + i) –ts = –z(i) = loge ∑

ns=0 xs (1 + i) –ts – loge ∑

ns=0 xs =

∑ns=0 xs loge (1 + i)

= z(i) → loge ∑ns=0 xs – loge ∑

ns=0 xs (1 + i) –ts

loge (1 + i) –100 +70 +80 zr(i) = loge (70 + 80) – loge [70(1 + i)–1 + 80(1 + i)–2] 0 1 2 loge (1 + i) zr(i) = loge 100 – loge 100 = 0 loge (1 + i) Come è fatta la scadenza media finanziaria? z(i) È una funzione decrescente e ha un asintoto orizzontale che z è la scadenza della 1a posta.

lim z(i) t1 < z (i) < z t1 i → ∞ lim z(i) = z 0 i i → 0+

34

A cosa servono gli indici? Investimento in senso stretto → quando l’ultima scadenza dei costi precede la prima scadenza dei ricavi. IS –C0 –Ci –Cm R1 IS = ctm < rt1

0 ct1 ctm rtn Investimento in senso lato → quando la scadenza media aritmetica dei costi precede la prima scadenza dei ricavi. IL –Cm t1 IL = zc < rt1 “Detto male tanto per capirci” : costi x anno costi < anno 1° incasso

0 z rt1 costi Investimento generale → quando la scadenza media finanziaria dei costi precede quella dei ricavi. Ig = zc(i) < rt1(i) Che legame c’è tra questi investimenti? IS => IL => Ig come si dimostra questa cosa? IS => IL 1

a dimostrazione: z0 = ∑ns=0 Cs cts ≤ ∑n

s=0 Cs ctm = ctm ∑ns=0 Cs = ctm ultima scadenza costi

∑ns=0 Cs ∑

ns=0 Cs ∑n

s=0 Cs 2a dimostrazione: z0 < rt1: IL => Ig dobbiamo dimostrare che z0(i) < zr(i) per ogni i € (0, 100). Per far ciò dobbiamo far una premessa. IL => z0(i) < zr(j) i ≠ j Caso particolare i = j → z0(i) < zr(j) per dimostrare si fa così. IL → Hp ct1 < z0(i) < zc Per Hp d’ investimento in senso lato → zc < rt1 → ct1 < z0(i) < zc < rt1 < zr(j) Z(i) Zr rt1 zr(i) z0(i) < zr(j) per ogni i e j zc se i = j allora zc(i) < zr(i) no viceversa perché Ig ≠> IL cz(i) ct1 0 i j i Inversione delle scadenze. Tutte le considerazioni sono simmetricamente estese al finanziamento. Fs = l’ultima scadenza dei ricavi precede la prima dei costi: rtm < ct1 FL = zr < ct1 Fg = zr(i) < zc(i) Esempio: –100 70 80 Is: ctm < rt1 0 1 2 –100 80 –30 +90 Is: no perché ctm = 2 ≠ rt1 = 1 0 1 2 3 IL = z0 = 100(0) + 30(2) = 60 = 0,46 z0 < rt1 → 0,46 < 1 100 + 30 130 Possiamo confrontare i diversi investimenti per trovare il più conveniente. Siamo in presenza di due investimenti → 1 prevede di spendere 100€ in 0. 2 prevede di spendere 1000 miliardi in 0. Sono “completi” rispetto al capitale iniziale e “completi” rispetto all’orizzonte temporale. Cosa vuol dire “completi”? Che abbiamo lo stesso esborso iniziale e lo stesso orizzonte temporale. A –100 +70 +80 0 1 2 hanno lo stesso C iniziale e lo stesso orizzonte B –100 +65 +90 quando possiamo confrontarli 0 1 2 Se invece fossero così: A’ –95 +70 +80 0 1 2 non sono completi rispetto al C iniziale, però le uscite non sono tanto B’ –100 +65 +90 lontane l’una dall’altra. Allora è possibile effettuare un’operazione inte- 0 1 2 grativa che permette che le operazioni abbiano lo stesso esborso iniziale. Supponiamo di avere 100 con i1 in capitalizzazione composta in convenzione esponenziale: si ha 100 e si investe solo 95, quindi si ha ancora a disposizione 5 e possiamo applicare, appunto, questa operazione integrativa. –5 5(1 + i)2 considero l’operazione completa con l’unione (somma algebrica delle 0 2 poste alle scadenze) –95–5=–100 70 80+5(1 + i)2 Il progetto B verrà confrontato con AUA’ 0 1 2

