Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola strallata - Bontempi

Post on 25-Jul-2015

192 views 0 download

Transcript of Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola strallata - Bontempi

1Ottimizzazione Strutturale

franco.bontempi@uniroma1.it

1

Introduzione alla

OTTIMIZZAZIONE STRUTTURALEApplicazione a una mensola strallata

Franco Bontempi

Ordinario di Tecnica delle Costruzioni

Facolta’ di Ingegneria Civile e Industriale

Sapienza Universita’ di Roma

2

2015

3Ottimizzazione Strutturale

franco.bontempi@uniroma1.it

3

Object of the course

• Introduction of basic and advanced ideas

and aspects of structural design without to

much stress on the analytical apparatus

but with some insigth on the computational

techniques.

EVOLUTION OF THE DESIGN

OF A CABLE-STAYED BRACKET

THE OBJECT

An innovative device for

precast/prestressed beam support

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

6

CONNECTION REGIONS

• Presence of high stress levels;

• Diffusive field of stress - so-called D-regions;

• Geometrical complexity, related to the position and interference of different structural parts converging there;

• Requirements of minimum space usage, essentially due to architectural appearance;

• Necessity to guarantee a substantial good structural behavior - strength, ductility, and robustness;

• Demand from constructability point of view.

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

7

REINFORCED CONCRETE

CORBELS

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

8

STRUCTURAL STEEL CORBELSw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

9

BEAM SUPPORTw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

10

BASIS OF DESIGN (1)

• simplicity:

the structural configuration of the connection must be made by very regular and flat parts, by which

– the stress state has the most possible uniformity;

– there are no stress concentrations;

– the load transfer is obtained by the most straight path;

– it is possible to develop a complete integration between steel parts and concrete mass, with an

accurate structural anchorage.

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

11

BASIS OF DESIGN (2)

• dependability:

the structural configuration must be have

– suitable functional performance characteristics

(Serviceability Limit States, SLS),

– appropriate strength capacity

(Ultimate Limit States, ULS),

– capacity to support accidental situations, without

showing disproportionate consequences when

triggered by limited damage

(Structural Robustness).

ww

w.f

ran

co

bo

nte

mp

i.o

rg

CONCEPTUAL DESIGN

Definition and optimization

of the structural configuration

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

13

STRUCTURAL SCHEME

Versione iniziale

Versione finale

beam SX beam DX

column

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

14

LOAD SCHEMES

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

SYM ASYM

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

15

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

16

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

17

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

18

STRUCTURAL PARTSw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

19

FIRST ANALYSIS (A):

two dimensional geometry

co

lum

n

a

Vsd

Vsd

a/2

Vsd*=Vsd/2

Vsd* =Vsd/2

co

lum

n

a

Vsd

Vsd

co

lum

n

a

Vsd

Vsd

a/2

Vsd*=Vsd/2

Vsd* =Vsd/2

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

20

• the steel parts, the longitudinal bars and the

stirrups are represented by bars working both

in tension and in compression, while concrete

parts are lumped into bars with no tension

behavior;

• one model a segment of concrete column

sufficient to extinguish the diffusive effects

connected with this D-region, i.e. until a B-

region is reached, governed by the so-called

Bernoulli stress regime;

FIRST ANALYSIS (B):

mechanical modeling by S&T

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

21

S & T Model Definitionw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

22

Strut & Tie Models

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

23

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

Strut & Tie Results

stirrups longitudinal bars

concretesteel bracket

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

24

Hybrid models

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

25

Global responseEnd of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

End of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

Y

X

Y

X

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

26

Local response

>290

<-290

>290

<-290

>290

<-290

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

27

EVOLUTION OF THE FORM (1)

600.0

250.0

15.0

60.2

70.0

145.0

56°

66°

50°

378.5

188.0

320.1ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

28

EVOLUTION OF THE FORM (2)

600.0

369.4

55°

66°

50°

224.4

15.0

60.0

70.0

145.0

280.0

399.4

126.0

100.8

195.0

230.7

188.0

69.7

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

29

EVOLUTION OF THE FORM (3)

Versione iniziale

Versione finale

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

30

CONSTRUCTABILITY (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

31

CONSTRUCTABILITY (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

32

CONSTRUCTABILITY (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

33

CONSTRUCTABILITY (3)w

ww

.fra

nc

ob

on

tem

pi.o

rg

EXTENDED ANALYSIS

Detailed assessment

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

35

THREE-DIMENSIONAL

GEOMETRY

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

36

Results for

concrete core and steel frame

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

37

Results for

steel bottom frame and attacment

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

38

EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

39

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

40

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

41

MODELS OF EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

42

BASIC FORMw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

43

IMPROVEMENTSw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

44

ENHANCED FORMw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

45

COMPRESSION ONLY CONTACTw

ww

.fra

nc

ob

on

tem

pi.o

rg

NEXT STEP

Two way beam support

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

47

TWO WAY SUPPORT (1)w

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

48

TWO WAY SUPPORT (2)w

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

49

ENHANCHED 2WAY SUPPORTw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

50

CONCLUSIONS• The evolution of the design of a bracket component,

supported by a cable-stayed system, is presented.

• This apparently simple element conceals a rather complex structural geometry, developed to be suitable both for strength requirements and constructability. The so devised solution can assure:– Manufacturing of precast elements without exterior parts;

– Minimal size of the bracket and completely hidden insertion in the supported beams;

– Compliance with different standards.

• The evolution of the leading concepts and of the geometry of this element is explained together with the numerical analysis obtained both by synthetic models, like strut & tie, and by full non linear finite element models.

