Alessio Arata

download Alessio Arata

of 31

Embed Size (px)

Transcript of Alessio Arata

  • 7/30/2019 Alessio Arata

    1/31

    Comminution process optimisationthrough reliability and maintainability

    modelling and simulation

    Alessio Arata

    Esteban Heidke

    Adolfo ArataFredy Kristjanpoller

  • 7/30/2019 Alessio Arata

    2/31

    Paper motivation

  • 7/30/2019 Alessio Arata

    3/31

    An integral engineering approach

    ENGINEERING SHOULD BE INTEGRATED WITH OPERATIONS, SINCE LIMITING THE

    FOCUS ON THE FORMER HINDERS THE EFFICIENCY OF THE LATTER

    OPTIMIZING INVESTMENTS EARLY DURING PROJECT DEVELOPMENT IS MORE

    PROFITABLE AND EFFECTIVE

    THE EVALUATION OF AN INVESTMENT PROJECT SHOULD OCCUR DURING THE

    ENTIRE ENGINEERING DEVELOPMENT PROCESS

    THE TRADE-OFFS SHOULD BE SUPPORTED BY FINANCIAL TOOLS USING THE COST

    BENEFIT CRITERIA

    ENGINEERING SHOULD BE SUPPORTED BY PROBABILISTIC TOOLS THAT ENABLES

    THE RISKS TO BE QUANTIFIED

    ENGINEERING SHOULD HAVE A BOTTOM-UP APPROACH CAPABLE OF IDENTIFYING

    CRITICALITIES AT THE MICRO LEVEL (EQUIPMENT) TO QUANTIFY THE IMPACTS AT AMACRO LEVEL (BUSINESS)

    RELIABILITY ENGINEERING IS THE TOOL WHICH PUTS INTO PRACTICE PROJECT

    ANALYSIS FROM AN LCC PERSPECTIVE

  • 7/30/2019 Alessio Arata

    4/31

    Objective

  • 7/30/2019 Alessio Arata

    5/31

    The objective of this paper is to develop a methodology, using RAM modelling and a

    simulation of the processes to enable projects to be appraised and optimised in their

    feasibility study phase. Thus, a Life Cycle Cost approach will be used to evaluate the effect ofchanges on the flow sheet and the capacity of equipment and storage systems in order to

    assess the business impact of proposed modifications and select the best combination, taking

    into account expected production and required investment.

    Paper objective

    In a comminution process:

    a) Identify critical and bottleneck equipment.

    b) Determine the optimal capacity of storage systems (stockpiles, bins).

    c) Indentify improvement opportunities with impact on the production level.

    d) Identify saving opportunities.

    e) Determine the risk and certain level in achieving the target values.f) Evaluate the different improvement scenarios.

    g) Identify through optimisation the best combination of improvements that maximizes NPV.

  • 7/30/2019 Alessio Arata

    6/31

    Reduction in investment costs

    Low redundancy

    Less reliable and maintainable equipment

    Limited design capacity

    Reduction in failure cost and operating costs

    Increased availability (greater redundancy and reliability)

    Improved asset management

    Efficient management of third parties and spare parts

    Cost

    Investment

    Operating andfailure costs

    Total Cost

    Reliability engineering in life cycle cost analysis (LCC)

    investment (CAPEX)

    global operating cost

    (OPEX)

    Failure cost in the project Life Cycle Cost (LCC)

    failure cost

    Optimum

    Level of reliabilityand maintainability

  • 7/30/2019 Alessio Arata

    7/31

    Some general concepts

  • 7/30/2019 Alessio Arata

    8/31

    RBD Modelling

    Serie

    Paralelo

    Stand-by

    Redundancia

    parcial

    Fraccionamiento

    L

    ogical-functional

    configurations

    Serie

    Parallel

    Stand-by

    k/n

    Share

    load

  • 7/30/2019 Alessio Arata

    9/31

    Stockpile and bins modelling

    Stockpilesim

    ulation

    Availability downstream

    upstream downstream

    Q stockpile and availability downstream

    Stockpile

    upstream UP; q stockpile > 0 --> downstream UP

    upstream DOWN; q stockpile > 0 --> downstream UP

    upstream DOWN; q stockpile = 0 --> downstream DOWN

  • 7/30/2019 Alessio Arata

    10/31

    General methodology

  • 7/30/2019 Alessio Arata

    11/31

    RAM otimisation in the engineering process

    RAM approachDiseo de PDF

    Mass and energybalance

    Nominal sizing of

    processes

    Preliminary

    equipment list

    RAM simulation of

    processes

    Criticity and sensivity analysis

    Optimisation to determine

    best combination of cases

    that maximase NPV

    Identification of improvement

    and saving opportunities

    Estimate of the

    expected procuction

    Equipment capacity

    Idle capacity

    Stock-pile and bins capacity

    LCC valuation of

    cases

    (capex, opex y prod.)