35

Se invece il soggetto ha “proprio in tasca 95” → il progetto A viene subito intrapreso mentre per intraprendere B dobbiamo considerare 1 operazione di completamento. Noi abbiamo 95 dobbiamo farci imprestare 5, quando per me sarà un’entrata e dovrò restituire –5(1 + i)2. B’ +5 –5(1 + i)2 BUB’ –100+5=–95 65 +90–5(1 + i)2 0 2 0 1 2 Completamento rispetto all’orizzonte temporale: A –100 +70 +80 0 1 2 conviene completare al soggetto che ha la scadenza minore. Supponiamo B –100 +65 +90 +5 che possiamo impiegare la moneta da 2 a 3 al tasso i. 0 1 2 3 A” +80 –5(1 + i’2)

1 AUA” –100 70 0 80(1 + i’2)1

2 3 0 1 2 3 La scelta è immediata quando valuto i postulati di preferenza assoluta. Essi sono 2:

1) Tra due poste disponibili alla stessa scadenza scelgo quella di importo più alto (somma algebrica poste). 2) Tra due poste positive di stesso importo sceglierò quella che è disponibile prima, mentre se le poste sono

negative sceglierò quella che è disponibile dopo. Cosa vuol dire? 150 –5 100 –10 3 4 3 4 Se ho due progetti: P1 100 90 70 P1 > P2 0 1 2 P2 –10 80 70 0 1 2 Altro esempio: P1 –100 +R +70 R ≥ 0 possiamo applicare il 1° postulato 0 1 2 R > 80 → P1 > P2 P2 –100 +80 +70 R = 80 → P1 = P2 0 1 2 0 < R < 80 → P2 > P1 P1 –100 +R +70 Si può effettuare una scelta sotto il 1° postulato e sotto quali condizioni? 0 1 2 Se R = 80 → P2 > P1 se 0 ≤ R < 90 P2 > P1 P2 –100 +80 +80 Se R > 80 non è applicabile il 1° postulato quindi occorre applicare il 0 1 2 criterio di scelta. 2° postulato di preferenza assoluta P1 –100 +80 –5 +70 È applicabile il 2° postulato? Sì e si sceglie P2. Casi di scelta immediata. 0 1 2 2,5 P2 –100 +80 +70 –5 0 1 2 2,5 P1 –100 +90=80+10 +70 0 1 2 P2 –100 +80 +80=70+10 0 1 2 Un primo criterio che viene più usato nelle aziende e non dipende dalla componente finanziaria si chiama “pseudo criterio del tempo di recupero” e si basa sul saldo di cassa. S(t) –100 +70 +80 S(t)–∑ts≤t xs 0 1 2 50 –30 1 2 T t T = tempo di recupero –100 Nel tempo di recupero il saldo di cassa rimane sempre positivo; nel nostro esempio T = 2. Se ho 20 o più progetti il criterio di scelta dice che si sceglierà quello che ha T più basso perché indice di tempestività del recupero dei capitali impiegati. Se si è indecisi, intraprendendo un progetto, il criterio dice che si stabilisce un tempo che individua una frontiera di recupero del capitale. Cioè se il T < di questo tempo limite il progetto conviene, se > no. Sp2(t) Sp1(t) P1 > P2 0 T1 T2

36

Un generico progetto P dipende dalle poste e dal tempo, cioè: P = (x0, x1, …, xn; t0, t1, …, tn). L’ indice che associamo è Wp = (x0, x1, …, xn; t0, t1, …, tn). Per comodità sosteniamo che W sia derivabile rispetto a tutte le variabili. Un criterio di scelta deve rispettare 4 requisiti minimi:

1. W: ∂W > 0 1° postulato di preferenza assoluta ∂xs

2. Deve rispettare il 2° postulato di preferenza assoluta: ∂W se la posta è positiva < 0 ∂ts se la posta è negativa > 0

3. Deriva dall’utilizzo di una determinata unità di misura della moneta: p’ e p” se ho che Wp’> Wp” usando una certa unità di misura della moneta. Se si cambia unità di misura della moneta: p’ > p” → Wp’ (ax’T’ )>Wp”(ax”T”) → Wp’ (x’T’ ) > Wp” (x” T” )

