Struttura primaria Struttura secondaria (alfa-elica, filamento beta, turn) Struttura supersecondaria...

Post on 02-May-2015

221 views 0 download

Transcript of Struttura primaria Struttura secondaria (alfa-elica, filamento beta, turn) Struttura supersecondaria...

Struttura primaria

Struttura secondaria(alfa-elica filamento beta turn)

Struttura supersecondaria (motivi strutturali)

fold

dominio

classe

subunitagrave

Struttura terziaria

Struttura quaternaria

All alphaAll betaAlpha and betaAlpha + beta

All- topologies

The lone helixThere are a number of examples of small proteins (or peptides) which consist of little more than a single helix A striking example is alamethicin a transmembrane voltage gated ion channel acting as a peptide antibiotic

The helix-turn-helix motifThe simplest packing arrangement of a domain of two helices is for them to lie antiparallel connected by a short loop This constitutes the structure of the small (63 residue) RNA-binding protein Rop which is found in certain plasmids (small circular molecules of double-stranded DNA occurring in bacteria and yeast) and involved in their replication There is a slight twist in the arrangement as shown

Catene laterali idrofobe

Catene laterali idrofileFASCIO DI QUATTRO ELICHE

Cytochrome c1

ferritin

cytokines

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

All- topologies

The lone helixThere are a number of examples of small proteins (or peptides) which consist of little more than a single helix A striking example is alamethicin a transmembrane voltage gated ion channel acting as a peptide antibiotic

The helix-turn-helix motifThe simplest packing arrangement of a domain of two helices is for them to lie antiparallel connected by a short loop This constitutes the structure of the small (63 residue) RNA-binding protein Rop which is found in certain plasmids (small circular molecules of double-stranded DNA occurring in bacteria and yeast) and involved in their replication There is a slight twist in the arrangement as shown

Catene laterali idrofobe

Catene laterali idrofileFASCIO DI QUATTRO ELICHE

Cytochrome c1

ferritin

cytokines

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

The lone helixThere are a number of examples of small proteins (or peptides) which consist of little more than a single helix A striking example is alamethicin a transmembrane voltage gated ion channel acting as a peptide antibiotic

The helix-turn-helix motifThe simplest packing arrangement of a domain of two helices is for them to lie antiparallel connected by a short loop This constitutes the structure of the small (63 residue) RNA-binding protein Rop which is found in certain plasmids (small circular molecules of double-stranded DNA occurring in bacteria and yeast) and involved in their replication There is a slight twist in the arrangement as shown

Catene laterali idrofobe

Catene laterali idrofileFASCIO DI QUATTRO ELICHE

Cytochrome c1

ferritin

cytokines

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

The helix-turn-helix motifThe simplest packing arrangement of a domain of two helices is for them to lie antiparallel connected by a short loop This constitutes the structure of the small (63 residue) RNA-binding protein Rop which is found in certain plasmids (small circular molecules of double-stranded DNA occurring in bacteria and yeast) and involved in their replication There is a slight twist in the arrangement as shown

Catene laterali idrofobe

Catene laterali idrofileFASCIO DI QUATTRO ELICHE

Cytochrome c1

ferritin

cytokines

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Catene laterali idrofobe

Catene laterali idrofileFASCIO DI QUATTRO ELICHE

Cytochrome c1

ferritin

cytokines

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Cytochrome c1

ferritin

cytokines

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

cytokines

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Fascio di 4 eliche antiparallele 2 coppie di eliche parallele unite in modo antiparallelo

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

domains which bind DNA

A three-helix bundle forms the basis of a DNA-binding domain which occurs in a number of proteins

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

globins

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Strutture ldquoall alphardquo

elica solitaria

elica-turn-elica

Fascio di 4 eliche

Globine (fascio di 8 eliche)

Domini ad alfa elica di grandi dimensioni

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

All- topologies

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

The Greek Key topology

The Greek Key topology named after a pattern that was common on Greek pottery is shown below Three up-and-down -strands connected by hairpins are followed by a longer connection to the fourth strand which lies adjacent to the first

