Progettazione di circuiti e sistemi VLSI

Post on 30-Jan-2016

28 views 2 download

description

Progettazione di circuiti e sistemi VLSI. Anno Accademico 2010-2011 Lezione 11 5.5.11 Memorie ( vedi anche i file pcs1_memorie.pdf pcs2_memorie.pdf – pcs3_memorie.pdf ). Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability - PowerPoint PPT Presentation

Transcript of Progettazione di circuiti e sistemi VLSI

Sistemi Elettronici Programmabili

1

Progettazione di circuiti e sistemi VLSIProgettazione di circuiti e sistemi VLSI

Anno Accademico 2010-2011

Lezione 115.5.11

Memorie

(vedi anche i file pcs1_memorie.pdf pcs2_memorie.pdf – pcs3_memorie.pdf )

Sistemi Elettronici Programmabili

2

Chapter Overview

Memory Classification

Memory Architectures

The Memory Core

Periphery

Reliability Case Studies

Sistemi Elettronici Programmabili

3

Semiconductor Memory Classification

Read-Write MemoryNon-VolatileRead-Write

Memory

Read-Only Memory

EPROM

E2PROM

FLASH

RandomAccess

Non-RandomAccess

SRAM

DRAM

Mask-Programmed

Programmable (PROM)

FIFO

Shift Register

CAM

LIFO

Sistemi Elettronici Programmabili

4

Memory Timing: Definitions

Write cycleRead access Read access

Read cycle

Write access

Data written

Data valid

DATA

WRITE

READ

Sistemi Elettronici Programmabili

5

Memory Architecture: Decoders

Word 0

Word 1

Word 2

WordN- 2

WordN-1

Storagecell

M bits M bits

N words

S0

S1

S2

SN-2

A0

A1

AK-1

K= log2N

SN-1

Word 0

Word 1

Word 2

WordN- 2

WordN 1

Storagecell

S0

Input-Output(M bits)

Intuitive architecture for N x M memoryToo many select signals:

N words == N select signals K = log2NDecoder reduces the number of select signals

Input-Output(M bits)

Decoder

-

Sistemi Elettronici Programmabili

6

Ro

w D

eco

de

r

Bit line2L2K

Word line

AK

AK1 1

AL2 1

A0

M.2K

AK2 1

Sense amplifiers / Drivers

Column decoder

Input-Output(M bits)

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing torail-to-rail amplitude

Selects appropriateword

-2L-K

Sistemi Elettronici Programmabili

7

Contents-Addressable Memory

Address Decoder

I/O Buffers

Commands

29 Validity BitsPriority Encoder

Address Decoder

I/O Buffers

Commands

29 Validity Bits

Priority EncoderAddress Decoder

Data (64 bits)

I/O Buffers

Comparand

CAM Array29 words3 64 bits

Mask

Control LogicR/W Address (9 bits)

Commands

29 Validity Bits

Priority Encoder

Sistemi Elettronici Programmabili

8

Memory Timing: Approaches

DRAM TimingMultiplexed Adressing

SRAM TimingSelf-timed

Addressbus

RAS

RAS-CAS timing

Row Address

AddressBus

Address transitioninitiates memory operation

Address

Column Address

CAS

Sistemi Elettronici Programmabili

9

Read-Only Memory Cells

WL

BL

WL

BL

1WL

BL

WL

BL

WL

BL

0

VDD

WL

BL

GND

Diode ROM MOS ROM 1 MOS ROM 2

Sistemi Elettronici Programmabili

10

MOS OR ROM

WL[0]

VDD

BL[0]

WL[1]

WL[2]

WL[3]

Vbias

BL[1]

Pull-down loads

BL[2] BL[3]

VDD

Sistemi Elettronici Programmabili

11

MOS NOR ROM

WL[0]

GND

BL [0]

WL [1]

WL [2]

WL [3]

VDD

BL [1]

Pull-up devices

BL [2] BL [3]

GND

Sistemi Elettronici Programmabili

12

MOS NOR ROM Layout

Programmming using theActive Layer Only

Polysilicon

Metal1

Diffusion

Metal1 on Diffusion

Cell (9.5 x 7)

Sistemi Elettronici Programmabili

13

MOS NAND ROM

All word lines high by default with exception of selected row

WL [0]

WL [1]

WL [2]

WL [3]

VDD

Pull-up devices

BL[3]BL [2]BL [1]BL [0]

Sistemi Elettronici Programmabili

14

MOS NAND ROM Layout

No contact to VDD or GND necessary;

Loss in performance compared to NOR ROM

drastically reduced cell size

Polysilicon

Diffusion

Metal1 on Diffusion

Cell (8 x 7)

Programmming usingthe Metal-1 Layer Only

Sistemi Elettronici Programmabili

15

Equivalent Transient Model for MOS NOR ROM

• Word line parasitics– Wire capacitance and gate capacitance– Wire resistance (polysilicon)

• Bit line parasitics– Resistance not dominant (metal)– Drain and Gate-Drain capacitance