4. Unità di misura del tempo: Wp’ (x’T’ ) > Wp” (x” T” ) se cambio il tempo Wp’(x’aT’) > Wp”(x”aT”) a > 0 Il primo criterio di scelta è il criterio del REA (risultato economico attualizzato) cash flow; somme anno scontate. x0 x1 xn struttura piatta → Wp = Vp(i) = ∑n

s=0 xs (1 + i)–ts con i > 0 0 t1 tn 100 70 80 REA = –100+70(1 + 0,1)–1 + 80(1 + 0,1)–2 = 29,75 0 t1 tn In brutte parole, se non abbiamo capito male, è la somma algebrica dei valori attuali di costi e ricavi in t0. Tra due o più progetti si sceglierà quello con REA + alto; se ho un unico progetto calcolo il REA e lo confronto con il REA del progetto nullo che è 0; quindi se il REA > 0 mi conviene intraprendere il progetto. Proprietà

• ∂WVp(i) / ∂xs = (1 + i)–ts > 0 perché la D di xs è = 1 • ∂Vp(i) / ∂ts = xs(1 + i)–ts * (–1) * loge (1 + i) = xs > 0 derivata negativa < 0 D[a+(x)]=a+(x)*t’ (x)* loge

>0 >0 derivata positiva > 0 • Vp’(i) = ∑n

s=0 x’s(1 + i)–t’s > Vp”(i) = ∑ns=0 x”s(1 + i)–ts” cioè P’ > P”

Se cambio moneta moltiplico per a. ∑n

s=0 ax’s(1 + i)–ts’ > ∑ns=0 ax”s(1 + i)–ts” essendo a > 0 lo semplifico e rimane = a sopra

• ∑ns=0 x’s(1 + i)–ts’ > ∑n

s=0 x”s(1 + i)–ts” p’>p” se cambio tempo, prima anni ora semestri 1 + i = (1 + i1/a)

at’s ∑n

s=0 x’s(1 + i1/a)–at’s > ∑n

s=0 x”s(1 + i)–ts” dove 1 + i = (1 + i1/k)K

Vp(i) = ∑ns=0 xs(1 + i)–ts” i>0 –100 70 80 Vp(i)= –100+70(1 + i)–1+80(1 + i)–2

0 1 2 Osservazioni: il REA è un’operazione lineare cioè gode di queste 2 proprietà:

1) Vp’ U Vp”(i) = Vp’(i) + Vp”(i) Vp’ Vp” Dimostrazione: ∑n

s=0 (x’s + x”s)(1 + i)–ts = ∑ns=0 x’s(1 + i)–t’s + ∑n

s=0 x”s(1 + i)–t”s 2) Se devo fare il REA di un progetto in cui ciascuna posta è moltiplicata per α basta fare:

Vαp(i) = αVp(i) Vp(i) Dimostrazione: ∑n

s=0 αxs(1 + i)–ts = α∑ns=0 xs(1 + i)–ts = αVp(i)

Problema delle operazioni di completamento Abbiamo 2 progetti: P1 –1000 +1100 non sono completi rispetto al capitale iniziale 0 1 Il soggetto ha in tasca 1.000e possiamo investire la moneta al P2 –950 +1050 tasso i in capitalizzazione composta convenzione esponenziale 0 1 P2’ –50 +50(1 + i) P2 U P2’ –950–50= –1000 +1050+50(1 + i) 0 1 0 1 Calcolo il REA del 1° progetto Vp(i) = 1000+1000(1 + i)–1 Vp2 U Vp’2 = –950–50+[1050+50(1 + i)](1 + i) –1 tasso di attualizzazione e tasso di mercato Se il tasso di mercato è uguale al tasso che uso per l’attualizzazione capita che: –950–50+1050(1 + i)–1+50(1 + i)(1 + i)–1 = –950+1050(1 + i)–1 → REA(Vp2) senza operazioni di completamento. Quindi se i è unico non occorre fare operazioni di completamento perché il REA è un’operazione lineare. Vp2 U Vp’2 = Vp2(i) + Vp’2 (i) Se invece il tasso di attualizzazione del REA è diverso dal tasso di mercato occorre fare operazioni di completamento. Il tasso interno di rendimento (TIR) (in merito si vedano anche gli appunti di finanza aziendale) Esso cerca di ovviare al problema della soggettività del REA. Vediamo un’operazione finanziaria quanto rende. Cosa è il TIR? Se esiste e deve esser unico. La soluzione di questa equazione è: TIR se З! ∑n

s=0 x0(1 + TIR)–ts = 0 Il TIR estende il risultato i > –1 cioè compresi tra –1 e 0. Il criterio del TIR sostiene che se si è di fronte a 2 progetti da confrontare si sceglierà quello con il TIR maggiore. Se si ha un unico progetto, invece, lo si sceglie se ha TIR > 0. NON è un’operazione lineare x’ → Vp’ U Vp”(i) = ∑n

s=0 (x’s+x”s)(1 + i)–ts = 0 Il TIR verifica 4 proprietà minime.

