1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA...

87
1. GRANDEZZE, DIMENSIONI E MISURE 2. SENSIBILITA’ STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3. INCERTEZZA E PROBABILITA’: INDICI DI TENDENZA 4. INDICI DI DISPERSIONE 5. ERRORI 6. INCERTEZZE NELLE MISURAZIONI TOPOGRAFICHE

Transcript of 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA...

Page 1: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1. GRANDEZZE, DIMENSIONI E MISURE

2. SENSIBILITA’ STRUMENTALI E SCALA NOMINALE DEI DISEGNI

3. INCERTEZZA E PROBABILITA’: INDICI DI TENDENZA

4. INDICI DI DISPERSIONE5. ERRORI6. INCERTEZZE NELLE MISURAZIONI

TOPOGRAFICHE

Page 2: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1.1 RAPPRESENTAZIONE NUMERICA ERAPPRESENTAZIONE MATEMATICA

Continuo – DiscontinuoAnalogico - Digitale

Misurabile - Incommensurabile

Page 3: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

matematico / numerico

C = 2.r. 3,14…

C = 2.r. π

Page 4: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Grandezze adimensionali

Sono definite come rapporto fra grandezze omogenee

Il loro valore è indipendente dal sistema di unità di misura scelto

Esempio: l’angolo piano espresso in radianti è definito come rapporto fra la lunghezza dell’arco ed il raggio

l

R

θ = l / R

θ

Page 5: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Grandezze fisiche

Definizione operativa di una grandezza fisicaspecifica le operazioni da compiere per misurarla:

criteri di uguaglianza e somma (e differenza)unità di misura

Misura direttaavviene per confronto della grandezza fisica in

esame con un altra scelta come campione

Misura indirettaviene derivata dalla misura di altre grandezze

fisiche sfruttando le relazioni esistenti tra le varie grandezze fisiche (es. v=s/t)

Page 6: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

misura

Numero che esprime il rapporto tra la grandezza in oggetto e la grandezza di un campione ripetibile e convenzionato omogeneo dello stesso fenomeno in oggetto, campione che perciò è assunto come unità di misura.

L= m/n . U

Page 7: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Unità di misura

Page 8: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Le grandezze sono enti suscettibili di misura espressa in secondi, chilogrammi, metri … hanno unità e dimensioni che rappresentano il tipo di quantità cui si riferiscono le loro misure.

• la dimensione di una lunghezza [L] può essere espressa da diverse unità: metro, centimetro e anno luce• Un’area ha le dimensioni di una lunghezza al quadrato [L]2

• Un volume ha le dimensioni di una lunghezza al cubo [L]3

Grandezze che hanno le stesse dimensioni possono essere confrontate tra loro:1 giorno (1d) = 86400 s = 24 ore (24 h)……... [T]1 d > 1h > 35 min1 kg =1000 g [M]

ma grandezze con dimensioni diverse non possono essere confrontate

10 kg [M] non possono essere confrontati con 10 s [T]

dimensione

Page 9: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

misurazione

La misura è sempre il risultato dell’interazione fra

due sistemi fisici incerti

il fenomeno o il corpo da studiare

l’apparato sperimentale

Page 10: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Quantità misurabile

E’ l’attributo di un fenomeno, corpo o sostanza, che può essere distinto qualitativamente e determinato quantitativamente

Page 11: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Continuo / Discontinuo

ANALOGICO: sistema basato sull’aderenza alla continuità di un fenomeno referente; sistemi nei quali una data grandezza fisica, variabile con continuità, rappresenta in quella analogia la grandezza significata

DIGITALE : sistema basato su una rappresentazione dell'informazione mediante elementi discreti (numeri, simboli, ecc.)

Page 12: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1.2 Cifre e ordini di grandezza

Page 13: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Non indica la stessa misura!

1.2 1.20

Page 14: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Cifre significative nel numero di una misura

•risultati di misure forniti con diversi numeri di cifre significative:

• 1 cifra significativa: 6 m • 1 cifra significativa: 0,006 km

• Gli zeri che precedono la prima cifra non nulla non sono cifre significative!