    Optimal alternative

    Iterationof cases

  • 7/30/2019 Alessio Arata

    12/31

    Processsurvey

    Obtaining andvalidating shutdowndata

    Logical-functionalconfiguration ofthe process

    RAM analysis Equipment

    Capacities

    Process flow-sheet

    Design criteria

    Process flows

    Redundancies

    Logical-functional modeling of the system and

    validating the configuration

    Behavior of the process in the face of faultsand shutdowns of equipment and sub-systems

    Incidence of stock-piles in the process

    Simulation of production, reliability,

    maintainability and availability of the

    base and improved cases

    Monte Carlo and risk simulation

    Optimum dimensioning of stock-piles Identification of opportunities for

    improvement under the LCC approach

    Criteria of experts / engineering In-put from vendors

    Historical data for maintenance

    and production

    Understanding

    Benchmarking

    ModelingSimulation

    LCC Valuation

    LCC evaluation of scenarios

    Simulation and optimization to identify the best

    combination of improvement opportunities

    LCC prioritization of alternatives

    Optimization toselect the bestscenario

    Engineering design optimisation stages

  • 7/30/2019 Alessio Arata

    13/31

    Development and main results

  • 7/30/2019 Alessio Arata

    14/31

    Process understanding and data

    General process diagram

    74 pieces of equipment, 8732 notices: operational unplanned detentions, unplanned

    maintenance interventions, planned maintenance interventions.

    Summary of historical information of detentions

    Date Time [hr] Duration [hr] Type Equipment

    01-01-2010 11:38 5.35 MCM EQUIPMENT-1

    01-01-2010 11:45 4.2 DO EQUIPMENT-2

    06-01-2010 6:18 40.6 MP EQUIPMENT-3

  • 7/30/2019 Alessio Arata

    15/31

    Process understanding

    Cap. Carga viva: 100.000 [t]Cap. Carga viva: 100.000 [t]

    Cap. Carga viva: 80.000 [t]

    Cap. Carga viva: 80.000 [t]

    (3)

    (3)

    (3)

    (2)

    (6)

    (6)

    (6)

    (2)

    (2)

    (1)

    (6)

    (1)

    (6)

    (3)

    (6)

    (1)

    (10) (10)

    (1)

    (5)

    (5)

    (5)

    (6)

    (6)

    (*) # Pieces of Equipment

    A

    B

    F

    C

    E

    D

    GH

    I

    J

    K

    L

    N

    MX Mass Flow

    Process flow-sheet diagram

    Equipment #

    Primary crusher 3

    Secondary crusher 6

    HPGR 6

    Ball mill 5

  • 7/30/2019 Alessio Arata

    16/31

    Modelling

    Grinding

    Feeder

    Screen

    Pump

    Hydrocyclone

    S

    F S

    S

    S

    S

    F S

    S

    S

    S

    F S

    S

    S

    S

    F S

    S

    S

    S

    F S

    S

    S

    F

    S

    Grinding

    Conveyor belt

    Mill

    S

    F

    Serie

    Share load

  • 7/30/2019 Alessio Arata

    17/31

    Processes results

    Secondary crusher availability

  • 7/30/2019 Alessio Arata

    18/31

    Criticity analysis

    ndice Equipo1 Correa Sp L2

    2 Correa Recir. 23 Feeder 6

    4 Correa 6

    5 Harnero 6

    6 Feeder 4

    7 Correa 4

    8 Harnero 4

    9 Feeder 510 Correa 5

    11 Harnero 6

    12 Correa Sp L113 Correa Recir. 1

    14 Feeder 1

    15 Correa 1

    16 Harnero 117 Feeder 2

    18 Harnero 2

    19 Correa 2

    20 Feeder 3

    21 Correa 3

    22 Harnero 3

    23 Correa a Chancadores

    24 Chancador 1

    25 Chancador 226 Chancador3

    27 Chancador4

    28 Chancador5

    29 Chancador6

    30 Co rrea material chancado

    LeyendaGrfico de criticidad

    Identification of critical equipment

  • 7/30/2019 Alessio Arata

    19/31

    Improvement opportunities tertiary crusher

    98,4%

    98,8%

    99,2%

    0 50 100 150

    -

    Incorporation of idle capacity in

    the HPGR crusher, from 51.82%to 65% each.

    Incorporation of a conveyor

    belt to the discharge of

    material over the downstreamstockpile, parallel to the

    existing one.

    Improvement 2 & 3.