37

Vp(i) = ∑ns=0 xs(1 + i)–ts = 0 Vp(i)

i > –1; i(–1, +∞) x0 positivo limi→∞ ∑

ns=0 xs(1 + i)–ts =

= x0 + x1(1 + i)–t1…xn(1 + i)–tn = –1 0 i = x0 + x11/(1 + i)–ts…xn1/(1 + i)–tn x0 negativo Quindi rimane x0 ed è positivo o negativo? Se x0 è negativo avrò un asintoto orizzontale negativo Se x0 è positivo avrò un asintoto orizzontale positivo Invece lim i→–1+ ∑

ns=0 xs(1 + i)–ts dipenderà da caso a caso, però se faccio:

lim i→–1+ 1/(1 + i)tn [∑ns=0 xs(1 + i)tn–ts + xn] = + ∞ * xn quindi se quest’ultima posta è positiva la funzione tende a

+∞ 0 + ∞, se è negativa tende a –∞. Nel particolare:

se siamo in Is con un’unica uscita iniziale: IS –C0 R1 R2 Rn La prima è un’uscita quando x0 è negativo. Vp(i) 0 t1 t2 tn Se scrivo REAVp(i) = –C0 + r1(1 + i)–t1…+ rn(1 + i)–tn se voglio sapere se è decrescente o no basta fare la derivata quindi: V’p(i)= 0→ –t1 r1(1 + i)–t1–1 ≤ strettamente decrescente o passa per l’origine

TIR TIR oppure no. Questo dipenderà dal valore di i: se 0 oppure no. -1 V’p Vp(0) = –C0 + ∑n

s=1 rs: somma algebrica di tutte le poste quando è il saldo –C0 finale di cassa. Quindi basta solo calcolare il saldo finale di cassa.

Is però con più uscite iniziali: IS –C0 Ci Cm R1 Rm La prima è una posta negativa e ho un asintoto orizzontale Vp(i) 0 t1 ctm rt1 Vp(i) = –C0 –C1 (1 + i)–t1…r1(1 + i)–rt1 e faccio la derivata prima e avrò che –C0 = 0; –Ci diventa positivo quindi tutti i negativi diventano positivi, i mentre i positivi diventano negativi. Di conseguenza non possiamo dire -1 nulla perché dipenderà dalla somma dei positivi e negativi e in generale –C0 non possiamo dire nulla sull’andamento. Si dimostra quindi che quando la funzione incontra l’asse x lo fa sempre decrescere.

IL → zc < rt1 ←non € a TIR perché incontra 2 punti

La prima posta x0 è sicuramente un costo x0 < 0: TIR TIR TIR asintoto orizzontale negativo.

i -1 0 –C0 x0 Confrontiamo TIR e REA Il REA dà indici sulla scelta di 2 progetti, il TIR ne dà un’altra. Danno lo stesso ordine di preferibilità oppure danno risultati diversi? Consideriamo un unico progetto e cerchiamo di capire se intraprenderlo o meno. Vp(i) I 2 criteri dicono: REA → intraprendo il progetto se il REA>0. Se il tasso di valutazione è i1, Vp(i1) calcolo il REA e mi trovo Vp(i1), se invece avessi Vp(i2) non lo TIR intraprendo perché REA<0. TIR → nella II definizione iniziale si confrontano tasso di rendimento Vp(i2) e tasso di mercato; se è i1, TIR > i1 → conviene intraprendere il progetto; se invece i2, tasso di mercato > TIR non conviene x0 intraprendere il progetto. Conclusioni: se il tasso è i1, il progetto è preferibile sia per il REA sia per il TIR. Se il tasso è i2, non è preferibile né per il REA né per il TIR. Se ho un unico progetto, quindi, REA e TIR conducono alle stesse scelte. Ma se ho 2 o più progetti cosa succede? Vp(i) Se considero tasso mercato i1. i>i*, P1 > P2 ho l’ inversione delle preferenze, però i1 e i2 potrebbero essere P2>P1 i* vicinissimi ma da lati opposti. Il criterio del REA è altamente soggettivo P1<P2 perché condiziona fortemente le scelte del decisore, mentre per il TIR P1 i1 i* i2 è sempre preferito a P2 e si chiama break point (punto di rottura) o punto di Vp(i2) Vp1(i) inversione delle preferenze. Ciò lascia intendere che TIR e REA non con- Vp2(i) ducono sempre alle stesse scelte.