Model for NOR ROM VDD

Cbit

rword

cword

WL

BL

Sistemi Elettronici Programmabili

16

Equivalent Transient Model for MOS NAND ROM

• Word line parasitics– Similar to NOR ROM

• Bit line parasitics– Resistance of cascaded transistors dominates– Drain/Source and complete gate capacitance

Model for NAND ROMVDD

CL

rword

cword

cbit

rbit

WL

BL

Sistemi Elettronici Programmabili

17

Non-Volatile MemoriesThe Floating-gate transistor (FAMOS)

Floating gate

Source

Substrate

Gate

Drain

n+ n+_p

tox

tox

Device cross-section Schematic symbol

G

S

D

Sistemi Elettronici Programmabili

18

Floating-Gate Transistor Programming

0 V

- 5 V 0 V

DS

Removing programming voltage leaves charge trapped

5 V

-2.5 V 5 V

DS

Programming results in higher VT.

20 V

10 V 5 V 20 V

DS

Avalanche injection

Sistemi Elettronici Programmabili

19

A “Programmable-Threshold” Transistor

“0”-state “1”-state

DVT

VWL VGS

“ON”

“OFF”

Sistemi Elettronici Programmabili

20

FLOTOX EEPROM

Floating gate

Source

Substratep

Gate

Drain

n1 n1

FLOTOX transistorFowler-Nordheim I-V characteristic

20–30 nm

10 nm

-10 V

10 V

I

VGD

Sistemi Elettronici Programmabili

21

EEPROM Cell

WL

BL

VDD

Absolute threshold controlis hardUnprogrammed transistor might be depletion 2 transistor cell

Sistemi Elettronici Programmabili

22

Flash EEPROM

Control gate

erasure

p-substrate

Floating gate

Thin tunneling oxide

n1source n1drainprogramming

Many other options …

Sistemi Elettronici Programmabili

23

Basic Operations in a NOR Flash Memory:Erase

S D

12 VG

cell arrayBL0 BL1

open open

WL0

WL1

0 V

0 V

Sistemi Elettronici Programmabili

24

Basic Operations in a NOR Flash Memory:Write

S D

12 V

6 VG

BL0 BL1

6 V 0 V

WL0

WL1

12 V

0 V

Sistemi Elettronici Programmabili

25

Basic Operations in a NOR Flash Memory:Write

S D

12 V

6 VG

BL0 BL1

6 V 0 V

WL0

WL1

12 V

0 V

Sistemi Elettronici Programmabili

26

Basic Operations in a NOR Flash Memory:Read

5 V

1 VG

S D

BL0 BL1

1 V 0 V

WL0

WL1

5 V

0 V

Sistemi Elettronici Programmabili

27

NAND Flash Memory

Unit Cell

Word line(poly)

Source line(Diff. Layer)

Courtesy Toshiba

Gate

ONO

FGGateOxide

Sistemi Elettronici Programmabili

28

NAND Flash Memory

Word linesSelect transistor

Bit line contact Source line contact

Active area

STI

Courtesy Toshiba

Sistemi Elettronici Programmabili

29

Characteristics of State-of-the-art NVM

Sistemi Elettronici Programmabili

30

Read-Write Memories (RAM) STATIC (SRAM)

DYNAMIC (DRAM)

Data stored as long as supply is appliedLarge (6 transistors/cell)FastDifferential

Periodic refresh requiredSmall (1-3 transistors/cell)SlowerSingle Ended

Sistemi Elettronici Programmabili

31

6-transistor CMOS SRAM Cell

WL

BL

VDD

M5M6

M4

M1

M2

M3

BL

QQ

Sistemi Elettronici Programmabili

32

CMOS SRAM Analysis (Read)WL

BL

VDD

M 5

M 6

M 4

M1VDDVDD VDD

BL

Q = 1Q = 0

Cbit Cbit

Sistemi Elettronici Programmabili

33

CMOS SRAM Analysis (Read)

0

0

0.2

0.4

0.6

0.8

1

1.2

0.5

Voltage rise [V]

1 1.2 1.5 2Cell Ratio (CR)

2.5 3

Vo

ltage

Ris

e (

V)

Sistemi Elettronici Programmabili

34

CMOS SRAM Analysis (Write)

BL = 1 BL = 0

Q = 0

Q = 1

M1

M4

M5

M6

VDD

VDD

WL

Sistemi Elettronici Programmabili

35

CMOS SRAM Analysis (Write)

Sistemi Elettronici Programmabili

36

Resistance-load SRAM Cell

Static power dissipation -- Want RL largeBit lines precharged to VDD to address tp problem

M3

RL RL

VDD

WL

Q Q

M1 M2

M4

BL BL

Sistemi Elettronici Programmabili

37

SRAM Characteristics

Sistemi Elettronici Programmabili

38

3-Transistor DRAM Cell

No constraints on device ratiosReads are non-destructiveValue stored at node X when writing a “1” = VWWL-VTn