• 2 cifre significative: 6,0 m• Gli zeri che seguono l’ultima cifra non nulla

sono cifre significative!• 2 cifre significative: 0,40 m

• In questo caso lo zero prima della virgola non è una cifra significativa, mentre il secondo zero è una cifra significativa

Page 15: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Cifre significative in somme e differenze

70,6 m +

6,43 m =

77,03 m

77,0 m

24,02 m +

122,157 m =

146,177 m

146,18 mRisultati corretti

Il risultato di una addizione (o di una sottrazione) va espresso con un numero di cifre dopo la virgola pari a quelle dell’addendo con meno cifre dopo la virgola

Gli arrotondamenti vanno fatti per difetto se la cifra che segue l’ultima cifra significativa è <5, per eccesso se tale cifra è >5. Se la cifra dopo l’ultima cifra significativa è = 5, e non è seguita da altre cifre, l’arrotondamento va fatto per difetto; se invece essa è seguita da altre cifre, si arrotonda per eccesso

Page 16: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Cifre significative in prodotti e rapportiEsempio: misura delle dimensioni di un rettangolo con un metro

Accuratezza della misura: ±0,1cm

a = 11,6 cm

b = 6,4 cm

• I valori misurati a e b hanno rispettivamente 3 e 2 cifre significative

• Calcoliamo l’area A = a b = 74,24 cm2

• Il risultato corretto è A=74 cm2 (2 cifre significative, come b)Il risultato di un prodotto va espresso con un

numero di cifre significative pari a quello del pari a quello del fattore che ha meno cifre significativefattore che ha meno cifre significative

Page 17: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1.GRANDEZZE, DIMENSIONI E MISURE

2.SENSIBILITA’ STRUMENTALI E SCALA NOMINALE DEI DISEGNI

3. INCERTEZZA E PROBABILITA’: INDICI DI TENDENZA

4. INDICI DI DISPERSIONE5.ERRORI6. INCERTEZZE NELLE MISURAZIONI

TOPOGRAFICHE

Page 18: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Sensibilità e precisione degli strumenti di misura

sensibilità di uno strumento è la minima quantità di grandezza misurabile con lo strumento (ordine di grandezza).

precisione di uno strumento è il rapporto tra la sensibilità dello strumento e la massima quantità di grandezza che lo strumento puòmisurare. La precisione è una grandezza adimensionale, tanto maggiore quanto minore è il numero che la esprime.

Page 19: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Scala grafica e scala MOMINALE

Scala della rappresentazione è la scala grafica tale per cui le incertezze dimensionali risultano inferiori all’errore di graficismo a quella scala: cioè rientrano nella tolleranza prevista dai capitolati alle diverse scale date.

Page 20: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Errore di graficismo e tolleranza grafica

genere della Rappresentazione grafica

Indice di scala

Contenuto referenziale dell’Errore di graficismo

tolleranza

Page 21: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

La scala è la scala d’informazione del modello

non conta la vera e propria scala del disegno digitale,

ma la solo scala a cui è corretto stampare il disegno,

Corrisponde alla scala per cui è stato progettato e realizzato il rilievo e la sua restituzione grafica o eidomatica.

Page 22: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Scala nominale come parametro del rilievo

Il rapporto di scala, a causa dell’errore di graficismo, determina automaticamente la precisione metrica, il dettaglio semantico del rilievo e della sua restituzione corretta.

Page 23: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1.GRANDEZZE, DIMENSIONI E MISURE

2.SENSIBILITA’ STRUMENTALI E SCALA NOMINALE DEI DISEGNI

3. INCERTEZZA E PROBABILITA’: INDICI DI TENDENZA

4. INDICI DI DISPERSIONE5.ERRORI6. INCERTEZZE NELLE MISURAZIONI

TOPOGRAFICHE

Page 24: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Natura PROBABILISTICA

della misuraIl valore della “misura esatta” è

teoricamente pensabile solo come valore più probabile della misurazione.