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Stro N

GERwww.stronger2012.com

Evolution of the design of a

cablestayed bracket

51

STRUCTURAL ANALSYS AND ASSESSMENT

OF

THE STAYED BRACKET

by B.S. ITALIA / Gruppo STYL-COMP

Report April 2007

Dr.-Ing. Franco Bontempi, Ph.D., P.E.,Professor of Structural Analysis and Design,

School of Engineering, Department of Structural and Geotechnical Engineering,UNIVERSITY OF ROME "LA SAPIENZA", Via Eudossiana 18 - 00184 Rome (ITALY)

tel. +39-06-44585.265,.750, fax. +39-06-4884852 - franco.bontempi@uniroma1.it

Postgraduate School of Reinforced Concrete Structures "F.lli Pesenti"Department of Structural Engineering,

POLYTECHNIC OF MILAN, Piazza L. da Vinci 32 - 20133 Milan (ITALY)tel. +39-02-2399.4375,.4203, fax. +39-02-2399.4220

mobile: +39-339-3956300 - franco.bontempi@francobontempi.org

FB - April 2007 STAYED BRACKET 53

INDEX PART 1

Basis of the Problem

Strut & Tie Modeling

Finite Element Analysis by

Substrucuring Technique and S&T

Improvement Strategies

Models and Programs Validation

FB - April 2007 STAYED BRACKET 54

INDEX PART 2

ThickNess Improvement

Shaping

Results for Shaping Type B

PART 0Synthesis

FB - April 2007 STAYED BRACKET 56

Vsd [kN] thickNess (th) [mm]

600 8

850 10

1050 12

1500 18

SCENARIOUS

Lateral

Plate

Original Optimized Shaped

Weight (kg) 9,6 9,1 9,9

FB - April 2007 STAYED BRACKET 57

STRUCTURAL RESPONSE (I)

Upper edge displacement

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 500 1000 1500 2000

Load [KN]

Ux

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

FB - April 2007 STAYED BRACKET 58

Y

X

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0 500 1000 1500 2000

Load [KN]

Str

es

s_

x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,00%

0,02%

0,04%

0,06%

0,08%

0,10%

0,12%

0 500 1000 1500 2000

Load [KN]

To

tal S

tra

in_

x

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12%

Total Strain_x

Str

ess_x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

STRUCTURAL RESPONSE (II)

FB - April 2007 STAYED BRACKET 59

End of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

STRUCTURAL RESPONSE (III)

FB - April 2007 STAYED BRACKET 60

ALTERNATIVE GEOMETRIC

CONFIGURATIONS

TIPO B

1

2 3450°

31°

288.8

83.2

69.0

30.0

TYPE B

FB - April 2007 STAYED BRACKET 61

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 62

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 63

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 64

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 65

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 66

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 67

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 68

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

PART 1Framework

of the structural problem

BASIS OF THE

PROBLEM

FB - April 2007 STAYED BRACKET 71

DESIGN CRITERIA

• SIMPLICITY:

1. the load path from the loading appliction points to

the main internal region of the structural element

must be the simplest and the quitest; it means that

– the stress flow should be regular;

– stress concentrations should be avoided;

– the loading transfer should prefer direct

placement;

– integration between steel parts and concrete

must be accurate and anchorage truthful;

• DEPENDABILITY;

FB - April 2007 STAYED BRACKET 72

PERFORMANCE CRITERIA (i)

• Ultimate Limit State:

1. strength verified by partial safety factors

disequations; there are admitted yielded

parts of the bracket and damaged portions

of the concrete in the structural element;

– the strength capacity will be verified by non

linear analysis, starting from unloaded to

collapse loading;

FB - April 2007 STAYED BRACKET 73

PERFORMANCE CRITERIA (ii)

• Serviceability Limit State:

1. the structural behavior should be elastic-

linear until an adequate loading level

(usually, the ultimate loading level / 1.5);

– in particular, steel parts must not be yielded

anywhere and the concrete must experience

a low stress level;

2. the displacements of the bracket for service

loading must be limited;

FB - April 2007 STAYED BRACKET 74

PERFORMANCE CRITERIA (iii)

• Structural Robustness:

1. the connection device failure should develop

after major failure of the structural elemnt at

which the connection device is inserted;

2. the connection device must be able to

support the failure of one of the external ties,

i.e. each tie and directly connected parts

must be able anyway to support the double

of the service limit loading;

FB - April 2007 STAYED BRACKET 75

tie-rod

frame

tie shield

tie junction

closure plate

C junction

bottom rib

external plate

external bracket

rigid block

adjacent concrete

STRUCTURAL PARTS

FB - April 2007 STAYED BRACKET 76

LOADING SYSTEMS:

SYM. vs ASYM.

Reinforcement

Bars

Vsd

Reinforcement

Bars

Vsd

FB - April 2007 STAYED BRACKET 77

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-2000 0 2000 4000 6000 8000 10000

N

M

SYM

ASYM

M [kNm]

compressionN [kN]

tension

stirrups

longitudinal

bars

As=5 ø 22

As’=5 ø 22

ø 8/2b 9 cm

COLUMN REINFORCEMENT DESIGN

Reinforcement

ACTION N [kN] M [kNm]

SYM 2100 0

ASYM 1050 462

50 cm

60 cm

FB - April 2007 STAYED BRACKET 78

STRUCTURAL MODELING (i)

• A slice of half column is considered

(plane stress assumption)

co

lum

n

a

Vsd

Vsd

a/2

Vsd*=Vsd/2

Vsd* =Vsd/2

STRUT & TIE

MODELING

FB - April 2007 STAYED BRACKET 80

STRUCTURAL MODELING (model #1)

Strut & Tie modeling of the stayed bracket

STEP #1 STEP #2

STEP #3 STEP #4

FB - April 2007 STAYED BRACKET 81

STRUCTURAL MODELING (model #2)

Alternative S&T modeling of the stayed bracket

STEP #1

STEP #3 STEP #4

STEP #2

FB - April 2007 STAYED BRACKET 82

STRUCTURAL MODELING (model #3)

Alternative S&T modeling of the stayed bracket

STEP #1

STEP #3 STEP #4

STEP #2

FB - April 2007 STAYED BRACKET 83

STRUCTURAL MODELING

OF CONCRETE PART (I):

trusswork discretization

ablslAA

absaAA

basbAA

ba

ba

ba

dd

yy

xx

2

2

2

2

2

83

2

383

2

383

2

,

,

,

FB - April 2007 STAYED BRACKET 84

4321,,, uuuu

VIVIVIIIIIINNNNNN ,,,,,

ax

yu

x

by

yv

y

abxv

yu yx

bl

aNNNNN

VIVIII

x

al

bNNNNN

VIVIVIII

y

lNNN VIV

xy

xyyx NNN ,,

STRUCTURAL MODELING

OF CONCRETE PART (II):

stress representation

FB - April 2007 STAYED BRACKET 85

LOADING SYSTEMS: SYM.