    A

    vailability

    Corrected

    utilization

    Improvement 1Base Situation Improvement 3Improvement 2

    95,5%

    96,5%

    97,5%

    98,5%

    0 50 100 150

    98,5%

    99,0%

    99,5%

    100,0%

    0 40 80 120

    96,0%

    97,0%

    98,0%

    99,0%

    0 40 80 120

    98,5%

    98,7%

    98,9%

    99,1%

    99,3%

    99,5%

    0 40 80 120

    96,0%

    97,0%

    98,0%

    99,0%

    0 40 80 120

    98,5%

    99,0%

    99,5%

    100,0%

    0 40 80 120

    96,5%

    97,5%

    98,5%

    99,5%

    0 40 80 120

    Av

    ailability

    Utiliz

    ation

    Base case Improved case 1 Improved case 2 Improved case 3

  • 7/30/2019 Alessio Arata

    20/31

    Illustrative results

    Process availability for different alternatives

    99,87% 99,79% 99,88%

    99,89%99,91% 99,87% 99,75% 99,84%

    98,00% 98,20% 97,86%98,41%

    98,84%

    97,95%97,94% 97,97%

    99,26%99,44% 99,24%

    99,47%99,47% 99,21%

    98,65%98,75%

    94,61%

    91,84%

    94,61%

    95,49%

    93,85%

    96,40% 96,40%

    91,00%

    94,00%

    97,00%

    100,00%

    0 1 2 3 4 5 6 7 8

    Availability[%]

    Alternatives

    Ch. Primario Ch. Secundario

    Ch. Terciario MoliendaGrinding

    Secondary Cr.

    Tertiary Cr.

    Primary Cr.

  • 7/30/2019 Alessio Arata

    21/31

    Main results and conclusions

  • 7/30/2019 Alessio Arata

    22/31

    Main results

    Resumen de capital fijo para las distintas situaciones por etapa

    Price of Cu conc.

    ProcessesScenario

    Stockpile

    CapacityScenario

    Stockpile

    CapacityScenario

    Stockpile

    CapacityScenario

    Stockpile

    CapacityScenario

    Stockpile

    CapacityScenario

    Stockpile

    Capacity

    Primary Cr. Base 50.000 Base 50.000 Base 50.000 Base 50.000 Imp. 1 50.000 Imp. 1 50.000

    Secondary Cr. Imp. 3 10.000 Imp. 3 10.000 Imp. 3 20.000 Imp. 3 10.000 Imp. 3 20.000 Imp. 3 40.000

    Tertiary Cr. Base 10.000 Base 10.000 Base 10.000 Imp. 2 20.000 Base 10.000 Base 10.000

    Grinding Imp. 4.b - Imp. 4.b - Imp. 4.b - Imp. 4.a - Imp. 4.b - Imp. 4.b -

    1,5 [US$/lb] 2,0 [US$/lb] 2,5 [US$/lb] 3,0 [US$/lb] 3,4 [US$/lb]2,5 [US$/lb] *

    Price of Cu.

    Concentrate

    Systemic

    Corrected

    Utilization

    CAPEX

    [bUS$]

    OPEX

    [bUS$]

    Annual

    estimated

    sales

    [bUS$]

    NPV

    [bUS$]

    Annual

    estimated

    sales

    [bUS$]

    NPV

    [bUS$]

    NPV increase

    over the base

    case

    CAPEX

    decrease of

    project over

    the base case

    Cash flowsincrease over

    the base case

    (in present

    value)

    1,5 [US$/lb] 91,75% 1,98$ 0,67$ 1,23$ 0,18-$ 1,09$ 1,05-$ 0,87$ 0,13$ 0,74$

    2,0 [US$/lb] 91,75% 1,98$ 0,67$ 1,64$ 2,81$ 1,45$ 1,60$ 1,21$ 0,13$ 1,08$

    2,5 [US$/lb] 92,00% 1,99$ 0,67$ 2,06$ 5,81$ 1,82$ 4,25$ 1,56$ 0,12$ 1,45$

    2,5 [US$/lb] * 90,91% 1,98$ 0,66$ 2,03$ 5,68$ 1,82$ 4,25$ 1,43$ 0,12$ 1,31$

    3,0 [US$/lb] 92,11% 2,00$ 0,67$ 2,47$ 8,80$ 2,18$ 6,89$ 1,91$ 0,11$ 1,80$

    3,4 [US$/lb] 92,33% 2,02$ 0,67$ 2,81$ 11,21$ 2,47$ 9,01$ 2,20$ 0,09$ 2,11$

    Optimized Cases Base Cases

  • 7/30/2019 Alessio Arata

    23/31

  • 7/30/2019 Alessio Arata

    24/31

    Conclusions

    This paper proposes a methodology for optimising processes through

    reliability engineering using a LCC (Life Cycle Cost) perspective, which enables the

    effect on expected production of a change in the processes reliability to be

    quantified and the best combination of improvements considering the increase or

    decrease in capex involved in each new scenario to be determined.