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Ipotetica modalitagrave di ripiegamento di una struttura a

forcina per formare la struttura a chiave greca I filamenti 2 e 3

si ripiegano sugli altri due in modo che il filamento 2 viene ad essere allineato e antiparallelo al

filamento 1

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Gamma-crystallin has two domains each of which is an eight- stranded -barrel-type structure composed of two Greek keys In fact the structure is more accurately described as consisting of two -sheets one consisting of strands 2147 (white) and the other of strands 6583 (red) as indicated in the diagram

Gamma-crystallin

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Aligned and orthogonal sandwiches

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Diagram of this -sheet arrangement in the Lipocalin family which binds small molecules between the sheets of the sandwich

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

barrels

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Strutture alfabeta

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

topologies The most regular and common domain structures consist of repeating -- supersecondary units such that the outer layer of the structure is composed of helices packing against a central core of parallel -sheets These folds are called or wound Many enzymes including all those involved in glycolysis are structures Most proteins are cytosolicThe -- is always right-handed In structures there is a repetition of this arrangement giving a ---etc sequence The strands are parallel and hydrogen bonded to each other while the helices are all parallel to each other and are antiparallel to the strands Thus the helices form a layer packing against the sheetThe ---- subunit often present in nucleotide-binding proteins is named the Rossman Fold after Michael Rossman (Rao and Rossman1973)

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Beta-alfa-beta destrorsa Beta-alfa-beta sinistrorsa

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Alfa-eliche sul medesimo piano del foglietto beta

Alfa-eliche su piani opposti del foglietto beta

Elica di collegamento

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

barrels

Consider a sequence of eight - motifsIf the first strand hydrogen bonds to the last then the structure closes on itself forming a barrel-like structure

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Enzima triosofosfato isomerasi

Struttura a ldquoTIM barrelrdquo

Enzima lattato deidrogenasi

Rossman Fold

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

In tutte le strutture a botte il sito attivo si trova in una tasca formata dalle regioni loop che collegano le estremitagrave carbossiliche dei filamenti beta con le adiacenti alfa eliche

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Nei domini con struttura aperta ruotata il sito attivo si trova in una fessura localizzata esternamente allrsquoestremitagrave carbossilica del filamenti Questa fessura egrave formata da due regioni loop adiacenti che collegano i due filamenti con eliche presenti su facce opposte del foglietto

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Adenilato chinasiflavodossina

Punti di inversione topologica (topological switch points)

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Strutture alfabeta

I) TIM barrel

II) a)Struttura aperta e ruotata (di tipo parallelo o misto) - b) Rossmann fold

III) horseshoe (ferro di cavallo)

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Alpha+Beta Topologies

bullRibonuclease-H

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Structural Classification of Proteins (SCOP)Authors Alexey G Murzin Loredana Lo Conte Bartlett G Ailey Steven E Brenner Tim J P Hubbard and Cyrus Chothia Reference Murzin A G Brenner S E Hubbard T Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures J Mol Biol 247 536-540Classes

1All alpha proteins (151) 2All beta proteins (111) 3Alpha and beta proteins (ab) (117) Mainly parallel beta sheets (beta-alpha-beta units) 4Alpha and beta proteins (a+b) (212) Mainly antiparallel beta sheets (segregated alpha and beta regions) 5Multi-domain proteins (alpha and beta) (39) Folds consisting of two or more domains belonging to different classes 6Membrane and cell surface proteins and peptides (12) Does not include proteins in the immune system 7Small proteins (59) Usually dominated by metal ligand heme andor disulfide bridges 8Coiled coil proteins (5) Not a true class 9Low resolution protein structures (17) Not a true class 10Peptides (95) Peptides and fragments Not a true class 11Designed proteins (36) Experimental structures of proteins with essentially non-natural sequences Not a true class

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Membrane protein topology

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37

Paradosso di Levinthalbull Proteina di 100 residuibull Due gradi di libertarsquo torsionaliresiduo (phipsi)bull 3 conformazioni accessibili per ogni grado dilibertarsquo torsionalebull 1048774 32x100 possibili conformazionibull 1013 conformazioni esploratesecbull Tempo richiesto per esplorare tutte leconformazioni t = 20 x 109 anni bull Le proteine si devono ripiegare seguendo uncammino definito caratterizzato da conformazionivia via piursquo stabili (diminuizione di G)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37