L’asse delle ascisse individua il TIR

38

Criterio del montante Esso associa a ciascun progetto “una cosa del tipo” : x0 x1 x2 xn Fissa per ciascun intervallo una coppia di tassi, 1 attivo e 1 passivo.

0 t1 t2 tn Come funziona? I tassi vanno applicati sui montanti parziali. M0 = x0 M1 → x0 > 0 progetto produce fondi x0 > 0 → x0(1 + i0)

t1–0 +x1 montante parziale x0 < 0 progetto assorbe fondi x0 < 0 → x0(1 + i0)

t1 +x1 M2 → M1 > 0; M1(1 + i2)

t2 – t1+x2 M1 < 0; M1(1 + j2)

t2 – t1+x2 Se ho un unico progetto si intraprende se M finale è > 0; se ho 2 o più progetti, sceglierò quello con montante più alto. Criterio TRM Funziona come quello sopra ma la logica è diversa. Un grosso problema è l’ individuazione dei tassi; allora considero un’unica coppia di tassi per tutti e calcolo M finale. Questo Mn sarà una funzione dei tassi. Scopo: valutare la coppia dei tassi i e j che farà sì che li ho determinati e studio la crescita o decrescita.

• Esercizio 44 Si consideri il progetto P1 il cui vettore scadenze è T = (0, 12) 0 t<0 1) Disegnare il saldo di cassa; determinare il tempo di recupero ed il vettore poste. (t) = –100 0≤t<1 2) Determinare il TIR annuo e determinare se è conveniente intraprendere P1 secondo il –10 1≤t2 criterio del REA al tasso annuo di valutazione del 10%. 10 t>2 Consideriamo il progetto P2 che prevede le stesse uscite ed entrate di P1 con un’uscita sup- plementare di –R alla fine del 3° anno. Determinare:

3) Per quali valori di R P2 è un IS o un IL. 4) Per quali valori di R la scadenza media aritmetica dei ricavi è > della scadenza media aritmetica dei costi.

Soluzione: 1) 10 tempo di recupero T = 2 Per calcolare le poste → –100–0 1 2 –10–(–100) = –10+100 = 90 –10 +10–(–10) = + 10 + 10 = 20 –100 X = (–100;+90;20) 2) Vp(i) = –100 + 90(1 + i)–1 + 20(1 + i)–2 = 0 moltiplico tutto per (1 + i)2 e cambio segno. 100(1 + i)2 –90(1 + i)–1 (1 + i)–2 –1 –20(1 + i)–2(1 + i)–2 =100(1 + i)2 – 90(1 + i)1–20 = 0 (1 + i) = 9 ± √81 – 4(10)(–2) = 1 + i = 9±12,6 = → x1 = 1,08 2x10 20 x2 = –0,18 non accettabile 3) P2 –100 +90 +20 –R R ≥ 0 0 1 2 3 Is → R = 0 dobbiamo calcolare zc = 100(0) + R(3) < 1 3R – 1 < 0 3R – 100 – R < 0 100 + R 100+R 100 + R IL = zc < rt1 – – – – – – – – – –+++++++++++++++ –2R – 100 – R < 0 2R > 100 R > 100 R > 50 +++++++++++++++++++++ 100 + R 100 + R 2 R > –100 –100 0 50 0 < R < 50 4) zr > zc 90(1)+20(2) > 100(0)+R(3) 90+40 > 3R 130 > 3R . 90+20 100+R 100 100+R 110 100+R 13 > 3R 13 – 3R > 0 1300 + 13R – 33R > 0 1300 – 20R 1300 > 20R 11 100+R 11 100+R 11(100 + R) 11(100+R) 100 > R R > 65 – – – – – – – – – – +++++++++++ 0 < R < 65 R > –100 ++++++++++++++++++++++++ –100 0 65

• Esercizio 45 Si considerino le seguenti operazioni finanziarie: t = anni A –200 +200 +80 –90 0 +100 X = (–200;+200;+80;–90;+100) 0 1 2 3 4 5 T = (0, 1, 2, 3, 5) B –200 +300 +80 0 –90 +100 X = (–200;+300;+80;–90;+100) 0 1 2 3 4 5 T = (0, 1, 2, 4, 5) C –200 +200 +80 –I=–70 0 +80 X = (–200;+200;+80;–I;+80) I ≥ 0 0 1 2 3 4 5 T = (0, 1, 2, 3, 5)