Per la legge probabilistica “empirica del caso” il valore teoricamente esatto di una misura lo si approssima come il valore più frequente in una serie di misurazioni; tante più saranno tali misurazioni quanta più sarà la precisione della misura.

Page 25: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

INCERTEZZA

Ma da un numero limitato di prove si può solo ridurre statisticamente l’aleatorietà introducendo la nozione di precisione e di errore come due grandezze reciproche, inversamente proporzionali che misurano l’incertezza della misurazione o dello strumento.

Page 26: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

L’insieme di misure omogenee di una stessa grandezza si possiamo distribuire in classi di equivalenza 1 ,2 ,3 , … n corrispondenti ai valori di data misura X i = (x1, x2, … xn.) che esprimono ciascuna quante misurazioni si possono riguardare entro una “stessa misura”.

Queste classi indicano le. frequenze corrispondenti alle misurazioni x1, x2, … xn

di una data misura X i.

POPOLAZIONE di misure

x 54-55

56-57

58-59

60-61

62-63

64-65

66-67

68-69

70-71

72-72

74-75

76-77

78-79

80-81

82-83

84-85

f 1 2 3 6 6 6 7 8 5 4 6 1 2 1 1 1

Page 27: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Prima nozione statistica: frequenza

Frequenza o frequenza assoluta (peso) di una modalità (misura) è il numero totale di volte che essa si presenta nelle unità rilevate

Voto (modalità)

Allievi (frequenza)

4 3

5 5

6 8

7 5

8 3

Page 28: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

In questo caso il continuum delle misure X i è stato discretizzato in intervalli di due unità ( ad esempio nella classe 2 sono comprese le misure da 55,5 a 57,5). Diciamo intuitivamente che al crescere dell’intervallo che definisce le classi diminuisce la precisione (come nel caso in cui si prelevassero le misure con una cordella metrica intervallata solo ogni mezzo centimetro piuttosto che con un nastro millimetrato) e cresce la difficoltà di leggere una “misura” attribuendola ad una classe.

Perciò i numeri che esprimono le misure x1, x2, … xn sono solo dei simboli delle classi di equivalenza 1 ,2 ,3 , … n e non possiamo esprimere un intervallo con suoi limiti effettivi (55,5-57,5) perché una misura che cadesse sul limite (55,5) non sarebbe classificabile.

x1

.xi

54-55

56-57

58-59

60-61

62-63

64-65

66-67

68-69

70-71

72-72

74-75

76-77

78-79

80-81

82-83

84-85

f1 .

.fi

1 2 3 6 6 6 7 8 5 4 6 1 2 1 1 1

Page 29: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

3.2 Media e misura probabile

Page 30: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

MEDIAM è un indice significativo dell’insieme dei dati ed

esprime la posizione sulla scala ordinata delle “misurazioni” di X (x1, x2, … xn ) verso la quale si

addensa la “popolazione”.

53.6760

40521

NM

fx in

i

x 54-55

56-57

58-59

60-61

62-63

64-65

66-67

68-69

70-71

72-72

74-75

76-77

78-79

80-81

82-83

84-85

f 1 2 3 6 6 6 7 8 5 4 6 1 2 1 1 1

Page 31: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Misura PROBALILE di una grandezza

Ripetendo n volte la misura x di una grandezza si può dimostrare che se gli errori sono distribuiti del tutto casualmente (distribuzione normale) il valore più probabile della misura è la media aritmetica dei risultati delle misure:

xm = (x1+x2+x3+...+xn)/nValore medio

della misura

xm = NM xin

1

Page 32: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

media aritmetica ponderata

Quando ciascuna modalità (misura) si presenta con una certa frequenza o peso, è più vantaggioso calcolare la media aritmetica considerando le frequenze): in tal caso si parla di media aritmetica ponderata perché ogni valore entra nella media con il suo peso, cioè la sua frequenza.

La media aritmetica ponderata M di n valori è:

n

nnn

nnnndoven

nxnxnxxxxM

...