WWL

BL1

M1 X

M3

M2

CS

BL2

RWL

VDD

VDD2VT

DVVDD2VTBL2

BL1

X

RWL

WWL

Sistemi Elettronici Programmabili

39

1-Transistor DRAM Cell

Write: CS is charged or discharged by asserting WL and BL.Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

M1

CS

WL

BL

CBL

VDD2VT

WL

X

sensing

BL

GND

Write 1 Read 1

VDD

VDD /2 V

V BL VPRE– VBIT VPRE–CS

CS CBL+------------= =V

Sistemi Elettronici Programmabili

40

DRAM Cell Observations 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out. DRAM memory cells are single ended in contrast to SRAM cells.The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation. Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design. When writing a “1” into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than VDD

Sistemi Elettronici Programmabili

41

1-T DRAM Cell

Uses Polysilicon-Diffusion Capacitance

Expensive in Area

M1 wordline

Diffusedbit line

Polysilicongate

Polysiliconplate

Capacitor

Cross-section Layout

Metal word line

Poly

SiO2

Field Oxiden+ n+

Inversion layerinduced byplate bias

Poly

Sistemi Elettronici Programmabili

42

Static CAM Memory Cell

••• •••

CAM

Bit

Word

Bit

••• CAM

Bit Bit

CAM

Word

Wired-NOR Match Line

Match M1

M2

M7M6

M4 M5M8 M9

M3int

SWord

••• CAM

Bit Bit

S

Sistemi Elettronici Programmabili

43

CAM in Cache Memory

Address Decoder

Hit Logic

CAM

ARRAY

Input Drivers

Tag HitAddress

SRAM

ARRAY

Sense Amps / Input Drivers

DataR/W

Sistemi Elettronici Programmabili

44

Periphery

Decoders Sense Amplifiers Input/Output Buffers Control / Timing Circuitry

Sistemi Elettronici Programmabili

45

Row Decoders

Collection of 2M complex logic gatesOrganized in regular and dense fashion

(N)AND Decoder

NOR Decoder

Sistemi Elettronici Programmabili

46

Hierarchical Decoders

• • •

• • •

A2A2

A 2A3

WL 0

A2A3A2A 3A2A3

A3 A3A 0A0

A0A 1A 0A1A0A1A0A1

A 1 A1

WL 1

Multi-stage implementation improves performance

NAND decoder usingNAND decoder using2-input pre-decoders2-input pre-decoders

Sistemi Elettronici Programmabili

47

Dynamic Decoders

Precharge devices

VDD

GND

WL3

WL2

WL1

WL0

A0A0

GND

A1A1

WL3

A0A0 A1A1

WL 2

WL 1

WL 0

VDD

VDD

VDD

VDD

2-input NOR decoder 2-input NAND decoder

Sistemi Elettronici Programmabili

48

Sense Amplifiers

tpC V

Iav----------------=

make V as smallas possible

smalllarge

Idea: Use Sense Amplifer

outputinput

s.a.smalltransition

Sistemi Elettronici Programmabili

49

Differential Sense Amplifier

Directly applicable toSRAMs

M4

M1

M5

M3

M2

VDD

bitbit

SE

Outy

Sistemi Elettronici Programmabili

50

Differential Sensing ― SRAMVDD

VDD

VDD

VDD

BL

EQ

Diff.SenseAmp

(a) SRAM sensing scheme (b) two stage differential amplifier

SRAM cell i

WL i

2xx

VDD

Output

BL

PC

M3

M1

M5

M2

M4

x

SE

SE

SE

Output

SE

x2x 2x

Sistemi Elettronici Programmabili

51

Latch-Based Sense Amplifier (DRAM)

Initialized in its meta-stable point with EQOnce adequate voltage gap created, sense amp enabled with SEPositive feedback quickly forces output to a stable operating point.

EQ

VDD

BL BL

SE

SE

Sistemi Elettronici Programmabili

52

Other Circuits for Memory Periphery

• Charge-based Amplifiers• Single-to Differential Conversion• Voltage Regulators• Charge pumps

and other solutions…

Sistemi Elettronici Programmabili

53

Reliability and Yield

Sistemi Elettronici Programmabili

54

Noise Sources in 1T DRam

Ccross

electrode

a-particles

leakage CS

WL

BL substrate Adjacent BL

CWBL

Sistemi Elettronici Programmabili

55

Alpha-particles (or Neutrons)

1 Particle ~ 1 Million Carriers

WL

BL

VDD

n1

a-particle

SiO21

111

11

22

22

22

Sistemi Elettronici Programmabili

56

Yield

Yield curves at different stages of process maturity(from [Veendrick92])

Sistemi Elettronici Programmabili

57

Redundancy

MemoryArray

Column Decoder

Row Decoder

Redundantrows

Redundantcolumns

RowAddress

ColumnAddress

FuseBank:

Sistemi Elettronici Programmabili

58

Error-Correcting Codes

Example: Hamming Codes

with

e.g. B3 Wrong

1

1

0

= 3

Sistemi Elettronici Programmabili

59

Redundancy and Error Correction

Sistemi Elettronici Programmabili

60

Trends in Memory Cell Area

From [Itoh01]