1) che tipo di investimento è l’operazione A e B è IL? 2) determinare per quali valori di I, C è Is ed è IL ma non in senso stretto. 3) Confrontare le operazioni A e B utilizzando i postulati di preferenza assoluta, posto I = 70 4) utilizzare il criterio del REA al tasso annuo i = 0,06 5) utilizzare il criterio del montante se i tassi attivi e passivi sono i seguenti:

i J 1 0,06 0,05 2 0,065 0,055 3 0,06 0,055 4 0,06 0,05 5 0,06 0,05

1

Leggi di capitalizzazione C, t1, t2 → M = Φ (C, t1, t2) Proprietà minime Φ (0, t1, t2) = 0

Φ (C, t1, t1) = C Φ (C, t1, t2) < Φ (C, t1, t3) Φ (C, t1, t2) < Φ (C2, t1, t2)

impiegando un C = 0 otterrò un M = 0. se impresto in t1 e mi restituiscono in t1 otterrò C = C. con 0 ≤ t1≤ t2 ≤ t3

con 0 ≤ C1 ≤ C2 Uniformità o stazionarietà nel tempo

Φ (C, t1, t2) = Φ (C, t1+x, t2+x) 0 ≤ t1 ≤ t2 M dipende solo dall’ampiezza dell’ intervallo: investire da t1 a t2 o da t2 a t3 è lo stesso.

Additività rispetto al capitale Φ (C1+C2, t1, t2) = Φ (C1, t1, t2) + Φ (C2, t1, t2) investire 100+100 o 200 è lo stesso Scomponibilità e scindibilità Φ (C, t1, t2) = Φ (Φ (C, t1, z), z, t2) In z disinvesto e re-investo. Regime dell’ interesse semplice Φ (C, t1, t2) = C (1 + it) Se il tasso è variabile: M = C * (1 + ∑n

s=1 i (s) * ts)

Regime della capitalizzazione composta “annua”

M = Φ (C, 0, n) = C (1 + i)n

M = C * ∏ns=1 (1 + is)

ns convenzione mista: M = C (1 + i)No * (1 + ip) convenzione esponenziale: M = C (1 + i)No+p

n = ln(M/C) / ln(1+i)

Tassi di interesse equivalenti i = K * i1/K (interesse semplice) (1 + i) = (1 + i1/K)K

(composta) Due tassi di interesse si dicono equivalenti se, applicati allo stesso capitale per la stessa durata di tempo, producono lo stesso montante.

Iota i 1/K = (1 + ι)1/K – 1 Tasso annuo nominale convertibile k volte l’anno, in comp. espon.

Legge di formazione del montante

M(s+ds)–M(s) = M(s)ρ(s)ds+θ(ds) M (t) = M(0) * e ∫t0ρ(s)ds

ρ(t) = M’(t)/M(t) (capitalizzazione continua)

δ[t1,t2] = ∫t1t2 ρ(s) ds / (t2 – t1) Capitalizzazione continua M (t) = C * eφ(t) φ (t) = ∫t0 ρ(s) ds Tasso istantaneo δ* δ*: V(0) = ∑Ci * e–δ* * t + C * e–δ* * t Proprietà minime dello sconto V (0, t1, t2) = 0

C (C, t1, t2) = C C (C, t1, t2) > V (C, t1, t3) V (C1, t1, t2) < V (C2, t1, t2)

con 0 ≤ t1≤ t2 ≤ t3

con 0 < C1 < C2

Uniformità nel tempo V (C, t1, t2) = C – S = C – φ(C, t) = δ (C,t) Additività V (C1 + C2, t1, t2) = V (C1, t1, t2) + V (C2, t1, t2) → V (C, t1, t2) = C * g (t1, t2) Scomponibilità V (C, t1, t2) = V (V(C, z, t2), t1, z)

Regime dello sconto commerciale

S (C, t) = C * h (t) = C * d * t con 0 < t < 1/d

Sconto composto V (C, 0, n) = C (1 – d)n Sconto razionale V (C, t) = C / (1 + it) C – C * d * t → V = C – S

1–d + dt I tassi di sconto equivalenti d = d1/K * K (commerciale)

1 – d = (1 – d1/K)K (composto) d1/K = 1 – (1 – d)1/K

d = i * v = i * 1/(1 + i) = i/(1 + i) Rendita immediata, posticipata, temporanea per t anni, di termine variabile