...,...,,

21

221121

Page 33: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1.GRANDEZZE, DIMENSIONI E MISURE

2.SENSIBILITA’ STRUMENTALI E SCALA NOMINALE DEI DISEGNI

3. INCERTEZZA E PROBABILITA’: INDICI DI TENDENZA

4. INDICI DI DISPERSIONE5.ERRORI6. INCERTEZZE NELLE MISURAZIONI

TOPOGRAFICHE

Page 34: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Indici di dispersione

Scarto Scarto medioScarto quadratico medioVarianza

Page 35: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Seconda nozione statistica: la variabilitàIl calcolo della media ci permette di sintetizzare una quantità di dati, ma dall’altro riduce l’informazione racchiudendo tanti valori in un solo ‘dato’, rende simili situazioni che proprio simili non sono.

1 ̂prova 2 ̂prova 3 ̂prova 4 ̂prova 5 ̂prova MEDIA

Allievo 1 3 4 5 9 9 6

Allievo 2 6 6 6 6 6 6

Allievo 3 2 4 7 8 9 6

Per ridurre la perdita di informazioni, si ricorre allo studio della variabilità del fenomeno.

Page 36: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Variabilità è la tendenza di un fenomeno ad assumere modalità (misure) diverse fra loro.

Diagramma di dispersione

23456789

0 1 2 3 4 5

Prove

Allievo 1

Allievo 2

Allievo 3

Page 37: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Se la serie di misure indicano 37,2 cm. e l'utente,per un errore accidentale o sistematico, trascrive i seguenti quattro valori 37,1 poi 37,4 poi 37,0 poi 37,2 risulta che la media dei valori letti sarà una comune media aritmetica: (37.1 +37.4 +37.0 +37.2)/4 =148.7 /4 =37.175, detto valore medio .

Una volta ottenuto il valore medio, si può calcolare un altro valore, lo scarto.

Lo scarto vi è calcolato sottraendo il nuovo risultato letto xi dal valore medio.

Se a esempio una quinta misurazione fornisce il valore di 37.3

si avrà uno scarto di circa -0,2.

Mxv ii

SCARTO

Page 38: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

SCARTO MEDIOSCARTO è la differenza specifica tra ciascun valore x1, x2, … xn

ed il valore M della media.Mxv ii

Per misurare la variabilità si può dare uno SCARTO MEDIO inteso come la media della differenza specifica tra ciascun valore x1, x2, … xn ed il valore M della media.

n

Ni Mx

1n

Niv

1

ovvero

Page 39: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

SCARTO QUADRATICO MEDIO

n

Ni Mx

1

2

n

Niv

1

2

)(

Page 40: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

VARIANZAÈ il quadrato dello scarto quadratico

medio N

i Mxn

2

1

2

MM2

2

2

2

è un indice di variabilità che misura quanto si disperdono i valori delle misure in rapporto al valore medio;

è la differenza tra il valore quadratico medio ed il quadrato della media

Page 41: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

La varianza

La varianza è la media aritmetica degli scarti dalla media al quadrato, 2

8

5

22

692

652

642

632:allievo 1 Es.

... 222

212

n

MxMxMx n

1 ̂prova 2 ̂prova 3 ̂prova 4 ̂prova 5 ̂prova MEDIA Varianza

Allievo 1 3 4 5 9 9 6 8

Allievo 2 6 6 6 6 6 6 0

Allievo 3 2 4 7 8 9 6 8,5

Page 42: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Scarto quadratico medio Lo scarto quadratico medio (sqm) o deviazione standard è la radice quadrata (positiva) della varianza.

n

MxMxMx n22

22

12 ...