Reinforcment

Bars

Vsd

C + SteelCSteel

VsdVsd

FB - April 2007 STAYED BRACKET 86

LOADING SYSTEMS: ASYM.

Reinforcment

BarsC + SteelCSteel

Vsd Vsd

Model S&T #1

Results for SYM

loading system

FB - April 2007 STAYED BRACKET 88

Vsd = 1050 kN – cap element stress

• max tension = 389,7 MPa

• min compression = -232,5 MPa• tension = 582,7 MPa

FB - April 2007 STAYED BRACKET 89

Vsd = 1050 kN – reinforcement bar stress

• max tension = 96,3 MPa

• min compression = -59,1 MPa

stirrups longitudinal

FB - April 2007 STAYED BRACKET 90

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -17,7 MPa

Model S&T #1

Results for ASYM

loading system

FB - April 2007 STAYED BRACKET 92

Vsd = 1050 kN – cap element stress

• max tension = 228,1 MPa

• min compression = -424,3 MPa• tension = 582,7 MPa

FB - April 2007 STAYED BRACKET 93

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 280,9 MPa

• min compression = -125,4 MPa

FB - April 2007 STAYED BRACKET 94

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -25,1 MPa

Model S&T #2

Results for SYM

loading system

FB - April 2007 STAYED BRACKET 96

Vsd = 1050 kN – cap element stress

• max tension = 422,1 MPa

• min compression = -295,7 MPa• tension = 582,7 MPa

FB - April 2007 STAYED BRACKET 97

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 143,9 MPa

• min compression = -49,4 MPa

FB - April 2007 STAYED BRACKET 98

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -19,8 MPa

Model S&T #2

Results for ASYM

loading system

FB - April 2007 STAYED BRACKET 100

Vsd = 1050 kN – cap element stress

• max tension = 631,8 MPa

• min compression = -718,7 MPa• tension = 582,7 MPa

FB - April 2007 STAYED BRACKET 101

Vsd = 1050 kN – reinforcement bar stress

• max tension = 331,3 MPa

• min compression = -115,5 MPa

FB - April 2007 STAYED BRACKET 102

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -23,1 MPa

Model S&T #3

Results for SYM

loading system

FB - April 2007 STAYED BRACKET 104

Vsd = 1050 kN – cap element stress

• max tension = 380,1 MPa

• min compression = -303,7 MPa• tension = 582,7 MPa

FB - April 2007 STAYED BRACKET 105

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 120 MPa

• min compression = -83,6 MPa

FB - April 2007 STAYED BRACKET 106

Vsd = 1050 kN – concrete stress

• max tension = 0 MPa

• min compression = -28,8 MPa

Sinthesis of the Results for

S&T Models

FB - April 2007 STAYED BRACKET 108

SUMMARY OF RESULTS (SYM) Vsd = 1050 kN

SYM Vsd= 1050 kN Limit

Model 1 2 3 Design

SMAXBIEL [N/mm^2] 582,71 582,71 582,71 580

TENSION [kN] 696,1 696,1 696,1

SMAXTEL [N/mm^2] 389,75 422,02 380,1 290

TENSION [kN] 423,2 458,3 412,8

SMINTEL [N/mm^2] -232,46 -295,7 -303,68 -290

SMAXSTAF [N/mm^2] 96,3 143,86 120,02 374

SMINSTAF [N/mm^2] -0,02 29,99 -24,88 -374

SMAXLONG [N/mm^2] -52,93 -36,34 -48,85 374

SMINLONG [N/mm^2] -59,16 -49,41 -83,6 -374

SMAXCLS [N/mm^2] 0 0 0 1,5

SMINCLS [N/mm^2] -17,72 -19,84 -28,8 -28

FB - April 2007 STAYED BRACKET 109

SUMMARY OF RESULTS (ASYM) Vsd = 1050 kN

ASYM Vsd= 1050 kN Limit

Model 1 2 Design

SMAXBIEL [N/mm^2] 582,71 582,71 580

TENSIONE [kN] 696,1 696,1

SMAXTEL [N/mm^2] 228,09 631,84 290

TENSION [kN] 305,18 341,2

SMINTEL [N/mm^2] -424,31 -718,65 -290

SMAXSTAF [N/mm^2] 164,65 297,32 374

SMINSTAF [N/mm^2] 1,75 0 -374

SMAXLONG [N/mm^2] 280,92 331,34 374

SMINLONG [N/mm^2] -125,4 -115,55 -374

SMAXCLS [N/mm^2] 0 0 1,5

SMINCLS [N/mm^2] -25,08 -23,11 -28

FB - April 2007 STAYED BRACKET 110

Legenda

Output Descrizione Valore di

Design

[N/mm^2]

SMAXBIEL tensione massima negli elementi rappresentanti i tiranti 580

SMAXTEL tensione massima negli elementi rappresentanti il telaio 290

SMINTEL tensione minima negli elementi rappresentanti il telaio -290

SMAXSTAF tensione massima negli elementi rappresentanti le armature lente

secondarie del pilastro

374

SMINSTAF tensione massima negativa negli elementi rappresentanti le armature lente

secondarie del pilastro

- 374

SMAXLONG tensione massima negli elementi rappresentanti le armature lente

principali del pilastro

374

SMINLONG tensione massima negativa negli elementi rappresentanti le armature lente

principali del pilastro

- 374

SMAXCA tensione massima negli elementi rappresentanti il calcestruzzo 1,5

SMINCA tensione massima negativa negli elementi rappresentanti il calcestruzzo -28