V (tz) = ∑ns=1 Rs (1 + i)tz – ts Valutazione in tz

Schema riassuntivo sulle rendite immediate Valore iniziale Valore finale

Posticipata R R a

R R R

s Anticipata R R R

α

R R

S Posticipato (a) Anticipato: α = a * (1 + i) Posticipato (s) Anticipato: S = s * (1 + i) 1 – (1 + i) –n

i 1 – (1 + i) –n * (1 + i)

i (1 + i)n – 1

i (1 + i)n – 1 * (1 + i)

i a n┐ i = [1 – µn] / i α n┐ i = µ * a n┐ i = (1 – δn) / δ s n┐ i = [(1 + i)n – 1]/i = (µn – 1)/i S n┐ i = (µn – 1) / i * µ

Condizione di amm.to A = ∑ns=1 Rs * δs dove δs = (1 + i)–s

Nel continuo:∫ n0 = R(s) * e-φ(s) ds =1

equivalenza finanziaria tra avere A oggi, tempo 0, e avere la somma di n Rate alla fine di n anni

Condizione di costituzione

C = ∑ ns=1 Rs * µn–s

Nel continuo: ∫ n0 = R(s) * eφ(n) – φ(s) ds = 1 Ammortamento francese (a rate costanti posticipate)

Cz+1 = Cz (1 + i) Si utilizzano le rendite (z = anno in considerazione; n = totale anni)

Cz = σ n┐i * (1 + i)z–1 Cz = A * (1 + i)z–1 s n┐i A = R * a n┐i R = A / a n┐i Iz = R – Cz Dz = R * a n-z┐i

Ammortamento italiano o uniforme (a quote capitale costanti)

Rz = C[1/n + i – i/n(z – 1)] Cz = C = 1/n Bz = ∑n

s=1 Cs = 1/n + 1/n + 1/n = z/n Dz = 1 – Bz = 1 – z/n = (n – z) / n Iz = i (1 – Bz–1) = i * [1 – (z – 1)/n]

Piano d’amm.to Cz = Rz – Iz Bz = Cz cumulato Dz = Dz–1 – Cz Iz = Dz * i Rz = Cz + Iz

2

Ammortamento tedesco I0 = i * δ = d Iz = Ia

z = i * δ * (1 – Bz–1) È uguale a quello italiano dal punto di vista finanziario, ma qui gli interessi vengono dati anticipatamente rispetto a quello italiano nel quale vengono dati posticipatamente.

con i: v = (t, i) = ∑ Rs (1 + i)±(ts – t) (in capitalizzazione continua) con δ: v (t, δ*) = ∑ Rs * e±δ(ts – t) (valore del prestito)

Prestiti

∑ns=z+1 (Cs + Is)(1 + i*) –(s–z) = ∑n

s=z+1 Cs (1 + i*) –(s–z) + ∑ns=z+1 Is (1 + i*) –(s–z)

Az,i: Nuda proprietà + µz,i: Usufrutto BOT C = C0 (1 + it)

A capitalizzazione integrale Interesse semplice non danno diritto al pagamento di interessi periodici.

z.c.b. C = C0 (1 + i)t

I titoli senza pagamento di cedola si chiamano zero coupon bond in convenzione esponenziale.

Prestiti divisi

BTP Titoli che danno origine al pagamento di cedole interessi periodici “annui” in ammortamento americano.

Tasso effettivo di rendimento C0 = C i a n┐TER + C (1 + TER)–n Se n < 3 → cedola (se z.c.b. = 0) x valore iniziale di una rendita posticipata con tasso TER + valore di rimborso x (1 + TER)–n

Metodo di iterazione φ(x) = Ci/C0 + [(C/C0) – 1]/sn┐x

dove: sn┐x = [(1 + x)n – 1]/x

Se n > 2 → per trovare il TER utilizzo l’ iterazione: x0 = Ci/C0 xω = Ci/C0 + [(C/C0) – 1]/sn┐xω–1 finché non trovo un valore stabile

Confronto tra corso tel quel e valore del titolo

δ (t, i*) = Ci an–z┐i* * (1 + i*)–(1 – p) + C(1 + i*)–(n – (z+p)) dove Ci an–z┐i* = cedola – dietimo Dietimo = Ci * p; p = tempo del dietimo; z = anno in considerazione; n = anni tot.; tel quel = secco + dietimo; Corso secco = (ci – dietimo) attualizzato al tempo del dietimo + restante attualizzazione