1^ prova 2^ prova 3^ prova 4^ prova 5^ prova MEDIA Varianzasqm o

Deviazione standard

Allievo 1 3 4 5 9 9 6 8 2,83

Allievo 2 6 6 6 6 6 6 0 0,00

Allievo 3 2 4 7 8 9 6 8,5 2,92

Page 43: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1.GRANDEZZE, DIMENSIONI E MISURE

2.SENSIBILITA’ STRUMENTALI E SCALA NOMINALE DEI DISEGNI

3. INCERTEZZA E PROBABILITA’: INDICI DI TENDENZA

4. INDICI DI DISPERSIONE5.ERRORI6. INCERTEZZE NELLE MISURAZIONI

TOPOGRAFICHE

Page 44: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

TEORIA DELL’ERRORE

1. Distribuzione normale degli errori Funzione di Gauss

2. Teoria degli errori nel rilevamento

Page 45: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

grossolani – scarti macroscopici, dovuti ad imperizia e negligenza nel rilevamento

sistematici – scarti sempre nello stesso senso (segno), dovuti a errata taratura dello strumento, individuabili confrontando le indicazioni dello strumento con quelle di un altro strumento tarato correttamente.

accidentali – scarti agenti in maniera aleatoria che portano a deviazioni casuali in entrambe i sensi; sono dovuti a numerose circostanze, non sono identificabili individualmente ma solo statisticamente ripetendo più volte la misura della stessa grandezza.

ERRORI

Page 46: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.
Page 47: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

MISURA & INCERTEZZA

Ogni misura è sempre composta da: UN NUMEROUNA UNITA’ DI MISURA E DAL VALORE DELL’INCETEZZA legata allo

strumento, all’oggetto misurato o alle condizioni di misurazione.

Il valore dell’INCERTEZZA - di una misura o di uno strumento – è valutato in un intervallo pari al doppio dell’errore probabile.

Page 48: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Page 49: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Distribuzione normale dell’errore accidentale:

FREQUENZAEseguendo n misurazioni x di una

grandezza si possono raggruppare i risultati in classi di frequenza 1 ,2 ,3 , …

n che indicano il peso di probabilità di una certa

misura e non sono necessarie nel caso di misure della stessa precisione.

x 54-55

56-57

58-59

60-61

62-63

64-65

66-67

68-69

70-71

72-72

74-75

76-77

78-79

80-81

82-83

84-85

f 1 2 3 6 6 6 7 8 5 4 6 1 2 1 1 1

Page 50: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

distribuzione probabilistica degli errori accidentali in una serie di misure di ugual precisione è tale che:

1 - esiste un limite entro il quale non vi sono più errori accidentali

2 – la probabilità che le misure siano approssimate in eccesso è uguale a quella che siano approssimate in difetto

3 – gli errori sono tanto più improbabili nella misura in cui crescono; ovvero saranno tanto più numerosi quanto più saranno piccoli.

 La media aritmetica M dei valori letti in diversi momenti sulla stessa grandezza corrisponde al valore più probabile della misura

NM xin

1

Page 51: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Disposizione simmetrica degli scarti

Eseguendo un sempre maggiore numero di misurazioni, e misurandone un sempre maggiore numero di scarti dal valore medio si constata una Legge di simmetria:

in valore assoluto gli scarti si equivalgono,

cioè non esiste una tendenza degli scarti accidentali a superare o difettare dal valore medio.

Page 52: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Disposizione decrescente degli scarti

La frequenza degli scarti aumenta con il rimpicciolire del valore dello scarto stesso,

poiché è molto più probabile commettere un errore minuscolo piuttosto che un errore elevato.

Ad esempio nel prelievo di una misura diretta è più probabile sbagliare accidentalmente di un centimetro che di un decimetro.

Page 53: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Dunque nel caso di misure ripetute di ugual precisione il valore medio costituisce la stima empirica del valore teorico della misura della grandezza. Tale valore sarà tanto più probabile quanto più aumenta il numero N delle misure.

Rispetto a questo valore più probabile della misura gli scarti - le differenze specifiche tra ciascun valore x1, x2, … xn ed il valore M della media – costituiscono gli errori “veri” rispetto al valore più probabile della Misura:

La somma algebrica di questi scarti dovrebbe essere sempre nulla

Mxv ii

01

n

iv

Page 54: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

ed è sempre minima la somma dei loro quadrati rispetto alla media.