FINITE ELEMENT

ANALYSIS BY

SUBSTRUCTING

TECHNIQUE AND S&T

FB - April 2007 STAYED BRACKET 112

STRUCTURAL MODELING

Reinforcement

FB - April 2007 STAYED BRACKET 113

STRUCTURAL MODELING: CAP

FB - April 2007 STAYED BRACKET 114

RIGID

LINKS

BEAM ELEMENTS

STRUCTURAL MODELING: LINKS

ELASTIC MODELS

FB - April 2007 STAYED BRACKET 116

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATION

FB - April 2007 STAYED BRACKET 117

Vsd = 1050 kN – cap element stress:

elastic analysis (stress X)

>290

<-290

FB - April 2007 STAYED BRACKET 118

Vsd = 1050 kN – cap element stress:

elastic analysis (stress Y)

>290

<-290

FB - April 2007 STAYED BRACKET 119

>290

<-290

Vsd = 1050 kN – cap element stress:

elastic analysis (Von Mises) (I)

FB - April 2007 STAYED BRACKET 120

Vsd = 1050 kN – cap element stress:

elastic analysis (Von Mises) (II)

>580

<-580

FB - April 2007 STAYED BRACKET 121

Vsd = 1050 kN – reinforcement bar stress

stirrups longitudinal

• max tension = 96,6 MPa

• min compression = -61,3 MPa

FB - April 2007 STAYED BRACKET 122

concrete

• max tension = 0 MPa

• min compression = -18,2 MPa

• tension = 582,7 MPa

Vsd = 1050 kN – ties and concrete stress

FB - April 2007 STAYED BRACKET 123

SUMMARY OF RESULTS (SYM) Vsd= 1050 kN

SIMM Vsd= 1050 kN Limit

Model 1 substruct Design

SMAXBIEL [N/mm^2] 582,71 582,72 580

TENSION [kN] 696,1 696,1

SMAXTEL

(SMTEL_x)[N/mm^2] 389,75 653,2 290

TENSION [kN] 423,2 388,07

only “substructured” SMTEL_y [N/mm^2] 291,5 290

only “model 1” SMINTEL [N/mm^2] -232,46 -290

only “substructured” SmTEL_x [N/mm^2] -530,4 -290

only “substructured” SmTEL_y [N/mm^2] -641,62 -290

SMAXSTAF [N/mm^2] 96,3 90,32 374

SMINSTAF [N/mm^2] -0,02 -6,93 - 374

SMAXLONG [N/mm^2] -52,93 -55,52 374

SMINLONG [N/mm^2] -59,16 -61,29 - 374

SMAXCLS [N/mm^2] 0 0 1,5

SMINCLS [N/mm^2] -17,72 -18,21 -28

Linear elastic Steel

ELASTO-PLASTIC MODELS

FB - April 2007 STAYED BRACKET 125

ELASTIC- PLASTIC MATERIAL LAW

WITH VON MISES CRITERION

62519.4

]N/mm[ 10000

max

2

max

00138.0

]N/mm[ 290 2

y

y

][N/mm 210000 2

0 E

*100/1 01 EE

x10^(-3)

E0

E1

y

ymax

FB - April 2007 STAYED BRACKET 126

>290

<-290

Vsd = 1050 kN – cap element stress:

e-plastic analysis (stress X)

FB - April 2007 STAYED BRACKET 127

>290

<-290

Vsd = 1050 kN – cap element stress:

e-plastic analysis (stress Y)

FB - April 2007 STAYED BRACKET 128

>290

<-290

Vsd = 1050 kN – cap element stress:

e-plastic analysis (Von Mises) (I)

FB - April 2007 STAYED BRACKET 129

>580

<-580

Vsd = 1050 kN – cap element stress:

e-plastic analysis (Von Mises) (II)

FB - April 2007 STAYED BRACKET 130

Vsd = 1050 kN – cap element strain:

e-plastic analysis (Von Mises strain)

FB - April 2007 STAYED BRACKET 131

Vsd = 1050 kN – reinforcement bar stress

• max tension = 132 MPa

• min compression = -54,9 MPa

stirrups longitudinal

FB - April 2007 STAYED BRACKET 132

Vsd = 1050 kN – ties and concrete stress

concrete

• max tension = 0 MPa

• min compression = -19,8 MPa• tension = 582,7 MPa

FB - April 2007 STAYED BRACKET 133

SUMMARY OF RESULTS (SYM) Vsd= 1050 kN

SIMM Vsd= 1050 kN Limit

Model elastic e-plastic Design

SMAXBIEL [N/mm^2] 582,72 582,72 580

TENSION [kN] 696,1 696,1

SMTEL_x [N/mm^2] 653,2 560 290

TENSION [kN] 388,07 371,09

SMTEL_y [N/mm^2] 291,5 324,26 290

SmTEL_x [N/mm^2] -530,4 -515,65 -290

SmTEL_y [N/mm^2] -641,62 -632,07 -290

SMAXSTAF [N/mm^2] 90,32 122,93 374

SMINSTAF [N/mm^2] -6,93 15,55 - 374

SMAXLONG [N/mm^2] -55,52 -42,81 374

SMINLONG [N/mm^2] -61,29 -54,89 - 374

SMAXCLS [N/mm^2] 0 0 1,5

SMINCLS [N/mm^2] -18,21 -19,77 -28

elastic steel

e-plastic steel

FB - April 2007 STAYED BRACKET 134

-25

-20

-15

-10

-5

0

0 200 400 600 800 1000 1200

Load

Uy

Load application

Structural response (1)

FB - April 2007 STAYED BRACKET 135

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 200 400 600 800 1000 1200Load

Ux

Spigolo alto

Structural response (2)