La duration D (t, i*) = ∑ts>t (ts – t) Rs(1 + i*)–(ts – t) ∑ts>t Rs(1 + i*)–(ts – t)

Assegnando δ*, cioè = log(1 + i*) D (t, δ*) = ∑ts>t (ts – t) Rs e–δ* (ts – t)

∑ts>t Rs e–δ* (ts – t) i* → i* + d i* calcolare la variazione relativa nel caso di tasso annuo: V(t, i* + di*) – V(t, i*) ≈ ∂V(t, i*) / ∂i* x di* V = (t, i*) = ∑ts – t Rs (1 + i*) (ts – s) V(t, i) V(t, i) volatili tà

volatili tà

∂V(t, i*) = ∑ts – t Rs [– (ts – t)(1 + i*)] = –∑ts – t Rs (ts – t) Rs(1 + i*) – (ts – t) x 1 x di* = – D (t, i*) x 1 x di* ∂i* duration al tasso i* V (t, i*) (1 + i*) (1 + i*)

V(0) = ∑ns=1 Rs(1 + i0(0, ts))–ts

C = C’ (1 + i)–n Duration→D(0) = ∑n

s=1 ts * Rs (1 + i0(0,t1))–ts

∑ns=1 Rs (1 + i0(0,t1))

–ts i tassi spot (t1 = 0)

i0(0, ts) = (C/C’ )–1/t – 1 Intensità = δ0(0,t) = loge (1 + i0(0,t)) V(0) = ∑n

s=1 Rs * e –δ(0,t1)ts

(1 + i0 (0, t))t = (1 + i0 (0,t1))t1 (1 + i0 (t1,t))

t–t1 i tassi forward

i0(t1,t)= (1 + i0(0,t))t 1/(t – t1) (1 + i0(0,t1))

t1 – 1

Duration→D(0) = ∑ns=1 ts * Rs (e–δ(0,ts)ts)

∑ns=1 Rs e–δ(0,ts)ts

Investimento in senso stretto Is = ctm < rt1 l’ultima scadenza dei costi precede la prima scadenza dei ricavi.

Investimento in senso lato ž = ∑ns=0 xs ts < rt1

∑ns=0 xs

la scadenza media aritmetica dei costi precede la prima scadenza dei ricavi: [costi(anno costi)]/costi < anno 1° incasso

Investimento generale Ig = zc(i) < rt1(i) La scadenza media finanziaria dei costi precede quella dei ricavi.

Un criterio di scelta deve rispettare 4 requisiti minimi: 2 postulati di preferenza assoluta W: ∂W > 0

∂xs

∂W se la posta è positiva < 0 ∂ts se la posta è negativa > 0

Tra due poste disponibili alla stessa scadenza scelgo quella di importo più alto (somma algebrica poste). Tra due poste positive di stesso importo sceglierò quella che è disponibile prima, mentre se le poste sono negative sceglierò quella che è disponibile dopo.

3° requisito p’ > p” → Wp’ (ax’T’ )>Wp”(ax”T”) → Wp’ (x’T’ ) > Wp” (x” T” )

Deriva dall’utilizzo di una determinata unità di misura della moneta, se si cambia unità di misura della moneta

4° requisito Wp’ (x’T’ ) > Wp” (x” T” ) se cambio il tempo Wp’(x’aT’) > Wp”(x”aT”) a > 0

Unità di misura del tempo

REA (risultato economico attualizzato)

Wp = Vp(i) = ∑ns=0 xs (1 + i)–ts

con i > 0 (struttura piatta): cash flow attualizzato: somma algebrica dei valori attuali di costi e ricavi in t0

TIR ∑ns=0 x0(1 + TIR)–ts = 0 Pongo la formula del REA=0 e il tasso come incognita.

Criterio del montante Costi in t0 (1 + i0) + Ricavi in t0 = M0 M0 (1 + i1) + Ricavi in t1 = M1 M1 (1 + i2) + Ricavi in t2 = M2 etc.

Tempo di recupero Valutare dopo quanto si torna in attivo Es.: - 1000 + 500 + 600: dopo 2 anni. Ripasso sugli integrali ∫n = nx ∫nx = n x2 / 2 ∫x = x2 / 2

Esempio: V(0) = 6(1 + 0,05)–1 +6(1 + 0,05)–2 +106(1 + 0,05)–3

= 102,7232 D(0) = [6 x 1 (1 + 0,05) –1 + 6 x 2 (1 + 0,05)–2 + 106 x 3 (1 + 0,05)–1]/102.7232 = 2,83