Questo principio detto dei minimi quadrati è fondamentale per la compensazione degli errori accidentali.

Si considera la vera misura come dato più probabile rispetto al quale dunque è minima la somma dei quadrati di tutte le differenze fra le varie misure di una stessa grandezza.

n

Niv

1

2

n

Niv

1

2

1

Scarto quadratico

medio σErrore quadratico

medio

Page 55: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

ERRORE QUADRATICO MEDIO

Questo indice (detto scarto tipo o anche deviazione standard) esprime in media l’entità dell’errore entro il quale può oscillare il valore delle misurazioni.

Indica quanto ogni misura mediamente si scosta dal valore teorico della grandezza osservata. Valuta la dispersione della media empirica intorno al valore della media teorica.

n

Niv

1

2

1

Page 56: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

L’errore quadratico medio consente di valutare la precisione delle misurazioni.

Si dimostra che al crescere delle misurazioni i valore minori di sono circa il 70% di quelli rilevati ovvero il valore di ha una probabilità di 0,7 di non essere superato.

Solo una misurazione su mille è affetta da scarti (errori) accidenetali che eccedono il triplo di .

Page 57: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Istogramma delle misure

Le misurazioni xi di una grandezza si

rappresentino tra il più piccolo (xmin)e

il più grande (xmax) dei valori misurati

xi

e si divida l'intervallo xmin, xmax in un

certo numero di classi di frequenza, ciascuna di ampiezza Δx.

Page 58: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

In ascissa si indica l’ordine crescente

(decrescente) dei valori xi,

In ordinata si indica il valore della frequenza.

Page 59: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Il grafico rappresenta la distribuzione dei risultati delle misure, mostrando che la maggior parte dei risultati si addensa intorno al valor medio,

mentre risultati che differiscono considerevolmente dalla media sono poco frequenti.

Page 60: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Distribuzione di GaussSi può dimostrare che quando gli

errori sono distribuiti casualmente, facendo il limite per Δx -->0, e n --> ∞, cioè aumentando il numero delle osservazioni e riducendo l'ampiezza delle classi, l'istogramma precedente si trasforma in una curva continua chiamata gaussiana o curva di Gauss:

Page 61: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Fre

qu

en

za d

elle

mis

ure

scarto

erroreerrore

Page 62: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.
Page 63: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

il parametro σ, chiamato deviazione standard, esprime la distanza orizzontale tra i punti di flesso e il massimo della curva (della funzione);

rappresenta la dispersione dei risultati intorno al valore più probabile

Page 64: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Quanto maggiore è tale dispersione tanto più larga appare la curva.

Una curva molto allargata indica che l'effetto degli errori accidentali è notevole.

Il significato statistico della curva di distribuzione è il seguente:

presi due valori x1 e x2, l'area sottesa dalla curva nell'intervallo x1, x2 rappresenta la probabilità che il risultato di una misura sia compreso tra x1 e x2.

Page 65: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

si può dimostrare che esiste il 68.3 % di probabilità che il risultato della

misura sia compreso nell'intervallo xo+σ,

il 95.4 % che sia compreso nell'intervallo

xo+2σ e

il 99.7 % che si trovi in xo+3σ,

Page 66: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

La deviazione standard può essere stimata dai risultati sperimentali usando la relazione:σ = ( (xi-xm)2/(n-1))1/2

in cui la sommatoria al numeratore rappresenta la somma dei quadrati degli scarti dalla media. Nota la deviazione standard è possibile calcolare l'errore della

media, o errore standard, come:μ = σ/n1/2

che rappresenta la deviazione standard della media.Di conseguenza esiste il 68.3 % di probabilità che il valor vero sia

contenuto nell'intervallo xm+μ,

il 95.4 % che sia contenuto in xm+2μ

e il 99.7 % che sia contenuto in xm+3μ. Assumendo come grado di fiducia il 95.4 % della probabilità, si può esprimere il risultato delle misure nella forma: x = xm+/-2μ

Page 67: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

TOLLERANZA

è dunque definita come il triplo dell’errore quadratico medio e costituisce l’ERRORE TEMIBILE in una misurazione, è il valore prefissato dell’incertezza.