FB - April 2007 STAYED BRACKET 136

0,000

0,001

0,001

0,002

0,002

0,003

0 200 400 600 800 1000 1200

Load

Ela

sti

c S

train

_x

Centre of Diaphram

-0,010

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 200 400 600 800 1000 1200

Load

Pla

sti

c S

tra

in_

x

Centre of Diaphram

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 200 400 600 800 1000 1200

Load

To

tal S

tra

in_

x

Centre of Diaphram

Structural response (3)

FB - April 2007 STAYED BRACKET 137

0

50

100

150

200

250

300

350

400

450

0,0000 0,0100 0,0200 0,0300 0,0400 0,0500 0,0600

Total Strain_x

Str

ess_x

Centre of Diaphram

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

Load

Str

es

s_

x

Centre of Diaphram

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 200 400 600 800 1000 1200

Load

To

tal S

train

_x

Centre of Diaphram

Structural response (4)

FB - April 2007 STAYED BRACKET 138

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic steel

FB - April 2007 STAYED BRACKET 139

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

FB - April 2007 STAYED BRACKET 140

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

>290

<-290

FB - April 2007 STAYED BRACKET 141

>290

<-290

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)

FB - April 2007 STAYED BRACKET 142

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

>580

<-580

FB - April 2007 STAYED BRACKET 143

Vsd = 1050 kN – reinforcement bar stress

• max tension = 348,9 MPa

• min compression = -116,1 MPa

stirrups longitudinal

FB - April 2007 STAYED BRACKET 144

• max tension = 0 MPa

• min compression = -23,5 MPa

• tension = 582,7 MPa

Vsd = 1050 kN – ties and concrete stress

concrete

IMPROVEMENT

STRATEGIES

FB - April 2007 STAYED BRACKET 146

COMMENTS• The actual configuration of the Stayed Bracket

seems to be not able in sustaining adequately the load of Vsd=1050 kN both in symmetric and asymmetric load scenarios.

• In general, the frame stresses are greater than the yielding values, also if they are less than the failure values.

• The amplitude of the yielded zone suggest to adopt strategies to improve the stayed bracket performances:

Strategy 1: improve the frame thickNess

Strategy 2: improve the frame size

Strategy 3: downloading

FB - April 2007 STAYED BRACKET 147

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATION

FB - April 2007 STAYED BRACKET 148

th0

Strategy 1: improve the frame thickNess

Actual Improved

th1

FB - April 2007 STAYED BRACKET 149

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

Strategy 1: improve the frame thickNess

Actual thickNess

th = 6 mm

Improved thickNess

th = 10 mm

FB - April 2007 STAYED BRACKET 150

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

Strategy 1: improve the frame thickNess

>290

<-290

Actual thickNess

th = 6 mm

Improved thickNess

th = 10 mm

FB - April 2007 STAYED BRACKET 151

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)

>290

<-290

Actual thickNess

th = 6 mm

Strategy 1: improve the frame thickNess

Improved thickNess

th = 10 mm

FB - April 2007 STAYED BRACKET 152

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

Actual thickNess

th = 6 mm

Strategy 1: improve the frame thickNess

Improved thickNess

th = 10 mm

FB - April 2007 STAYED BRACKET 153

Vsd = 1050 kN – cap element strain – e-

plastic analysis (Von Mises strain)

Strategy 1: improve the frame thickNess

Actual thickNess

th = 6 mm

Improved thickNess

th = 10 mm

FB - April 2007 STAYED BRACKET 154

Vsd = 1050 kN – cap element strain

e-plastic analysis (Von Mises strain) Improved thickNess

th = 10 mm

FB - April 2007 STAYED BRACKET 155

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises)

th = 10mm

FB - April 2007 STAYED BRACKET 156

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises)

>290

<-290

th = 10mm

FB - April 2007 STAYED BRACKET 157

h0 h1

Strategy 2: improve the frame size

Actual Improved

FB - April 2007 STAYED BRACKET 158

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

FB - April 2007 STAYED BRACKET 159

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

>290

<-290

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

FB - April 2007 STAYED BRACKET 160

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)

>290

<-290

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

FB - April 2007 STAYED BRACKET 161

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

Strategy 2: improve the frame size

Actual size

h = 145 mm

Improved size

h = 200 mm

FB - April 2007 STAYED BRACKET 162Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATION

Vsd = 850

kN

thickNess:

th = 6 mm

Strategy 3: downloading

FB - April 2007 STAYED BRACKET 163

Vsd = 850/1050 kN – cap element stress

e-plastic analysis (Von Mises)

Vsd = 850 kN Vsd = 1050 kN

FB - April 2007 STAYED BRACKET 164

Vsd = 850/1050 kN – cap element stress

e-plastic analysis (Von Mises)

Vsd = 850 kN

386 N/mm^2MAX in questa

zona

Vsd = 1050 kN

560 N/mm^2

FB - April 2007 STAYED BRACKET 165

Vsd = 850/1050 kN – cap element strain –

e-plastic analysis (Von Mises)

Vsd = 850 kN Vsd = 1050 kNLa scala è

diversa

FB - April 2007 STAYED BRACKET 166

SYM_Vsd = 850 kN

Stress e-plastic analysis (Von Mises) Strain e-plastic analysis (Von Mises)

th = 10 mm

MODELS

& PROGRAMS

VALIDATIONS

FB - April 2007 STAYED BRACKET 168

COMPARISON BETWEEN TWO F.E.