    Thus it incorporates a new decision variable to enable the profitability of anew investment project to be maximized.

    In this case in particular, for an assumed copper concentrate price of

    US$2.5/lb, the methodology enables net increases in NPV of up to US$1.6 billion,

    including US$117 million due to decreased CAPEX and US$1.4 billion due toincreased production over the life of the project, estimated at 25 years.

  • 7/30/2019 Alessio Arata

    25/31

    Comminution process optimisationthrough reliability and maintainability

    modelling and simulation

    Alessio Arata

    Esteban Heidke

    Adolfo ArataFredy Kristjanpoller

  • 7/30/2019 Alessio Arata

    26/31

    Appendixes

  • 7/30/2019 Alessio Arata

    27/31

    R-MES

    EXCEL

    CRYSTALBALL

    Historical data ofdetentions of equipment

    Design and operationcriteria

    Flowchart of ProcessModelling the processes

    RAM simulationof the base

    situation

    Get the RAMindicators of the

    process

    Sensitivity the indicators basedon the stockpiles capacity

    Identify thecritical

    equipment

    Incorporating theimprovementopportunities

    RAM simulation ofthe improvement

    scenarios

    How?Sw R-MES

    Expertcritera

    Is it necessary to

    improve a new case?(Expert criteria)

    Yes

    Summary RAM indicators of theprocesses (base and improved)

    No

    CAPEX, OPEX andWilliams index of equipment

    Flowcharts of all cases(base and improved)

    Valuing the flowcharts(CAPEX of the baseand improved cases)

    Economic andenvironment variables

    Generate all possible combinationsbetween process stages

    LCC Evaluatingscenarios combined

    Identify the combinations thatmaximize the business benefits

    Detailed methodology

  • 7/30/2019 Alessio Arata

    28/31

    Escalamiento

    Proceso Slido

    Costo directo

    Equipos de proceso sin instalar 100%Costo de instalacin 45%

    Instrumentacin 9%

    Caerias 16%

    Instalacin elctrica 10%

    Edificis 25%

    Urbanizacin 13%

    Instalaciones auxliares 40%

    Terreno 6%

    Total Costo directo 264%

    Costo indirecto

    Ingeniera y Supervicin 33%

    Gastos de construccin 39%

    Total Costo indirecto 72%

    Total Costos directos e indirectos 336%

    Utilidad contratistas 17%

    Contingencias 34%

    Total Capital Fijo 387%

    Se llama economa de escala al procesomediante los costos unitarios de

    produccin disminuyen al aumentar la

    cantidad de unidades producida

    Mtodod

    eLang

    Escalamiento de Williams

    l

  • 7/30/2019 Alessio Arata

    29/31

    Valuation parameters

    Variable Cantidad Unidad Ley del mineral 0,58% [Cu/material]

    Tiempo de operacin anual 365 das

    Horizonte de evaluacin 25 aos

    Costos operacionales 0,55$ [US$/lb concentrado de Cu]

    Costos fijos 215.000.000,00$ [US$/ao]

    Tasa de retorno 10% -

    Costo de acopio de material 1.000,00$ [US$/t acopiada de carga viva]Capital de trabajo 810.000.000,00$ [US$]

    Depreciacin lineal 10 [aos]

    Capacidad instalada 191.520 [T material promedio diario]

    Variable Cantidad Unidad

    Precio del concentrado de Cobre 3,40$ [US$/lb concentrado de Cu]

    Impuesto a la renta 17% -

    Impuesto especifico: Royalty 5% -

    Impuesto por retiro de utilidades 18% -

    Variables econmicas a considerar para la evaluacin LCC

  • 7/30/2019 Alessio Arata

    30/31

    A por proceso para distintos casos combinados

    95,88%

    97,87%

    96,39%97,14%

    88,26%

    96,78%

    99,93%

    97,47%

    99,19%

    98,03%

    98,80%

    95,24%

    88,00%

    89,50%

    91,00%

    92,50%

    94,00%

    95,50%

    97,00%

    98,50%

    100,00%

    Primario Primario +

    Stockpile

    Secundario Secundario +

    Stockpile

    Terciario Terciario +

    Stockpile

    Molienda

    Disponibilid

    adAcumulada[%]

    Proceso

    Caso Base

    Caso mejorado 1

    Base case

    Improved case

  • 7/30/2019 Alessio Arata

    31/31

    Comminution process optimisationthrough reliability and maintainability

    modelling and simulation

    Alessio Arata

    Esteban Heidke

    Adolfo ArataFredy Kristjanpoller