TOLLERANZA è dunque la maggiore tra le differenze ammissibili tra due misure della stessa grandezza in modo che possa essere assunta la media come valore più probabile della misura effettiva.

Consente di valutare l’ERRORE RELATIVO all’UNITA’ DI MISURA in modo che si possa assumere una CORREZIONE automatica di segno contrario all’errore stesso.

Page 68: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

1.GRANDEZZE, DIMENSIONI E MISURE

2.SENSIBILITA’ STRUMENTALI E SCALA NOMINALE DEI DISEGNI

3. INCERTEZZA E PROBABILITA’: INDICI DI TENDENZA

4. INDICI DI DISPERSIONE5.ERRORI6. INCERTEZZE NELLE MISURAZIONI

TOPOGRAFICHE

Page 69: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

COME SI DETERMINA LA TOLLERANZA IN UN RILIEVO?

1)In base alle caratteristiche del modello finale

2)In base alle condizioni (strumenti e metodi) del rilevamento

Page 70: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

promiscuità dei tipi di misurazione, programmi di calcolo e di compensazione di queste misure

La relazione fra le grandezze che costituiscono il rilievo, la posizione spaziale, ovvero le coordinate dell’oggetto del rilievo o di un punto dello stesso, la distanza relativa di un punto rispetto ad un altro non sono direttamente misurabili perchè non esistono strumenti che misurino direttamente sia l’una che l’altra di queste grandezze. Esse sono misure ottenute indirettamente. Le misure indirette richiedono il ricorso ad un modello geometrico che, però, fa uso di misure dirette.

Page 71: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

LA PRECISIONE DEL MODELLO GEOMETRICO

Se il rilievo approda ad un modello grafico dell’oggetto rilevato il parametro fondamentale è l’errore di graficismo legato alla scala del disegno.

Allorché nel progetto di rilievo si fissa una scala di restituzione si implica un margine d’errore ammissibile per rapporto allo scopo;

solo da ciò consegue la scelta di strumenti e metodi di rilievo.

Page 72: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

L’errore di graficismo nel disegno è valutato intorno ai 2 o 3 decimi di mm. assumendo conseguentemente un valore di tolleranza direttamente proporzionale alla diminuzione della scala (crescita del denominatore di scala) dai 3 cm. della scala 1:100 ai 60 cm. in scala 1:2000.

 D’altronde la rilevazione delle lunghezze con strumenti diretti per rilievi in scala 1:50 non consente tuttavia di rispettare nemmeno l’errore di 1,5 cm. consentito dall’errore di graficismo…

 La differenza tra errore di graficismo e tolleranza strumentale cresce in scala 1:20 sulle grandi estensioni,  mentre per rilievi in scala 1:100 la tolleranza strumentale è ampiamente contenuta nell’errore di graficismo.

Page 73: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Il ricorso alla scala di rappresentazione ha il solo scopo di creare un riferimento alla classificazione dei vari tipi di rilievo anche se il rilievo approda a una banca dei dati geometrici descrittivi dell’oggetto architettonico, ovvero a dati numerici, con codici di riconoscimento, relativi alla geometria descrittiva dell’oggetto, (in generale coordinate rispetto ad un prescelto sistema di riferimento) in scala 1:1.

Tuttavia il riferimento alla scala grafica misura l’incertezza dei dati numerici (coordinate) archiviati. Infatti la stampa dei dati avrà senso solo se le incertezze dei dati archiviati riportate alla scala grafica della rappresentazione, non superano il limite che costituisce la tolleranza della posizione cartografica di ogni punto dell’oggetto rappresentato. Rappresentazioni in una scala tale per cui l’incertezza della posizione grafica di un punto supera questo limite, non sono rappresentazioni corrette. La scelta di questo limite o tolleranza della posizione di un punto sulla carta, è in generale correlata con il graficismo. Gli spessori stessi dei segni grafici che riproducono sulla carta l’oggetto rilevato sono di alcuni decimi di millinietro. Alcuni decimi di millimetro è perciò l’ordine di grandezza di questa tolleranza grafica ammettendo che tutte le incertezze della misura della posizione debbano risultare inferiori a questi pochi decimi di millimetro.