PROGRAMS

FB - April 2007 STAYED BRACKET 169

>290

<-290

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress X)

>290

<-290

FB - April 2007 STAYED BRACKET 170

Vsd = 1050 kN – cap element stress

e-plastic analysis (stress Y)

>290

<-290

>290

<-290

FB - April 2007 STAYED BRACKET 171

>290

<-290>290

<-290

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (I)

FB - April 2007 STAYED BRACKET 172

>580

<-580

Vsd = 1050 kN – cap element stress

e-plastic analysis (Von Mises) (II)

>580

<-580

FB - April 2007 STAYED BRACKET 173

Upper edge displacement

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 200 400 600 800 1000 1200

Load [KN]

Ux

[m

m]

ANSYS STRAUSY

X

STRUCTURAL RESPONSE COMPARISON (I)

FB - April 2007 STAYED BRACKET 174

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

0 200 400 600 800 1000 1200

Load [KN]

Str

ess_x [

MP

a]

ANSYS STRAUS

Y

X

Centre of Diaphram

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

0 200 400 600 800 1000 1200

Load [KN]

To

tal S

tra

in_

x

ANSYS STRAUS

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

0,00% 1,00% 2,00% 3,00% 4,00% 5,00% 6,00%

Total Strain_x

Str

es

s_

x [

MP

a]

ANSYS STRAUS

STRUCTURAL RESPONSE COMPARISON (II)

FB - April 2007 STAYED BRACKET 175

End of external bracket displacement

-25,00

-20,00

-15,00

-10,00

-5,00

0,00

0 200 400 600 800 1000 1200

Load [KN]

Uy [

mm

]

ANSYS STRAUS

STRUCTURAL RESPONSE COMPARISON (III)

PART 2Solutions

for the structural problem

THICkNESS

IMPROVEMENT

FB - April 2007 STAYED BRACKET 178

Vsd [kN] thickNess (th) [mm]

600 8

850 10

1050 12

1500 18

SCENARIOUS

FB - April 2007 STAYED BRACKET 179

th0

Strategy 1: improve the frame thickNess

Actual Improved

th

th= 8 mm

Vsd = 600 kN

FB - April 2007 STAYED BRACKET 181

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

FB - April 2007 STAYED BRACKET 182

>290

<-290

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 183

>580

<-580

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

FB - April 2007 STAYED BRACKET 184

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

FB - April 2007 STAYED BRACKET 185

>290

<-290

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 186

>580

<-580

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

th= 10 mm

Vsd = 850 kN

FB - April 2007 STAYED BRACKET 188

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

FB - April 2007 STAYED BRACKET 189

>290

<-290

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 190

>580

<-580

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

FB - April 2007 STAYED BRACKET 191

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

FB - April 2007 STAYED BRACKET 192

>290

<-290

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 193

>580

<-580

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

th = 12 mm

Vsd = 1050 kN

FB - April 2007 STAYED BRACKET 195

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

FB - April 2007 STAYED BRACKET 196

>290

<-290

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 197

>580

<-580

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

FB - April 2007 STAYED BRACKET 198

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

FB - April 2007 STAYED BRACKET 199

>290

<-290

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 200

>580

<-580

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

th = 18 mm

Vsd = 1500 kN

FB - April 2007 STAYED BRACKET 202

Reinforcement

Vsd Vsd

C + SteelCSteel

Vsd

SYMMETRIC CONFIGURATIONe-plastic Steel

FB - April 2007 STAYED BRACKET 203

>290

<-290

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 204

>580

<-580

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

FB - April 2007 STAYED BRACKET 205

C + SteelCSteel

Vsd

ASYMMETRIC CONFIGURATION

Reinforcement Bars

Vsd

e-plastic Steel

FB - April 2007 STAYED BRACKET 206

>290

<-290

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 207

>580

<-580

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

FB - April 2007 STAYED BRACKET 208

Summary for Proposed ThickNess:

von Mises stress / SYM / e-plastic analysis

>290

<-290

Vsd=1050 kN

th=12 mm

Vsd=1500 kN

th=18 mm

Vsd=600 kN

th=8 mm

Vsd=850 kN

th=10 mm

FB - April 2007 STAYED BRACKET 209

Y

X

Upper edge displacement

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 500 1000 1500 2000

Load [KN]

Ux

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

STRUCTURAL RESPONSE (I)

FB - April 2007 STAYED BRACKET 210

Y

X

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0 500 1000 1500 2000

Load [KN]

Str

es

s_

x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,00%

0,02%

0,04%

0,06%

0,08%

0,10%

0,12%

0 500 1000 1500 2000

Load [KN]

To

tal S

tra

in_

x

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Centre of Diaphram

0,0

50,0

100,0

150,0

200,0

250,0

0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12%

Total Strain_x

Str

ess_x [

MP

a]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

STRUCTURAL RESPONSE (II)

FB - April 2007 STAYED BRACKET 211

End of external bracket displacement

-8,00

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

0 500 1000 1500 2000

Load [KN]

Uy

[m

m]

Vsd=600 KN - th=8mm

Vsd=850 KN - th=10mm

Vsd=1050 KN - th=12mm

Vsd=1500 KN - th=18mm

Y

X

STRUCTURAL RESPONSE (III)

SHAPING

FB - April 2007 STAYED BRACKET 213

30.0

69.0

83.2

288.8

TIPO C

1

195.0

25.2

31°50° 432

ALTERNATIVE CONFIGURATIONS

TIPO A

31°50° 432

1

30.0

90.0

83.2

288.8

TIPO B

1

2 3450°

31°

288.8

83.2

69.0

30.0

ACTUAL

TYPE B TYPE C

TYPE AACTUAL

FB - April 2007 STAYED BRACKET 214

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

Actual

Tipo ATYPE A

FB - April 2007 STAYED BRACKET 215

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

Actual

Tipo BTYPE B

FB - April 2007 STAYED BRACKET 216

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

Actual

Tipo CTYPE C

RESULTS FOR

SHAPING

TYPE B

FB - April 2007 STAYED BRACKET 218

ALTERNATIVE GEOMETRIC

CONFIGURATIONS

TIPO B

1

2 3450°

31°

288.8

83.2

69.0

30.0

TYPE B

th = 8 mm

Vsd =600 kN

FB - April 2007 STAYED BRACKET 220

>290

<-290

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 221

>580

<-580

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES I

von MISES II

FB - April 2007 STAYED BRACKET 222

Vsd = 600 kN SYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 223

>290

<-290

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 224

Vsd = 600 kN ASYM th = 8 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

th = 10 mm

Vsd = 850 kN

FB - April 2007 STAYED BRACKET 226

>290

<-290

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 227

Vsd = 850 kN SYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 228

>290

<-290

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 229

Vsd = 850 kN ASYM th = 10 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

th= 12 mm

Vsd = 1050 kN

FB - April 2007 STAYED BRACKET 231

>290

<-290

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 232

Vsd = 1050 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 233

>290

<-290

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 234

Vsd = 1050 kN ASYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

th = 18 mm

Vsd = 1500 kN

FB - April 2007 STAYED BRACKET 236

>290

<-290

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 237

Vsd = 1500 kN SYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

FB - April 2007 STAYED BRACKET 238

>290

<-290

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

STRESS Y>290

<-290

STRESS X

FB - April 2007 STAYED BRACKET 239

Vsd = 1500 kN ASYM th = 18 mm

cap element stress / e-plastic analysis

>290

<-290

von MISES

RESULTS FOR

STRUCTURAL

ROBUSTNESS

th = 12 mm

Vsd = 1050*1,33 kN = 1396 kN

FB - April 2007 STAYED BRACKET 242

>290

<-290

Vsd = 1050*1,33= 1396,5 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>290

<-290STRESS Y

STRESS X

FB - April 2007 STAYED BRACKET 243

>290

<-290

von MISES I

Vsd = 1050*1,33= 1396,5 kN SYM th = 12 mm

cap element stress / e-plastic analysis

>580

<-580

von MISES II

Stro N

GERwww.stronger2012.com

Evolution of the design of a

cablestayed bracket

244

245

ANALISI E VERIFICHE STRUTTURALI

DELLE CONFIGURAZIONI

per Vsd = 1050 Kn

IN PRESENZA DI PLUVIALE / A 2 VIE

ISOTROPADicembre 2007

ww

w.f

ran

co

bo

nte

mp

i.o

rg

INFLUENZA DELLA

PRESENZA DEL PLUVIALE

Vsd = 1050 Kn

246

247

Definizione del modello (1)

248

Definizione del modello (2)

249

Definizione del modello (3)

250

Definizione del modello (4)

251

Definizione del modello (5)

252

Stato di sforzo nel conglomerato (1)

Sforzi verticali

253

Stato di sforzo nel conglomerato (2)

Sforzi verticali

254

Stato di sforzo nel conglomerato (3)

Sforzi verticali

255

Stato di sforzo nel conglomerato (4)

Sforzi verticali

256

Stato di sforzo nel conglomerato (5)

Sforzi verticali

257

Stato di sforzo nel conglomerato (6)

258

Stato di sforzo nel conglomerato (7)

259

Stato di sforzo nel conglomerato (8)

260

Stato di sforzo nel conglomerato (9)

261

Stato di sforzo nel conglomerato (10)

262

Stato di sforzo nel conglomerato (11!)

Von Mises !

263

Stato di sforzo nel conglomerato (12!)

Von Mises !

264

Stato di sforzo nei piatti verticali (1)

265

Stato di sforzo nei piatti verticali (2)

266

Stato di sforzo nei piatti verticali (3)

267

Stato di sforzo nei piatti di chiusura

268

Stato di sforzo negli attacchi a C

CONFIGURAZIONE A 2 VIE

ISOTROPA

Vsd = 1050 Kn

269

270

Definizione del modello (1)

271

Definizione del modello (2)

272

Definizione del modello (3)

273

Definizione del modello (4)

274

Discretizzazione conglomerato

275

Discretizzazione piatti verticali

276

Discretizzazione singolo piatto verticale

277

Discretizzazione piatti chiusura

278

Stato di sforzo nel conglomerato (1)

Sforzi verticali

279

Stato di sforzo nel conglomerato (2)

Sforzi verticali

280

Stato di sforzo nel conglomerato (3)

Sforzi verticali

281

Stato di sforzo nel conglomerato (4)

Sforzi verticali

282

Stato di sforzo nel conglomerato (5)

Sforzi verticali

283

Stato di sforzo nel conglomerato (6)

Sforzi verticali

284

Stato di sforzo nel conglomerato (7)

Sforzi verticali

285

Stato di sforzo nel conglomerato (8)

Sforzi verticali

286

Stato di sforzo nel conglomerato (9)

287

Stato di sforzo nel conglomerato (10)

288

Stato di sforzo nel conglomerato (11)

289

Stato di sforzo nel conglomerato (12)

290

Stato di sforzo nel conglomerato (13)

291

Stato di sforzo nel conglomerato (14)

292

Stato di sforzo nel conglomerato (15)

293

Stato di sforzo nel conglomerato (16)

294

Stato di sforzo nel conglomerato (17)

295

Stato di sforzo nel conglomerato (18!)

Von Mises !

296

Stato di sforzo nel conglomerato (19!)

Von Mises !

297

Stato di sforzo piatti verticali (1)

298

Stato di sforzo piatti verticali (2)

299

Stato di sforzo piatti verticali (3)

300

Stato di sforzo piatti verticali (4)

301

Stato di sforzo piatti verticali (5)