Page 74: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

MISURE DIRETTE

Page 75: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

ERRORE QUADRATICO MEDIO NELLE MISURE DIRETTE

Distanza topografica è la misura della lunghezza del segmento che unisce la proiezione di due punti sulla superficie di riferimento.

La misura diretta di una distanza L si compie riportando n volte una lunghezza campione al quale è connesso

un errore quadratico medio au noto dell’assommarsi delle esperienze.

au è riferito al metro o al chilometro.

Page 76: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

ERRORE ACCIDENTALE NELLE MISURE DIRETTE

L’errore accidentale quadratico medio

a L della misura diretta L di una distanza

è proporzionale alla radice quadrata della distanza:

LauaL

Page 77: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

l’errore quadratico medio non è direttamente in proporzione al crescere della distanza ma della sua radice quadrata perché le compensazioni tra valutazioni per eccesso e per difetto avvengano automaticamente aumentando l’entità della misura.

Page 78: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

ERRORE SISTEMATICO NELLE MISURE DEIRETTE

Invece gli errori dovuti alla taratura degli strumenti influenzano la lettura delle misure sempre nello stesso modo, direttamente proporzionale alla distanza da misurare.

LsusL

. Per ogni condizione strumentale esiste un

coefficiente di proporzionalità su, cioè un

errore quadratico sistematico unitario.

Page 79: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.
Page 80: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

ERRORE TEMIBILE COMPLESSIVO NELLE MISURE DIRETTE

è la somma degli errori accidentali e sistematici.

LLsuauL

.. Dove L è la distanza da misurare,

au è l’errore medio unitario

accidentale,

su è l’errore medio unitario

sistematico ricavati per via sperimentale.

Page 81: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

TOLLERANZA NELLE MISURE DIRETTE

stabiliti p e q parametri costanti stabiliti sperimentalmente come il triplo degli errori quadrati medi, la TOLLERANZA t è

LqLpt ..

Page 82: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.
Page 83: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

La tolleranza è stabilita da diversi sistemi di unificazione, il Catasto Italiano, dall’IGM,

Ad esempio il Catasto Italiano stabilisce i seguenti valori di p e q:

Terreno pianeggiante 0,015  

Terreno ondulato 0,020 0.0008Terreno sfavorevole 0,025  

  p q

Page 84: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

G. Boaga, Introduzione al rilievo fotogrammetrico dei monumenti, Roma 1970.

Boaga fissa per il rilievo edilizio una Tolleranza compresa

tra 0,45 e1,45 mm

per metro.

Page 85: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.
Page 86: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Praticamente se si prendono di una stessa distanza due misure (ad esempio in andata ed in ritorno) si possono verificare due condizioni

1 – la differenza tra queste misure è minore o uguale alla tolleranza e dunque si può assumere come valore più probabile di L la loro media aritmetica

2 – la differenza tra le due misure è maggiore della tolleranza stabilita e dunque non possono essere accettate.

Page 87: 1.GRANDEZZE, DIMENSIONI E MISURE 2.SENSIBILITA STRUMENTALI E SCALA NOMINALE DEI DISEGNI 3.INCERTEZZA E PROBABILITA: INDICI DI TENDENZA 4.INDICI DI DISPERSIONE.

Nel progetto del rilievo deve essere interamente indicata la strumentazione da usare; la scelta va fatta prendendo in considerazione la scala del rilievo e quindi l’incertezza massima accettabile ovvero la tolleranza degli errori nella descrizione dell’oggetto.

Una propedeutica analisi attraverso modelli di simulazione per verificare a priori le precisioni ottenibili con determinati strumenti e con determinati schemi di rete, precisioni compatibili con una scala nominale desiderata.