302

Stato di sforzo nei piatti di chiusura

303

Stato di sforzo attacchi a C

Stro N

GERwww.stronger2012.com

Evolution of the design of a

cablestayed bracket

304

305

ANALISI E VERIFICHE STRUTTURALI

DELLA MENSOLA DI APPOGGIO

per Vsd = 1050 kNMaggio 2008

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

306

EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

Evolution of the design of a

cablestayed bracket

307

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

308

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Evolution of the design of a

cablestayed bracket

309

MODELS OF EXTERNAL PARTw

ww

.fra

nc

ob

on

tem

pi.o

rg

vertical

longitudinal

transversal

CONFIGURAZIONI

Configurazione iniziale e

rinforzata

310

ww

w.f

ran

co

bo

nte

mp

i.o

rg

311

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

312

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

313

Rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

314

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

315

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

316

Rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

317

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

318

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

319

Rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

320

Deformabilità senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

321

Deformabilità con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

322

Mensola senza rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

323

Mensola con rinforzow

ww

.fra

nc

ob

on

tem

pi.o

rg

324

Mensola senza rinforzo:

vista superiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

325

Mensola con rinforzo:

vista superiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

326

Mensola senza rinforzo:

vista inferiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

327

Mensola con rinforzo:

vista inferiore

ww

w.f

ran

co

bo

nte

mp

i.o

rg

328

Mensola senza rinforzo:

vista di lato

ww

w.f

ran

co

bo

nte

mp

i.o

rg

329

Mensola con rinforzo:

vista di lato

ww

w.f

ran

co

bo

nte

mp

i.o

rg

330

Mensola senza rinforzo:

vista di fronte

ww

w.f

ran

co

bo

nte

mp

i.o

rg

331

Mensola con rinforzo:

vista di fronte

ww

w.f

ran

co

bo

nte

mp

i.o

rg

ANALISI NON LINEARE

Analisi elasto-plastica con

elementi di contatto della

configurazione iniziale

332

ww

w.f

ran

co

bo

nte

mp

i.o

rg

333

Moltiplicatore = 0.60w

ww

.fra

nc

ob

on

tem

pi.o

rg

334

Moltiplicatore = 0.80w

ww

.fra

nc

ob

on

tem

pi.o

rg

335

Moltiplicatore = 0.94w

ww

.fra

nc

ob

on

tem

pi.o

rg

336

Moltiplicatore = 0.60w

ww

.fra

nc

ob

on

tem

pi.o

rg

337

Moltiplicatore = 0.80w

ww

.fra

nc

ob

on

tem

pi.o

rg

338

Moltiplicatore = 0.94w

ww

.fra

nc

ob

on

tem

pi.o

rg

339

Moltiplicatore = 0.60w

ww

.fra

nc

ob

on

tem

pi.o

rg

340

Moltiplicatore = 0.80w

ww

.fra

nc

ob

on

tem

pi.o

rg

341

Moltiplicatore = 0.94w

ww

.fra

nc

ob

on

tem

pi.o

rg

CONFIGURAZIONE FINALE

Verifiche in campo elasto plastico e

vincoli monolateri sul profilato a C

342

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Caratteristiche complessive:

• Azione verticale mensola: Vd=1050 kN;

• Acciaio mensola: Fe510 – S355;

• Tiranti: 2 Ø 42 classe 10.9 (M42);

• Bulloni ritegno: 2 Ø 16 classe 10.9 (M16):

resist. taglio Vrd,tot = 2x70 = 140 kN;

resist. trazione Nrd,tot = 2x99 = 180 kN;

• Peso mensola fusa: 15.7 kg.

343

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modb NOFLEX

Carico:

Verticale 1050 kN

344

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

345

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

346

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

347

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

348

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

349

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

350

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,0) [kN]

351

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,0) [kN]

352

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modc NOFLEX

Carico:

Verticale 1050 kN

Longitudinale 250 kN

353

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

354

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

355

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

356

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

357

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

358

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

359

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

360

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

361

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

362

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

363

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

364

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

365

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,250,0) [kN]

366

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,250,0) [kN]

367

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modd NOFLEX

Carico:

Verticale 1050 kN

Trasversale 250 kN

368

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

369

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

370

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

371

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

372

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

373

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

374

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

375

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

376

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

377

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

378

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

379

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

380

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,0,250) [kN]

381

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,0,250) [kN]

382

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 mode NOFLEX

Carico:

Verticale 1050 kN

Trasversale 175 kN

Longitudinale 175 kN383

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

384

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

385

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

386

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

387

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

388

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

389

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

390

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

391

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

392

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

393

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

394

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

395

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

396

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

397

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE(Fz,Fx,Fy)=(1050,175,175) [kN]

398

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU(Fz,Fx,Fy)=(1050,175,175) [kN]

399

ww

w.f

ran

co

bo

nte

mp

i.o

rg

MF01-1 AD 00 modf NOFLEX

Carico:

Verticale 1050 kN

Longitudinale 500 kN

400

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

401

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

402

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

403

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

404

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

405

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

406

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

407

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

408

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

409

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

410

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

411

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

412

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLE (Fz,Fx,Fy)=(1050,500,0) [kN]

413

ww

w.f

ran

co

bo

nte

mp

i.o

rg

SLU (Fz,Fx,Fy)=(1050,500,0) [kN]

414

ww

w.f

ran

co

bo

nte

mp

i.o

rg

415

Pesi soluzioni

fattore

correttivo

utilizzo

SNODO TIRANTE ACCIAIO 39NiCrMo3 bonificato 668 PR/02 1.4 2 2.8 1.9 5.3

AGGANCIO MENSOLA - - PR/15 - 1 0.1 1.0 0.1

PIATTO 115x8 l40 S355JR - Fe510B 355 0.3 1 0.3 1.0 0.3

BARRA POSTERIORE MENSOLA S355JR - Fe510B 355 PR/14 5.5 1 5.5 1.0 5.5

NERVATURA MENSOLA S355JR - Fe510B 355 PR/13 1.2 4 4.8 1.0 4.8

PIATTO MENSOLA S355JR - Fe510B 355 PR/12 3.8 1 3.8 1.0 3.8

PESO COMPLESSIVO 17.3 1.1 19.8

SOLUZIONE FUSA INIZIALE

PESO COMPLESSIVO S355JR - Fe510B 14.3 1.0 14.3

CON RINFORZO

PESO COMPLESSIVO S355JR - Fe510B 16.0 1.0 16.0

SOLUZIONE COMPOSTA materiale tasso di lavoro (Mpa) codice peso (kg) # peso (kg) - peso (kg)

ww

w.f

ran

co

bo

nte

mp

i.o

rg

Stro N

GERwww.stronger2012.com

Evolution of the design of a

cablestayed bracket

416